

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc859dslczp50a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

Table 1 shows the functionality supported by the members of the MPC866/859 family.

2 Features

Part	Cache		Ethe	ernet	SCC	SMC	
Fait	Instruction	Data	10T	10/100	300	SIMC	
MPC866P	16 Kbytes	8 Kbytes	Up to 4	1	4	2	
MPC866T	4 Kbytes	4 Kbytes	Up to 4	1	4	2	
MPC859P	16 Kbytes	8 Kbytes	1	1	1	2	
MPC859T	4 Kbytes	4 Kbytes	1	1	1	2	
MPC859DSL	4 Kbytes	4 Kbytes	1	1	1 ¹	1 ²	
MPC852T ³	4 KBytes	4 Kbytes	2	1	2	1	

Table 1. MPC866 Family Functionality

¹ On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot Assigner (TSA).

² On the MPC859DSL, the SMC (SMC1) is for UART only.

³ For more details on the MPC852T, please refer to the MPC852T Hardware Specifications.

The following list summarizes the key MPC866/859 features:

- Embedded single-issue, 32-bit PowerPCTM core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch, without conditional execution
 - 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
 - 16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets;
 4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
 - 8-Kbyte data cache (MPC866P and MPC859P) is two-way, set-associative with 256 sets; 4-Kbyte data cache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
 - MMUs with 32-entry TLB, fully associative instruction and data TLBs
 - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups.
 - Advanced on-chip-emulation debug mode
- The MPC866/859 provides enhanced ATM functionality over that of the MPC860SAR. The MPC866/859 adds major new features available in 'enhanced SAR' (ESAR) mode, including the following:
 - Improved operation, administration, and maintenance (OAM) support
 - OAM performance monitoring (PM) support
 - Multiple APC priority levels available to support a range of traffic pace requirements

Features

The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.

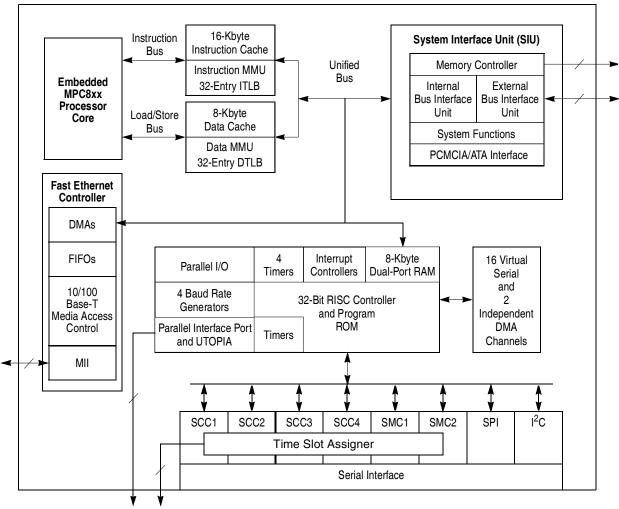
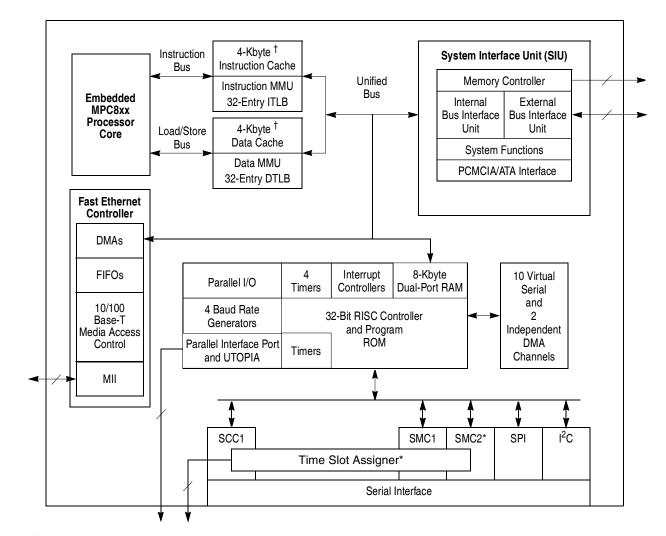



Figure 1. MPC866P Block Diagram

- [†] The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.
- * The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA controllers.

Figure 2. MPC859P/859T/MPC859DSL Block Diagram

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

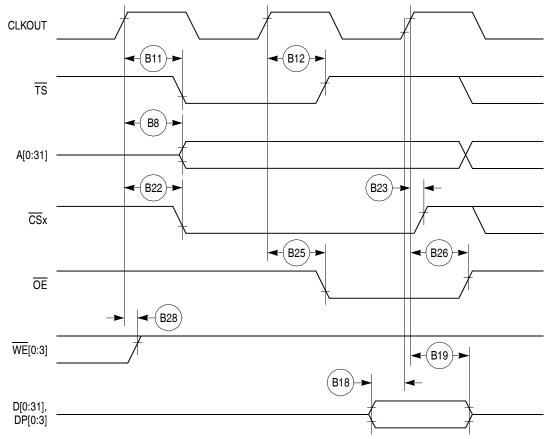


Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors.

Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)

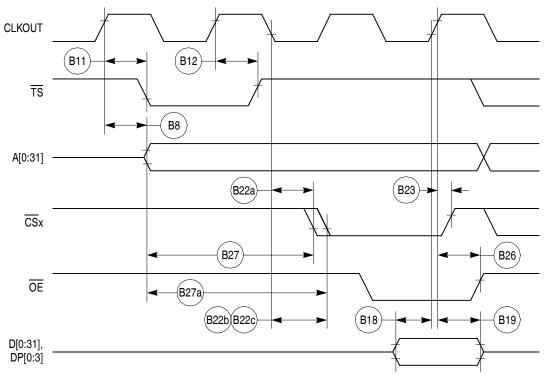


Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

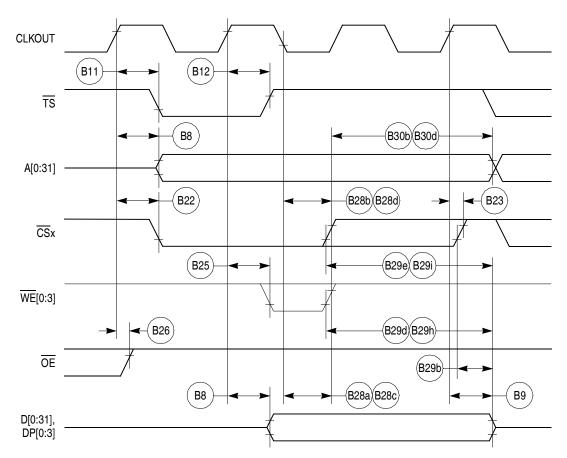


Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Figure 19 shows the timing for the external bus controlled by the UPM.

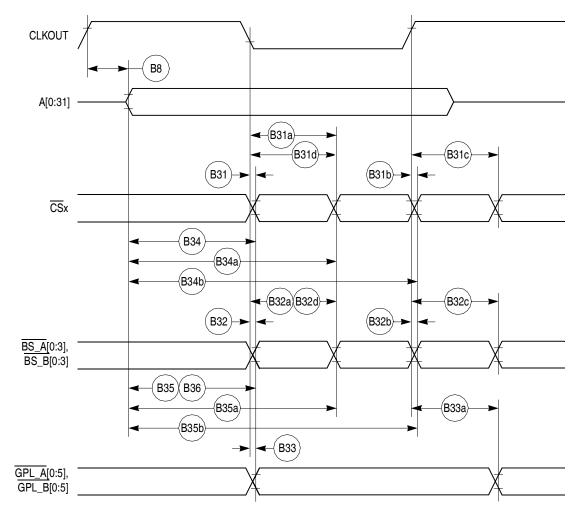


Figure 19. External Bus Timing (UPM Controlled Signals)

Table 12 shows the PCMCIA port timing for the MPC866/859.

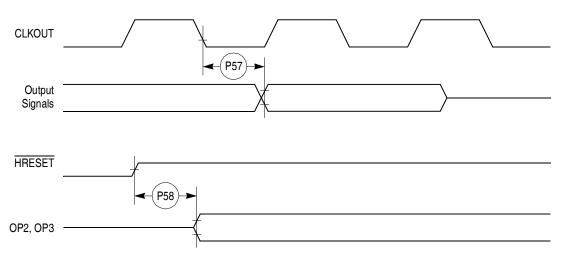

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Gharacteristic	Min	Max	Min	Max	Min	Max	Min	Max	onne
P57	CLKOUT to OPx, valid (MAX = 0.00 x B1 + 19.00)	_	19.00	_	19.00	_	19.00	—	19.00	ns
P58	HRESET negated to OPx drive 1 (MIN = 0.75 x B1 + 3.00)	25.70		21.70		18.00		14.40		ns
P59	IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00)		_	5.00	_	5.00	_	5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00)	1.00		1.00		1.00		1.00		ns

Table 12. PCMCIA Port Timing

OP2 and OP3 only.

1

Figure 30 shows the PCMCIA output port timing for the MPC866/859.

Figure 30. PCMCIA Output Port Timing

Figure 31 shows the PCMCIA output port timing for the MPC866/859.

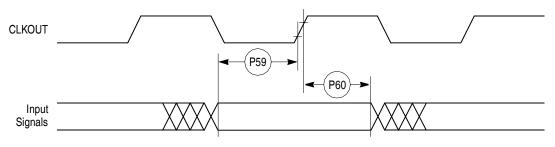


Figure 31. PCMCIA Input Port Timing

Table 13 shows the debug port timing for the MPC866/859.

Table 13. Debug Port Timing

Num	Characteristic	All Frequenc	Unit	
Nulli	Characteristic	Min	Max	Unit
D61	DSCK cycle time	3xT _{CLOCKOUT}		
D62	DSCK clock pulse width	1.25xT _{CLOCKOUT}	_	
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00	_	ns
D65	DSDI data hold time	5.00	_	ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 32 shows the input timing for the debug port clock.

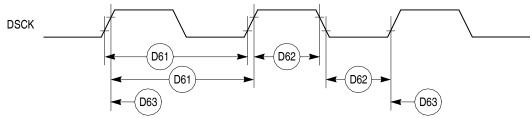


Figure 32. Debug Port Clock Input Timing

Figure 33 shows the timing for the debug port.

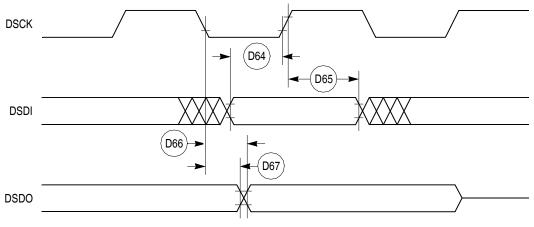


Figure 33. Debug Port Timings

IEEE 1149.1 Electrical Specifications

Figure 36 shows the reset timing for the debug port configuration.

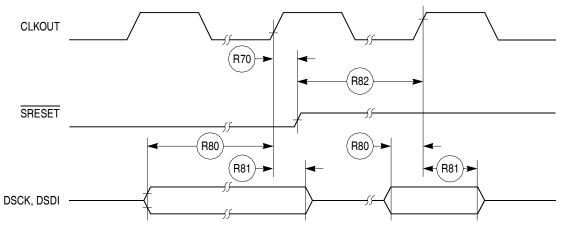


Figure 36. Reset Timing—Debug Port Configuration

11 IEEE 1149.1 Electrical Specifications

Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 through Figure 40.

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Max	onn
J82	TCK cycle time	100.00	—	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	—	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	—	ns
J86	TMS, TDI data hold time	25.00	—	ns
J87	TCK low to TDO data valid	_	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	—	ns
J91	TRST setup time to TCK low	40.00	—	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge 50.00 —		—	ns
J96	TCK rising edge to boundary scan input invalid	50.00	—	ns

Table 15. JTAG Timing

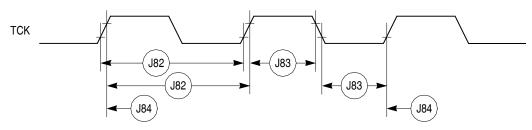


Figure 37. JTAG Test Clock Input Timing

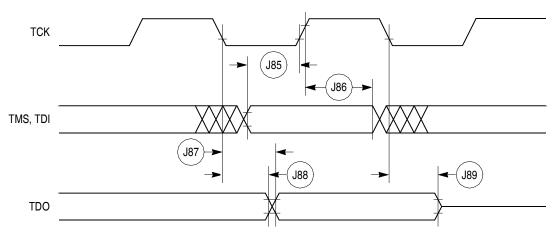


Figure 38. JTAG Test Access Port Timing Diagram

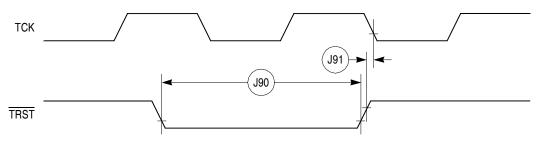


Figure 39. JTAG TRST Timing Diagram

CPM Electrical Characteristics

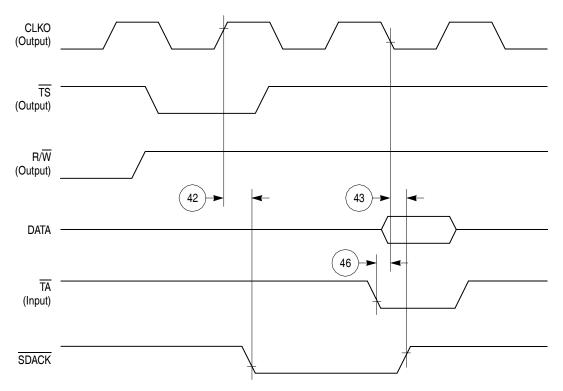


Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

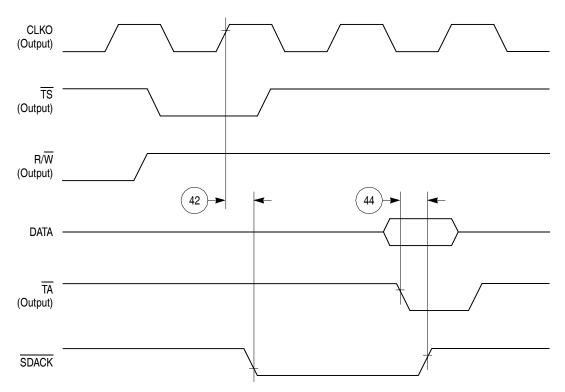


Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

CPM Electrical Characteristics

12.5 Timer AC Electrical Specifications

Table 20 shows the general-purpose timer timings as shown in Figure 52.

Table 20. Timer Timing

Num	Characteristic		All Frequencies		
	Characteristic	Min	Max	Unit	
61	TIN/TGATE rise and fall time	10		ns	
62	TIN/TGATE low time		_	clk	
63	TIN/TGATE high time		_	clk	
64	TIN/TGATE cycle time		_	clk	
65	CLKO low to TOUT valid	3	25	ns	

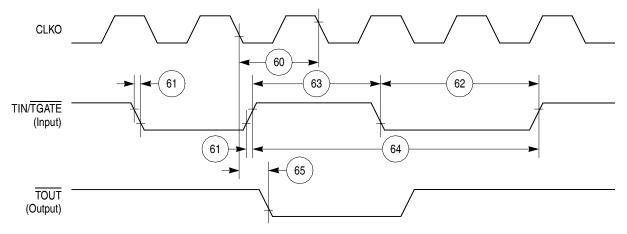


Figure 52. CPM General-Purpose Timers Timing Diagram

12.6 Serial Interface AC Electrical Specifications

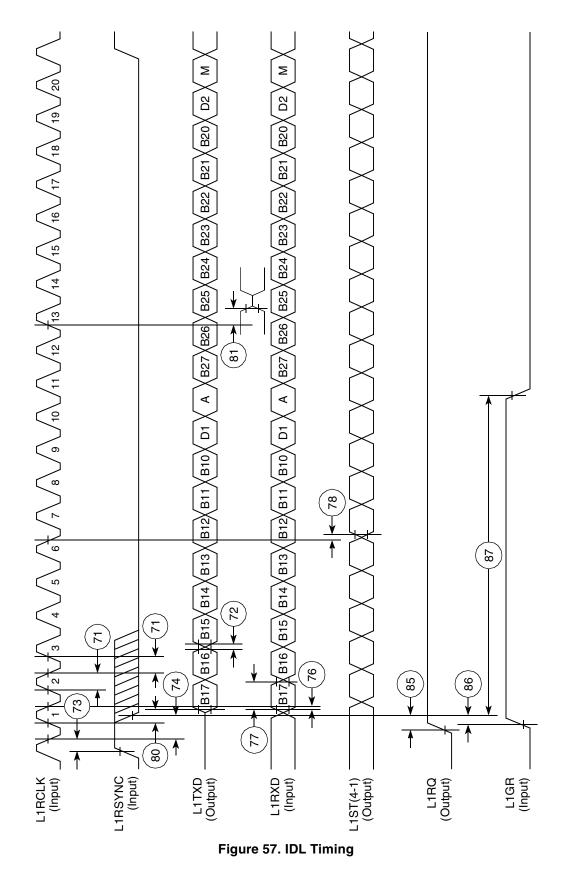

Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57.

Table 21. SI Timing

Num	Characteristic	All F	Unit	
Nulli		Min	Мах	Unit
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2.5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	_	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	_	ns
72	L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time	—	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20.00	_	ns

CPM Electrical Characteristics

Mechanical Data and Ordering Information

Name	Pin Number	Туре
BR	G4	Bidirectional
BG	E2	Bidirectional
BB	E1	Bidirectional Active Pull-up
FRZ IRQ6	G3	Bidirectional
IRQ0	V14	Input
IRQ1	U14	Input
M_TX_CLK IRQ7	W15	Input
CS[0:5]	C3, A2, D4, E4, A4, B4	Output
CS6 CE1_B	D5	Output
CS7 CE2_B	C4	Output
WE0 BS_B0 IORD	C7	Output
WE1 BS_B1 IOWR	A6	Output
WE2 BS_B2 PCOE	B6	Output
WE3 BS_B3 PCWE	A5	Output
BS_A[0:3]	D8, C8, A7, B8	Output
GPL_A0 GPL_B0	D7	Output
OE GPL_A1 GPL_B1	C6	Output
GPL_A[2:3] GPL_B[2:3] CS[2-3]	B5, C5	Output
UPWAITA GPL_A4	C1	Bidirectional

Table 39. Pin Assignments (continued)

Mechanical Data and Ordering Information

Table 39	. Pin	Assignments	(continued)
----------	-------	-------------	-------------

Name	Pin Number	Туре
OP3 MODCK2 DSDO	M4	Bidirectional
BADDR30 REG	K4	Output
BADDR[28:29]	M3, M2	Output
ĀS	L3	Input
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA RXD4	К18	Bidirectional (Optional: Open-drain)
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional

Mechanical Data and Ordering Information

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
MII_COL	H4	Input
VSSSYN1	V1	PLL analog VDD and GND
VSSSYN	U1	Power
VDDSYN	T1	Power
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power
VDDL	A8, M1, W8, H19, F4, F16, P4, P16, R1	Power
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power
N/C	D6, D13, D14, U2, V2, T2	No-connect

¹ Classic SAR mode only

² ESAR mode only

16 Document Revision History

Table 40 lists significant changes between revisions of this document.

Table 40. Document Revision History

Revision Number	Date	Substantive Changes
0	5/2002	Initial revision
1	11/2002	Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1	4/2003	Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79.
1.2	4/2003	Added the MPC859P.
1.3	5/2003	Changed the SPI Master Timing Specs. 162 and 164.
1.4	7-8/2003	 Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Added nontechnical reformatting.
1.5	3/14/2005	Updated document template.
2	2/10/2006	Updated orderable parts table.

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK