

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc859pzp133a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

Table 1 shows the functionality supported by the members of the MPC866/859 family.

2 Features

Part	Ca	iche	Ethe	ernet	500	SMC
	Instruction	Data	10T	10/100	300	SMC
MPC866P	16 Kbytes	8 Kbytes	Up to 4	1	4	2
MPC866T	4 Kbytes	4 Kbytes	Up to 4	1	4	2
MPC859P	16 Kbytes	8 Kbytes	1	1	1	2
MPC859T	4 Kbytes	4 Kbytes	1	1	1	2
MPC859DSL	4 Kbytes	4 Kbytes	1	1	1 ¹	1 ²
MPC852T ³	4 KBytes	4 Kbytes	2	1	2	1

Table 1. MPC866 Family Functionality

¹ On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot Assigner (TSA).

² On the MPC859DSL, the SMC (SMC1) is for UART only.

³ For more details on the MPC852T, please refer to the MPC852T Hardware Specifications.

The following list summarizes the key MPC866/859 features:

- Embedded single-issue, 32-bit PowerPCTM core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch, without conditional execution
 - 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
 - 16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets;
 4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
 - 8-Kbyte data cache (MPC866P and MPC859P) is two-way, set-associative with 256 sets; 4-Kbyte data cache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
 - MMUs with 32-entry TLB, fully associative instruction and data TLBs
 - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups.
 - Advanced on-chip-emulation debug mode
- The MPC866/859 provides enhanced ATM functionality over that of the MPC860SAR. The MPC866/859 adds major new features available in 'enhanced SAR' (ESAR) mode, including the following:
 - Improved operation, administration, and maintenance (OAM) support
 - OAM performance monitoring (PM) support
 - Multiple APC priority levels available to support a range of traffic pace requirements

MPC866/MPC859 Hardware Specifications, Rev. 2

Features

The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.

Figure 1. MPC866P Block Diagram

Characteristic	Symbol	Min	Max	Unit
Input low voltage	VIL	GND	0.8	V
EXTAL, EXTCLK input high voltage	VIHC	0.7*(VDDH)	VDDH	V
Input leakage current, Vin = 5.5V (except TMS, $\overline{\text{TRST}}$, DSCK and DSDI pins) for 5 Volts Tolerant Pins ²	l _{in}	—	100	μA
Input leakage current, Vin = VDDH (except TMS, TRST, DSCK, and DSDI)	l _{in}	_	10	μA
Input leakage current, Vin = 0 V (except TMS, $\overline{\text{TRST}}$, DSCK and DSDI pins)	l _{in}	—	10	μA
Input capacitance ³	C _{in}	—	20	pF
Output high voltage, IOH = -2.0 mA, except XTAL, and Open drain pins	VOH	2.4	_	V
Output low voltage • IOL = 2.0 mA (CLKOUT) • IOL = 3.2 mA 4 • IOL = 5.3 mA 5 • IOL = 7.0 mA (TXD1/PA14, TXD2/PA12) • IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)	VOL	_	0.5	V

Table 6. DC Electrical Specifications (continued)

¹ The difference between VDDL and VDDSYN can not be more than 100 m V.

² The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, MII_MDIO are 5 V tolerant.

³ Input capacitance is periodically sampled.

 ⁴ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].

⁵ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).

Thermal Calculation and Measurement

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (VDDL \times IDDL) + PI/O$, where PI/O is the power dissipation of the I/O drivers. The VDDSYN power dissipation is negligible.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity T_{J} - T_{A}) are possible.

7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the airflow around the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see Figure 3.

Thermal Calculation and Measurement

Figure 3. Effect of Board Temperature Rise on Thermal Behavior

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

 $T_J = T_B + (R_{\theta JB} \times P_D)$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 $T_B = board temperature °C$

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

Bus Signal Timing

This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6" are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{DD} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to Section 14.4.3, Clock Synthesizer Power (VDDSYN, VSSSYN, VSSSYN1), in the *MPC866 User's Manual*.

10 Bus Signal Timing

The maximum bus speed supported by the MPC866/859 is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC866/859 used at 100 MHz must be configured for a 50-MHz bus). Table 7 and Table 8 show the frequency ranges for standard part frequencies.

Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Part Freq	50 N	ЛНz	66 MHz		
	Min	Мах	Min	Мах	
Core	40	50	40	66.67	
Bus	40	50	40	66.67	

 Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Freq	50 MHz		66 MHz		100	MHz	133 MHz		
	Min	Max	Min	Max	Min	Max	Min	Max	
Core	40	50	40	66.67	40	100	40	133.34	
Bus	20	25	20	33.33	20	50	20	66.67	

Table 9 shows the timings for the MPC866/859 at 33, 40, 50, and 66 MHz bus operation. The timing for the MPC866/859 bus shown in this table assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load maximum delay.

 Table 9. Bus Operation Timings

Num	Charactoristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B1	Bus Period (CLKOUT) See Table 7	_	—	_		—	_	_	_	ns
B1a	EXTCLK to CLKOUT phase skew	- 2	+2	- 2	+2	- 2	+2	- 2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	_	1	_	1	—	1	_	1	ns
B1c	Frequency jitter on EXTCLK	_	0.50	_	0.50	_	0.50	_	0.50	%

	Characteristic	33	MHz	40 MHz		50 MHz		66 MHz		
Num	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \geq 15 MHz	_	4	—	4		4	—	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz	—	5	—	5		5	—	5	ns
B2	CLKOUT pulse width low (MIN = 0.4 x B1, MAX = 0.6 x B1)	12.1	18.2	10.0	15.0	8.0	12.0	6.1	9.1	ns
B3	CLKOUT pulse width high (MIN = 0.4 x B1, MAX = 0.6 x B1)	12.1	18.2	10.0	15.0	8.0	12.0	6.1	9.1	ns
B4	CLKOUT rise time	—	4.00	—	4.00		4.00	—	4.00	ns
B5	CLKOUT fall time	—	4.00	—	4.00		4.00	—	4.00	ns
B7	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3) output hold (MIN = 0.25 x B1)	7.60	_	6.30		5.00	—	3.80		ns
B7a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, AT(0:3), $\overline{\text{BDIP}}$, PTR output hold (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	_	3.80	_	ns
B7b	CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2), IWP(0:2), LWP(0:1), \overline{STS} output hold (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	_	3.80	_	ns
B8	CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3), valid (MAX = 0.25 x B1 + 6.3)	—	13.80	—	12.50	_	11.30	—	10.00	ns
B8a	CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP, PTR valid (MAX = 0.25 x B1 + 6.3)	—	13.80		12.50	_	11.30		10.00	ns
B8b	CLKOUT to BR, BG, VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS valid ⁴ (MAX = 0.25 x B1 + 6.3)		13.80		12.50	_	11.30		10.00	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 x B1 + 6.0)	7.60	13.60	6.30	12.30	5.00	11.00	3.80	9.80	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.30 ¹)	2.50	9.30	2.50	9.30	2.50	9.30	2.50	9.80	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 x B1 + 4.8)	7.60	12.30	6.30	11.00	5.00	9.80	3.80	8.50	ns

Table 9. Bus Operation Timings (continued)

Bus Signal Timing

	Oh ann atamiatia	33 I	MHz	40	MHz	50 I	MHz	66 I	MHz	
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B13	CLKOUT to \overline{TS} , \overline{BB} High-Z (MIN = 0.25 x B1)	7.60	21.60	6.30	20.30	5.00	19.00	3.80	14.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 x B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	TA, BI valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	_	6.00	_	6.00	_	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 4.5)	4.50	_	4.50	_	4.50	_	4.50	_	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$, valid to CLKOUT (setup time) ² (4 MIN = 0.00 x B1 + 0.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B17	CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold time) (MIN = $0.00 \times B1 + 1.00^{3}$)	1.00	—	1.00	—	1.00	—	2.00	—	ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	—	2.00	_	2.00	—	2.00	—	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) 4 (MIN = 0.00 x B1 + 6.00)	6.00	—	6.00	_	6.00	_	6.00	_	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) 4 (MIN = 0.00 x B1 + 1.00 5)	1.00	—	1.00	_	1.00	_	2.00	_	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 6 (MIN = 0.00 x B1 + 4.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) 6 (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00)	_	8.00		8.00		8.00	_	8.00	ns

Table 9. Bus Operation Timings (continued)

Bus Signal Timing

Figure 19 shows the timing for the external bus controlled by the UPM.

Figure 19. External Bus Timing (UPM Controlled Signals)

Figure 40. Boundary Scan (JTAG) Timing Diagram

12 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC866/859.

12.1 PIP/PIO AC Electrical Specifications

Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.

Num	Charactoristia	All Freq	Unit	
Nulli	Characteristic	Min	Max	Onit
21	Data-in setup time to STBI low	0	_	ns
22	Data-In hold time to STBI high	2.5 – t3 ¹	_	clk
23	STBI pulse width	1.5	_	clk
24	STBO pulse width	1 clk – 5ns	_	ns
25	Data-out setup time to STBO low	2	_	clk
26	Data-out hold time from STBO high	5	_	clk
27	STBI low to STBO low (Rx interlock)	_	2	clk
28	STBI low to STBO high (Tx interlock)	2	_	clk
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

¹ t3 = Specification 23

Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA

MPC866/MPC859 Hardware Specifications, Rev. 2

CPM Electrical Characteristics

Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)

CPM Electrical Characteristics

Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)

MPC866/MPC859 Hardware Specifications, Rev. 2

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Max	Unit
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	—	CLK
138	CLKO1 low to SDACK asserted ²	—	20	ns
139	CLKO1 low to SDACK negated ²	_	20	ns

Table 24. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

Figure 61. Ethernet Collision Timing Diagram

12.12I²C AC Electrical Specifications

Table 28 shows the I^2C (SCL < 100 kHz) timings.

Table 28. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	Onit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	_	μs
203	Low period of SCL	4.7	—	μs
204	High period of SCL	4.0	—	μs
205	Start condition setup time	4.7	—	μs
206	Start condition hold time	4.0	—	μs
207	Data hold time	0	—	μs
208	Data setup time	250	—	ns
209	SDL/SCL rise time	—	1	μs
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 shows the I^2C (SCL > 100 kHz) timings.

Table 29. I^2C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Frequencies		llait
			Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	—	1/(2.2 * fSCL)	_	s
203	Low period of SCL	—	1/(2.2 * fSCL)	—	s
204	High period of SCL	—	1/(2.2 * fSCL)	_	s
205	Start condition setup time	—	1/(2.2 * fSCL)	_	s
206	Start condition hold time	—	1/(2.2 * fSCL)	_	s
207	Data hold time	—	0	_	s
208	Data setup time	—	1/(40 * fSCL)	_	s
209	SDL/SCL rise time	—	—	1/(10 * fSCL)	s
210	SDL/SCL fall time	—	—	1/(33 * fSCL)	S
211	Stop condition setup time	—	1/2(2.2 * fSCL)	—	S

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Mechanical Data and Ordering Information

Plastic ball grid array	0° to 95°C	50	MPC859DSLVR50A
Lead free		66	MPC859DSLVR66A
		100	MPC859PVR100A
			MPC859TVR100A
			MPC866PVR100A
			MPC866TVR100A
		133	MPC859PVR133A
			MPC859TVR133A
			MPC866PVR133A
			MPC866TVR133A
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCVR50A
Lead free		66	MPC859DSLCVR66A
		100	MPC859PCVR100A
			MPC859TCVR100A
			MPC866PCVR100A
			MPC866TCVR100A

Table 38. MPC866/859 Package/Frequency Orderable (continued)

Mechanical Data and Ordering Information

Table 39.	Pin	Assignments	(continued)
-----------	-----	-------------	-------------

Name	Pin Number	Туре
OP3 MODCK2 DSDO	M4	Bidirectional
BADDR30 REG	К4	Output
BADDR[28:29]	M3, M2	Output
AS	L3	Input
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA RXD4	K18	Bidirectional (Optional: Open-drain)
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK