

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	50MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc859dslvr50a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC866/859.

Table 4. MPC866/859 Thermal Resistance Data

Rating	Environment			Value	Unit
Junction-to-ambient ¹	Natural Convection	Single-layer board (1s)	R _{0JA} ²	37	°C/W
		Four-layer board (2s2p)	$R_{\theta JMA}^{3}$	23	
	Airflow (200 ft/min)	Single-layer board (1s)	R _{0JMA} 3	30	
		Four-layer board (2s2p)	R _{0JMA} 3	19	
Junction-to-board ⁴			$R_{\theta JB}$	13	
Junction-to-case ⁵			R _{θJC}	6	
Junction-to-package top ⁶	Natural Convection		Ψ_{JT}	2	
	Airflow (200 ft/min)		Ψ_{JT}	2	

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC JESD51-2.

Thermal Calculation and Measurement

Figure 3. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

 $T_J = T_B + (R_{\theta JB} \times P_D)$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 $T_B = board temperature °C$

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

		33	MHz	40	MHz	50	MHz	66 I	MHz	
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B30	$\overline{\text{CS}}$, $\overline{\text{WE}}(0:3)$ negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁷ (MIN = 0.25 x B1 – 2.00)	5.60	_	4.30	_	3.00	_	1.80	—	ns
B30a	$\label{eq:weighted} \hline \hline WE(0:3) \ negated to \ A(0:31), \\ BADDR(28:30) \ invalid \ GPCM, \ write \\ access, \ TRLX = 0, \ CSNT = 1, \ \overline{CS} \\ negated to \ A(0:31) \ invalid \ GPCM \ write \\ access \ TRLX = 0, \ CSNT = 1 \ ACS = 10, \\ or \ ACS == 11, \ EBDF = 0 \ (MIN = 0.50 \ x \\ B1 - 2.00) \end{aligned}$	13.20	_	10.50	_	8.00	_	5.60	_	ns
B30b	$\label{eq:WE} \hline \hline WE(0:3) \ \text{negated to } A(0:31) \ \text{invalid} \\ \mbox{GPCM BADDR}(28:30) \ \text{invalid GPCM} \\ \mbox{write access, TRLX} = 1, \ \mbox{CSNT} = 1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	43.50	_	35.50	_	28.00	_	20.70	_	ns
B30c	$\label{eq:weighted} \hline \hline WE(0:3) \ negated to \ A(0:31), \\ BADDR(28:30) \ invalid \ GPCM \ write \\ access, \ TRLX = 0, \ CSNT = 1. \ \overline{CS} \\ negated to \ A(0:31) \ invalid \ GPCM \ write \\ access, \ TRLX = 0, \ CSNT = 1 \ ACS = \\ 10, \ ACS == 11, \ EBDF = 1 \ (MIN = 0.375 \\ x \ B1 - 3.00) \\ \hline \hline \hline$	8.40	_	6.40	_	4.50	_	2.70	_	ns
B30d	$\overline{WE}(0:3) \text{ negated to } A(0:31), \\ BADDR(28:30) \text{ invalid GPCM write} \\ access TRLX = 1, CSNT = 1, \overline{CS} \\ negated to A(0:31) \text{ invalid GPCM write} \\ access TRLX = 1, CSNT = 1, ACS = 10 \\ or 11, EBDF = 1 \\ \end{array}$	38.67	_	31.38	_	24.50	_	17.83	_	ns
B31	CLKOUT falling edge to $\overline{\text{CS}}$ valid, as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to $\overline{\text{CS}}$ valid, as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B31b	CLKOUT rising edge to \overline{CS} valid, as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid, as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns

Table 9. Bus Operation Timings (continued)

Num	Charactariatia	33	MHz	40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = $0.25 \times B1 - 2.00$)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁸ (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	—	ns
B38	CLKOUT falling edge to UPWAIT valid ⁸ (MIN = 0.00 x B1 + 1.00)	1.00		1.00	_	1.00	—	1.00	—	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ⁹ (MIN = 0.00 x B1 + 7.00)	7.00		7.00	_	7.00	—	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00		7.00		7.00		7.00		ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to \overline{TS} valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	—	2.00	—	2.00	—	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	—	TBD	—	TBD	—	TBD	—	TBD	ns

Table 9. Bus Operation Timings (continued)

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC866/859 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.

- ⁸ The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.
- ⁹ The AS signal is considered asynchronous to CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 23.

Figure 5 shows the control timing diagram.

Figure 6 shows the timing for the external clock.

Figure 6. External Clock Timing

Figure 7 shows the timing for the synchronous output signals.

Figure 7. Synchronous Output Signals Timing

Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors.

Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)

Figure 25 shows the interrupt detection timing for the external level-sensitive lines.

Figure 25. Interrupt Detection Timing for External Level Sensitive Lines

Figure 26 shows the interrupt detection timing for the external edge-sensitive lines.

Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines

Table 11 shows the PCMCIA timing for the MPC866/859.

Table 11. PCMCIA Timing

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	onaraoteristic	Min	Max	Min	Max	Min	Max	Min	Max	onn
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA Strobe asserted ¹ (MIN = 0.75 x B1 - 2.00)	20.70	—	16.70	—	13.00	—	9.40	_	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation ¹ (MIN = 1.00 x B1 - 2.00)	28.30	_	23.00	_	18.00	_	13.20	_	ns
P46	CLKOUT to $\overline{\text{REG}}$ valid (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P47	CLKOUT to REG invalid (MIN = 0.25 x B1 + 1.00)	8.60	—	7.30	—	6.00	—	4.80	_	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns

Figure 27 shows the PCMCIA access cycle timing for the external bus read.

Figure 27. PCMCIA Access Cycles Timing External Bus Read

Table 13 shows the debug port timing for the MPC866/859.

Table 13. Debug Port Timing

Num	Characteristic	All Frequenc	Unit	
num	Characteristic	Min	Max	Unit
D61	DSCK cycle time	3xT _{CLOCKOUT}	_	
D62	DSCK clock pulse width	1.25xT _{CLOCKOUT}	_	
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00	_	ns
D65	DSDI data hold time	5.00	_	ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 32 shows the input timing for the debug port clock.

Figure 32. Debug Port Clock Input Timing

Figure 33 shows the timing for the debug port.

Figure 33. Debug Port Timings

Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

12.4 Baud Rate Generator AC Electrical Specifications

Table 19 shows the baud rate generator timings as shown in Figure 51.

Table 19. Baud Rate Generator Timing

Num	Characteristic	All Freq	Unit	
	onaracteristic	Min	Max	onn
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40		ns

Figure 51. Baud Rate Generator Timing Diagram

CPM Electrical Characteristics

12.5 Timer AC Electrical Specifications

Table 20 shows the general-purpose timer timings as shown in Figure 52.

Table 20. Timer Timing

Num	Characteristic	All Freq	Unit	
			Мах	Onit
61	TIN/TGATE rise and fall time	10		ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	_	clk
65	CLKO low to TOUT valid	3	25	ns

Figure 52. CPM General-Purpose Timers Timing Diagram

12.6 Serial Interface AC Electrical Specifications

Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57.

Table 21. SI Timing

Num	Characteristic	All F	Unit	
Num	Characteristic	Min	Мах	Unit
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	—	SYNCCLK/2.5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) ²	P + 10	—	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns
72	L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time	—	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20.00	_	ns

CPM Electrical Characteristics

Figure 58 through Figure 60 show the NMSI timings.

Figure 65. CAM Interface REJECT Timing Diagram

12.9 SMC Transparent AC Electrical Specifications

Table 25 shows the SMC transparent timings as shown in Figure 66.

UTOPIA AC Electrical Specifications

Figure 71 shows the I^2C bus timing.

Figure 71. I²C Bus Timing Diagram

13 UTOPIA AC Electrical Specifications

Table 30 through Table 32 show the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	_	4	ns
	Duty cycle		50	50	%
	Frequency		_	33	MHz
U2	UTPB, SOC, RXEnb, TXEnb, RxAddr, and TxAddr-active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	4	_	ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1	_	ns

Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications

Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output	_	4	ns
	Duty cycle		50	50	%
	Frequency		—	33	MHz
U2	UTPB, SOC, RxEnb, TxEnb, RxAddr and TxAddr active delay (PHREQ and PHSEL active delay in MPHY mode)	Output	2	16	ns
U3	UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time	Input	4	—	ns
U4	UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time	Input	1	—	ns

FEC Electrical Characteristics

Figure 73 shows signal timings during UTOPIA transmit operations.

Figure 73. UTOPIA Transmit Timing

14 FEC Electrical Characteristics

This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency -1%. Table 33 shows the timings for MII receive signal.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
MЗ	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 33. MII Receive Signal Timing

Figure 74 shows the timings for MII receive signal.

Mechanical Data and Ordering Information

15.1 Pin Assignments

Figure 78 shows the top view pinout of the PBGA package. For additional information, see the *MPC866 PowerQUICC Family User's Manual*.

	〇 PD10	O PD8	O PD3) D0	O D4	() D1	() D2) D3	() D5) D6	() D7) D29	O DP2		О Г IPA3		w
O PD14	O PD13	O PD9	O PD6	⊖ M_Tx_I		O D13	() D27	() D10	() D14) D18) D20) D24	() D28	O DP1	O DP3		⊖ N/C		V 1
O PA0	〇 PB14	O PD15	O PD4	O PD5		() D8	() D23	() D11) D16) D19) D21) D26) D30	O IPA5	O IPA4	O IPA2	⊖ N/C	VSSSYN	1 1
O PA1	O PC5	O PC4	O PD11	O PD7) H D12	() D17	() D9) D15) D22) D25) D31	O IPA6	O IPA0	O IPA1	O IPA7	⊖ N/C		I I
O PC6	O PA2	O PB15	O PD12	0		0	0	0	0	\bigcirc	\bigcirc	\bigcirc	0						R
O PA4	O PB17	O PA3		\bigcirc	$\left(\circ \right)$	O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0) TT XTAL	Ρ
O PB19	O PA5) PB18	O PB16	\bigcirc	0	\bigcirc	0					Ν							
O PA7	O PC8	O PA6	O PC7	\bigcirc	0	\bigcirc	0) DR29 VDC	M							
O PB22	O PC9	O PA8	O PB20	\bigcirc	0	\bigcirc	0	OP0		O OP1		L 1							
O PC10	O PA9	O PB23	O PB21	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 30 IPB6			К
O PC11	O PB24	〇 PA10	O PB25	\bigcirc	0	\bigcirc	0	O IPB5	O IPB1	O IPB2		J							
			О тск	\bigcirc	0	\bigcirc	0	0	О				Н						
	О тмз) TDO	O PA11	\bigcirc	0	0	\bigcirc	0			O IPB4		G						
O PB26	O PC12	〇 PA12		\bigcirc			0	0	0	0	0	0							F
O PB27	O PC13	O PA13	0 (PB29	\bigcirc		0	0	\bigcirc	0	0	\bigcirc	\bigcirc	0		$\frac{\bigcirc}{CS3}$	O BI			E
O PB28	O PC14	O PA14	O PC15	0 A8	O N/C	O N/C	() A15	() A19	() A25	() A18			O N/C	\bigcirc CS6	$\frac{\bigcirc}{CS2}$				D
PB30	O PA15	O PB31	O A3	() A9	O A12	() A16	0 A20	0 A24	A26						$\frac{\bigcirc}{CS7}$				С
0 A0	() A1	0	0 A6	O A10	O A13	O A17	O A21	O A23							$\frac{1}{CS5}$				В
				0		0									\bigcirc			G. LD4	A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 78. Pinout of the PBGA Package

Mechanical Data and Ordering Information

Name	Pin Number	Туре
IP_A5 UTPB_Split5 ² MII-RXERR	U5	Input
IP_A6 UTPB_Split6 ² MII-TXERR	Т6	Input
IP_A7 UTPB_Split7 ² MII-RXDV	Т3	Input
ALE_B DSCK/AT1	J1	Bidirectional Three-state
IP_B[0:1] IWP[0:1] VFLS[0:1]	H2, J3	Bidirectional
IP_B2 IOIS16_B AT2	J2	Bidirectional Three-state
IP_B3 IWP2 VF2	G1	Bidirectional
IP_B4 LWP0 VF0	G2	Bidirectional
IP_B5 LWP1 VF1	J4	Bidirectional
IP_B6 DSDI AT0	К3	Bidirectional Three-state
IP_B7 PTR AT3	H1	Bidirectional Three-state
OP0 MII-TXD0 UtpClk_Split ²	L4	Bidirectional
OP1	L2	Output
OP2 MODCK1 STS	L1	Bidirectional

Table 39. Pin Assignments (continued)

Mechanical Data and Ordering Information

Name	Pin Number	Туре
PB16 L1RQa L1ST4 RTS4 PHREQ0 ¹ RXADDR0 ²	N16	Bidirectional (Optional: Open-drain)
PB15 BRGO3 TxClav RxClav	R17	Bidirectional
PB14 RXADDR2 ² RSTRT1	U18	Bidirectional
PC15 DREQ0 RTS1 L1ST1 RxClav TxClav	D16	Bidirectional
PC14 DREQ1 RTS2 L1ST2	D18	Bidirectional
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	К19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional

Table 39. Pin Assignments (continued)

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK