

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
MPC8xx
1 Core, 32-Bit
100MHz
Communications; CPM
DRAM
No
-
10Mbps (1), 10/100Mbps (1)
-
-
3.3V
0°C ~ 95°C (TA)
-
357-BBGA
357-PBGA (25x25)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc859pzp100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ATM port-to-port switching capability without the need for RAM-based microcode
- Simultaneous MII (10/100Base-T) and UTOPIA (half-duplex) capability
- Optional statistical cell counters per PHY
- UTOPIA level 2 compliant interface with added FIFO buffering to reduce the total cell transmission time. (The earlier UTOPIA level 1 specification is also supported.)
 - Multi-PHY support on the MPC866, MPC859P, and MPC859T
 - Four PHY support on the MPC866/859
- Parameter RAM for both SPI and I²C can be relocated without RAM-based microcode
- Supports full-duplex UTOPIA both master (ATM side) and slave (PHY side) operation using a 'split' bus
- AAL2/VBR functionality is ROM-resident.
- Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
- Thirty-two address lines
- Memory controller (eight banks)
 - Contains complete dynamic RAM (DRAM) controller
 - Each bank can be a chip select or \overline{RAS} to support a DRAM bank
 - Up to 30 wait states programmable per memory bank
 - Glueless interface to page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory devices.
 - DRAM controller programmable to support most size and speed memory interfaces
 - Four $\overline{\text{CAS}}$ lines, four $\overline{\text{WE}}$ lines, and one $\overline{\text{OE}}$ line
 - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
 - Variable block sizes (32 Kbytes–256 Mbytes)
 - Selectable write protection
 - On-chip bus arbitration logic
- General-purpose timers
 - Four 16-bit timers cascadable to be two 32-bit timers
 - Gate mode can enable/disable counting
 - Interrupt can be masked on reference match and event capture
- Fast Ethernet controller (FEC)
 - Simultaneous MII (10/100Base-T) and UTOPIA operation when using the UTOPIA multiplexed bus
- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer and time base from the PowerPC architecture
 - Reset controller
 - IEEE 1149.1 test access port (JTAG)

Features

- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- One inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time slot assigner (TSA) (MPC859DSL does not have TSA.)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking
 - Allows dynamic changes
 - On MPC866P and MPC866T, can be internally connected to six serial channels (four SCCs and two SMCs); on MPC859P and MPC859T, can be connected to three serial channels (one SCC and two SMCs).
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC866/859 or MC68360
- PCMCIA interface
 - Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1)
 - Supports one or two PCMCIA sockets whether ESAR functionality is enabled
 - Eight memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two operate on data.
 - Supports conditions: = $\neq < >$
 - Each watchpoint can generate a breakpoint internally
- Normal high and normal low power modes to conserve power
- 1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V tolerant pins.
- 357-pin plastic ball grid array (PBGA) package
- Operation up to 133 MHz

- [†] The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.
- * The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA controllers.

Figure 2. MPC859P/859T/MPC859DSL Block Diagram

Thermal Calculation and Measurement

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

	Oh ann atamiatia	33 I	MHz	40	MHz	50 I	MHz	66 I		
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B13	CLKOUT to \overline{TS} , \overline{BB} High-Z (MIN = 0.25 x B1)	7.60	21.60	6.30	20.30	5.00	19.00	3.80	14.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 x B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	TA, BI valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	_	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 4.5)	4.50	_	4.50	_	4.50	_	4.50	_	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$, valid to CLKOUT (setup time) ² (4 MIN = 0.00 x B1 + 0.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B17	CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold time) (MIN = $0.00 \times B1 + 1.00^{3}$)	1.00	_	1.00	—	1.00	—	2.00	—	ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	—	2.00	_	2.00	—	2.00	—	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) 4 (MIN = 0.00 x B1 + 6.00)	6.00	—	6.00	_	6.00	—	6.00	_	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) 4 (MIN = 0.00 x B1 + 1.00 5)	1.00	_	1.00	_	1.00	_	2.00	—	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 6 (MIN = 0.00 x B1 + 4.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) 6 (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00)	_	8.00		8.00		8.00	—	8.00	ns

Table 9. Bus Operation Timings (continued)

Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.

Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing

Figure 9 shows the timing for the synchronous input signals.

Figure 9. Synchronous Input Signals Timing

Figure 10 shows normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

Figure 10. Input Data Timing in Normal Case

Figure 11 shows the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 16 through Figure 18 show the timing for the external bus write controlled by various GPCM factors.

Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)

Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Figure 19 shows the timing for the external bus controlled by the UPM.

Figure 19. External Bus Timing (UPM Controlled Signals)

Figure 23 shows the timing for the asynchronous external master memory access controlled by the GPCM.

Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)

Figure 24 shows the timing for the asynchronous external master control signals negation.

Figure 24. Asynchronous External Master—Control Signals Negation Timing

Table 10 shows the interrupt timing for the MPC866/859.

Table 10. Interrupt Timing

Num	Characteristic ¹	All Frequenc	Unit	
	Characteristic	Min	Max	Unit
139	IRQx valid to CLKOUT rising edge (setup time)	6.00	_	ns
140	IRQx hold time after CLKOUT	2.00	_	ns
141	IRQx pulse width low	3.00	_	ns
142	IRQx pulse width high	3.00	_	ns
143	IRQx edge-to-edge time	4xT _{CLOCKOUT}	_	_
1 The	imings 130 and 140 describe the testing conditions under which the \overline{IRO} lines	are tested when h	aina daf	inod ac

The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC866/859 is able to support.

Figure 27 shows the PCMCIA access cycle timing for the external bus read.

Figure 27. PCMCIA Access Cycles Timing External Bus Read

CPM Electrical Characteristics

Figure 40. Boundary Scan (JTAG) Timing Diagram

12 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC866/859.

12.1 PIP/PIO AC Electrical Specifications

Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.

Num	Charactoristia	All Freq	Unit	
Nulli	Characteristic	Min	Max	Onit
21	Data-in setup time to STBI low	0	_	ns
22	Data-In hold time to STBI high	2.5 – t3 ¹	_	clk
23	STBI pulse width	1.5	_	clk
24	STBO pulse width	1 clk – 5ns	_	ns
25	Data-out setup time to STBO low	2	_	clk
26	Data-out hold time from STBO high	5	_	clk
27	STBI low to STBO low (Rx interlock)	_	2	clk
28	STBI low to STBO high (Tx interlock)	2	_	clk
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

Table	16.	PIP/PIO	Timina
Tubic		/	

¹ t3 = Specification 23

CPM Electrical Characteristics

Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)

CPM Electrical Characteristics

MPC866/MPC859 Hardware Specifications, Rev. 2

CPM Electrical Characteristics

Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)

CPM Electrical Characteristics

12.12I²C AC Electrical Specifications

FEC Electrical Characteristics

Num	Characteristic	Min	Max	Unit
M13	MII_MDIO (input) to MII_MDC rising edge hold	0		ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Figure 77 shows the MII serial management channel timing diagram.

Figure 77. MII Serial Management Channel Timing Diagram

Mechanical Data and Ordering Information

15.1 Pin Assignments

Figure 78 shows the top view pinout of the PBGA package. For additional information, see the *MPC866 PowerQUICC Family User's Manual*.

	〇 PD10	O PD8	O PD3) D0	O D4	() D1	() D2) D3	() D5) D6	() D7) D29	O DP2		О Г IPA3		w
O PD14	O PD13	O PD9	O PD6	⊖ M_Tx_I		O D13	() D27	() D10	() D14) D18) D20) D24	() D28	O DP1	O DP3		⊖ N/C		V 1
O PA0	〇 PB14	O PD15	O PD4	O PD5		() D8	() D23	() D11) D16) D19) D21) D26) D30	O IPA5) IPA4	O IPA2	⊖ N/C	VSSSYN	1 1
O PA1	O PC5	O PC4	O PD11	O PD7) H D12	() D17	() D9) D15) D22) D25) D31	O IPA6	O IPA0	O IPA1	O IPA7	⊖ N/C		I I
O PC6	O PA2	⊖ ₽B15	O PD12	0		0	0	0	0	\bigcirc	\bigcirc	\bigcirc	0						R
O PA4	O PB17	O PA3		\bigcirc	$\left(\circ \right)$	O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0) TT XTAL	Ρ
O PB19	O PA5) PB18	O PB16	\bigcirc	0	\bigcirc	0	0					N						
O PA7	O PC8	O PA6	O PC7	\bigcirc	0	\bigcirc	0) DR29 VDC	M							
O PB22	O PC9	O PA8	O PB20	\bigcirc	0	\bigcirc	0			O OP1		L 1							
O PC10	O PA9	O PB23	O PB21	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 30 IPB6			К
O PC11	O PB24	〇 PA10	O PB25	\bigcirc	0	\bigcirc	0		O IPB1	O IPB2		J							
			О тск	\bigcirc	0	\bigcirc	0	О				Н							
	О тмз) TDO	O PA11	\bigcirc	0	0	\bigcirc	0			O IPB4		G						
O PB26	O PC12	〇 PA12		\bigcirc			0	0	0	0	0	0							F
O PB27	O PC13	O PA13	0 (PB29	\bigcirc		0	0	\bigcirc	0	0	\bigcirc	0	0		$\frac{\bigcirc}{CS3}$	O BI			E
O PB28	O PC14	O PA14	O PC15	0 A8	O N/C	O N/C	() A15	() A19	() A25	() A18			O N/C	\bigcirc CS6	$\frac{\bigcirc}{CS2}$				D
PB30	O PA15	O PB31	O A3	() A9	O A12	() A16	0 A20	0 A24	A26						$\frac{\bigcirc}{CS7}$				С
				O A10	O A13	0 A17	() A21	() A23	() A22						$\frac{0}{CS5}$				В
				0		0									$\frac{1}{CS4}$			G. LD4	A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 78. Pinout of the PBGA Package

Mechanical Data and Ordering Information

Table 39.	Pin	Assignments	(continued)
-----------	-----	-------------	-------------

Name	Pin Number	Туре
OP3 MODCK2 DSDO	M4	Bidirectional
BADDR30 REG	К4	Output
BADDR[28:29]	M3, M2	Output
AS	L3	Input
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA RXD4	K18	Bidirectional (Optional: Open-drain)
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional