

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc859pcvr100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- One inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time slot assigner (TSA) (MPC859DSL does not have TSA.)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking
 - Allows dynamic changes
 - On MPC866P and MPC866T, can be internally connected to six serial channels (four SCCs and two SMCs); on MPC859P and MPC859T, can be connected to three serial channels (one SCC and two SMCs).
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC866/859 or MC68360
- PCMCIA interface
 - Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1)
 - Supports one or two PCMCIA sockets whether ESAR functionality is enabled
 - Eight memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two operate on data.
 - Supports conditions: $= \neq < >$
 - Each watchpoint can generate a breakpoint internally
- Normal high and normal low power modes to conserve power
- 1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V tolerant pins.
- 357-pin plastic ball grid array (PBGA) package
- Operation up to 133 MHz

Features

The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.

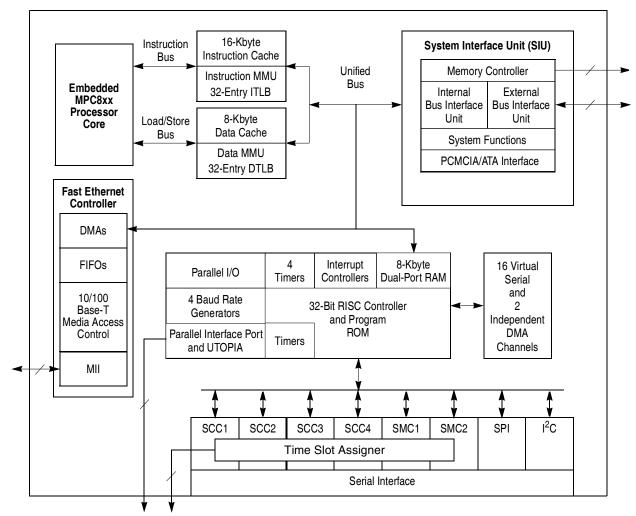
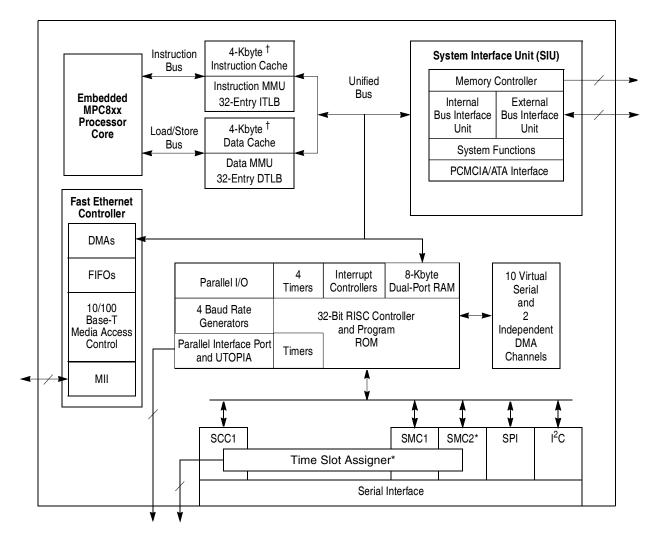



Figure 1. MPC866P Block Diagram

[†] The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.

Figure 2. MPC859P/859T/MPC859DSL Block Diagram

^{*} The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA controllers.

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International (415) 964-5111 805 East Middlefield Rd.
Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

Table 9. Bus Operation Timings (continued)

Num	Characteristic	33 1	ИНz	40 I	ИНz	50 I	ИНz	66 1	ИНz	Unit
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Ulli
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	CLKOUT rising edge to $\overline{\text{CS}}$ negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B25	CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)$ asserted (MAX = 0.00 x B1 + 9.00)	_	9.00	_	9.00	_	9.00	_	9.00	ns
B26	CLKOUT rising edge to $\overline{\text{OE}}$ negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to $\overline{\text{CS}}$ asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90	_	29.30	_	23.00	_	16.90	_	ns
B27a	A(0:31) and BADDR(28:30) to CS asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to WE(0:3) negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)	_	9.00	_	9.00	_	9.00	_	9.00	ns
B28a	CLKOUT falling edge to $\overline{\text{WE}}(0:3)$ negated GPCM write access TRLX = 0,1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns

Bus Signal Timing

Table 9. Bus Operation Timings (continued)

Nivers	Ohawaatawiatia	33 I	ИНz	40 I	ИНz	50 I	ИНz	66 1	ИНz	I I m i A
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B32	CLKOUT falling edge to BS valid, as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to BS valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to BS valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to BS valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to BS valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B33	CLKOUT falling edge to GPL valid, as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to GPL valid, as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{CS}}$ valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 $-$ 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns

Table 9. Bus Operation Timings (continued)

Num	Characteristic	33 I	ИНz	40 I	ИНz	50 I	ИНz	66 1	MHz	Unit
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Ullit
B35	A(0:31), BADDR(28:30) to \overline{CS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 $-$ 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = 0.75 x B1 $-$ 2.00)	20.70		16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to GPL valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁸ (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	_	ns
B38	CLKOUT falling edge to UPWAIT valid ⁸ (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	_	1.00	_	1.00	_	ns
B39	AS valid to CLKOUT rising edge 9 (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B41	TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	_	7.00	_	7.00	_	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	AS negation to memory controller signals negation (MAX = TBD)	_	TBD	_	TBD	_	TBD	_	TBD	ns

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

The timing required for \overline{BR} input is relevant when the MPC866/859 is selected to work with the internal bus arbiter. The timing for \overline{BG} input is relevant when the MPC866/859 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ The timing B30 refers to \overline{CS} when ACS = 00 and to \overline{WE} (0:3) when CSNT = 0.

Bus Signal Timing

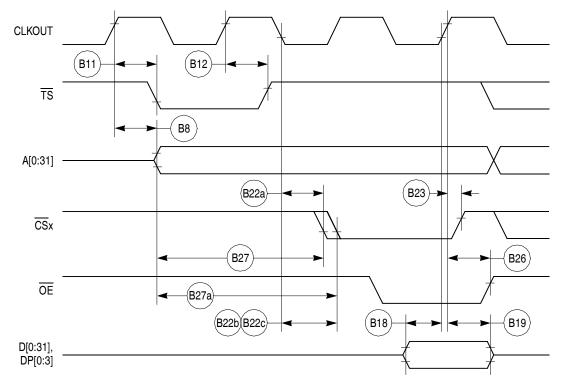


Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

Table 11. PCMCIA Timing (continued)

Num	Characteristic	33 [ИНz	40 I	ИНz	50 I	ИНz	66 MHz		Unit
Nulli	Citalacteristic	Min	Max	Min	Max	Min	Max	Min	Max	Oiii
P50	CLKOUT to PCOE, IORD, PCWE, IOWR assert time (MAX = 0.00 x B1 + 11.00)	_	11.00	_	11.00	_	11.00	_	11.00	ns
P51	CLKOUT to PCOE, IORD, PCWE, IOWR negate time (MAX = 0.00 x B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
P53	CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00)	_	15.60	_	14.30	_	13.00	_	11.80	ns
P54	PCWE, IOWR negated to D(0:31) invalid ¹ (MIN = 0.25 x B1 – 2.00)	5.60		4.30		3.00		1.80	_	ns
P55	WAITA and WAITB valid to CLKOUT rising edge ¹ (MIN = 0.00 x B1 + 8.00)	8.00	_	8.00	_	8.00	_	8.00	_	ns
P56	CLKOUT rising edge to $\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ invalid ¹ (MIN = 0.00 x B1 + 2.00)	2.00		2.00	_	2.00		2.00	_	ns

¹ PSST = 1. Otherwise, add PSST times cycle time.

PSHT = 0. Otherwise, add PSHT times cycle time.

These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC866 PowerQUICC User's Manual.

Table 13 shows the debug port timing for the MPC866/859.

Table 13. Debug Port Timing

Num	Characteristic	All Frequencies		Unit
Nulli	Characteristic	Min	Max	Oiiii
D61	DSCK cycle time	3xT _{CLOCKOUT}		
D62	DSCK clock pulse width	1.25xT _{CLOCKOUT}	_	
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00	_	ns
D65	DSDI data hold time	5.00		ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 32 shows the input timing for the debug port clock.

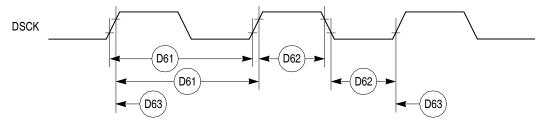


Figure 32. Debug Port Clock Input Timing

Figure 33 shows the timing for the debug port.

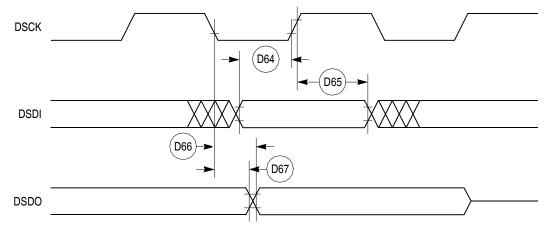


Figure 33. Debug Port Timings

MPC866/MPC859 Hardware Specifications, Rev. 2 Freescale Semiconductor 43

CPM Electrical Characteristics

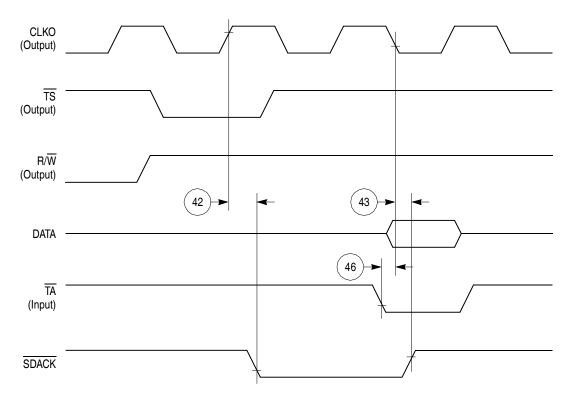


Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

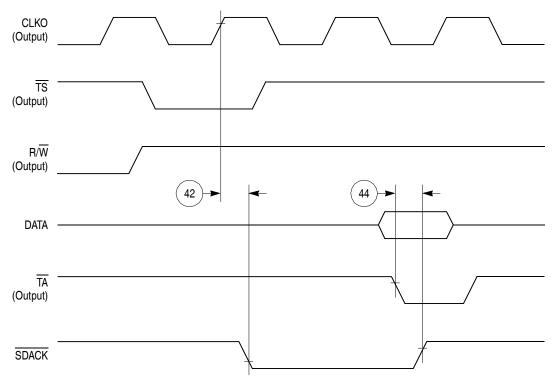


Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

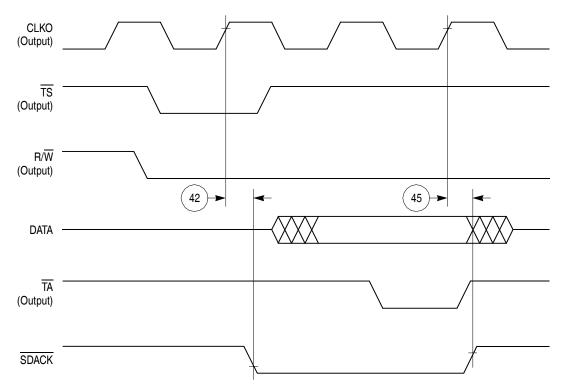


Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

12.4 Baud Rate Generator AC Electrical Specifications

Table 19 shows the baud rate generator timings as shown in Figure 51.

Table 19. Baud Rate Generator Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Max	Omit
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

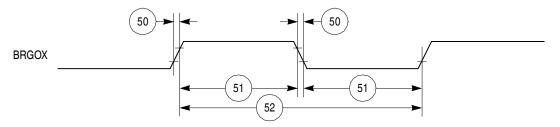


Figure 51. Baud Rate Generator Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2

Table 21. SI Timing (continued)

Num	Ohavastavistis	All F	requencies	l l m it
Num	Characteristic	Min	Max	Unit
74	L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)	35.00	_	ns
75	L1RSYNC, L1TSYNC rise/fall time	_	15.00	ns
76	L1RXD valid to L1CLK edge (L1RXD setup time)	17.00	_	ns
77	L1CLK edge to L1RXD invalid (L1RXD hold time)	13.00	_	ns
78	L1CLK edge to L1ST(1-4) valid ⁴	10.00	45.00	ns
78A	L1SYNC valid to L1ST(1-4) valid	10.00	45.00	ns
79	L1CLK edge to L1ST(1-4) invalid	10.00	45.00	ns
80	L1CLK edge to L1TXD valid	10.00	55.00	ns
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns
81	L1CLK edge to L1TXD high impedance	0.00	42.00	ns
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	_	ns
83a	L1RCLK, L1TCLK width high (DSC = 1) ³	P + 10	_	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)	_	30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	_	L1TCLK
86	L1GR setup time ²	42.00	_	ns
87	L1GR hold time	42.00	_	ns
88	L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

 $^{^{2}\,\,}$ These specs are valid for IDL mode only.

 $^{^{3}}$ Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

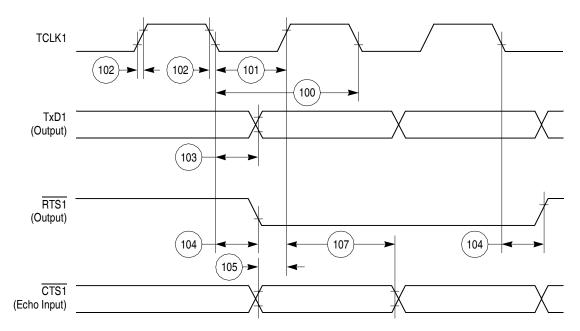


Figure 60. HDLC Bus Timing Diagram

12.8 Ethernet Electrical Specifications

Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.

Table 24. Ethernet Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Max	Omit
120	CLSN width high	40	_	ns
121	RCLK1 rise/fall time	_	15	ns
122	RCLK1 width low	40	_	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	_	ns
125	RXD1 hold time	5	_	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK1 rise/fall time	_	15	ns
129	TCLK1 width low	40	_	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	_	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns

12.10SPI Master AC Electrical Specifications

Table 26 shows the SPI master timings as shown in Figure 67 and Figure 68.

Table 26. SPI Master Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Max	Oilit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	15	_	ns
163	Master data hold time (inputs)	0	_	ns
164	Master data valid (after SCK edge)	_	10	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	_	15	ns
167	Fall time output	_	15	ns

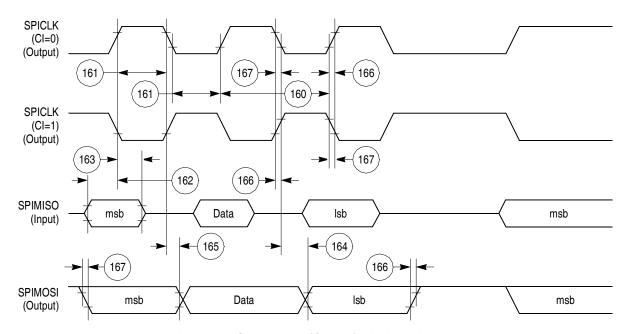


Figure 67. SPI Master (CP = 0) Timing Diagram

CPM Electrical Characteristics

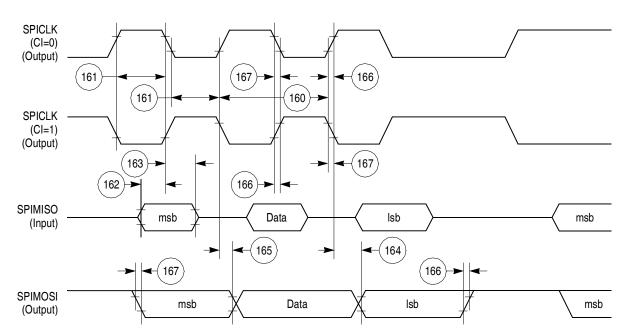


Figure 68. SPI Master (CP = 1) Timing Diagram

12.11SPI Slave AC Electrical Specifications

Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70.

Table 27. SPI Slave Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Max	Oiiit
170	Slave cycle time	2	_	t _{cyc}
171	Slave enable lead time	15	_	ns
172	Slave enable lag time	15	_	ns
173	Slave clock (SPICLK) high or low time	1	_	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	_	t _{cyc}
175	Slave data setup time (inputs)	20	_	ns
176	Slave data hold time (inputs)	20	_	ns
177	Slave access time	_	50	ns

Mechanical Data and Ordering Information

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional
PD12 L1RSYNCB MII-MDC UTPB3	R16	Bidirectional
PD11 RXD3 MII-TXERR RXENB	T16	Bidirectional
PD10 TXD3 MII-RXD0 TXENB	W18	Bidirectional

Mechanical Data and Ordering Information

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре	
MII_COL	H4	Input	
VSSSYN1	V1	PLL analog VDD and GND	
VSSSYN	U1	Power	
VDDSYN	T1	Power	
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power	
VDDL	A8, M1, W8, H19, F4, F16, P4, P16, R1	Power	
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power	
N/C	D6, D13, D14, U2, V2, T2	No-connect	

¹ Classic SAR mode only

² ESAR mode only

16 Document Revision History

Table 40 lists significant changes between revisions of this document.

Table 40. Document Revision History

Revision Number	Date	Substantive Changes
0	5/2002	Initial revision
1	11/2002	Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1	4/2003	Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79.
1.2	4/2003	Added the MPC859P.
1.3	5/2003	Changed the SPI Master Timing Specs. 162 and 164.
1.4	7-8/2003	 Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Added nontechnical reformatting.
1.5	3/14/2005	Updated document template.
2	2/10/2006	Updated orderable parts table.

How to Reach Us:

Home Page:

www.freescale.com

email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan

Freescale Semiconductor Japan Ltd. Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-0047 Japan 0120 191014 +81 3 3440 3569 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@
hibbertgroup.com

MPC866EC Rev. 2 2/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners

© Freescale Semiconductor, Inc. 2006.

