

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc866pvr100a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.

Figure 1. MPC866P Block Diagram

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC866/859.

Table 4. MPC866/859 Thermal Resistance Data

Rating	Enviro	Symbol	Value	Unit	
Junction-to-ambient ¹	Natural Convection	Single-layer board (1s)	R _{0JA} ²	37	°C/W
		Four-layer board (2s2p)	R _{0JMA} ³	23	
	Airflow (200 ft/min)	Single-layer board (1s)	R _{0JMA} 3	30	
		Four-layer board (2s2p)	R _{0JMA} 3	19	
Junction-to-board ⁴			$R_{\theta JB}$	13	
Junction-to-case ⁵			R _{θJC}	6	
Junction-to-package top ⁶	Natural Convection		Ψ_{JT}	2	
	Airflow (200 ft/min)		Ψ_{JT}	2	

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC JESD51-2.

Niuma	Ohovostavistis	33	MHz	40 I	MHz	50 I	MHz	66 I	MHz	11
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	16.00	7.00	14.10	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)	5.60	—	4.30	_	3.00		1.80	—	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 0 (MIN = 0.50 x B1 - 2.00)	13.20	—	10.50	_	8.00	_	5.60	_	ns
B25	CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)$ asserted (MAX = 0.00 x B1 + 9.00)	_	9.00	_	9.00	_	9.00	_	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90	_	29.30		23.00		16.90	_	ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	—	35.50	_	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)	_	9.00		9.00	_	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0,1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns

Table 9. Bus Operation Timings (continued)

Bus Signal Timing

	Oh ann atariatha	33	MHz	40 1	MHz	50 I	MHz	66 MHz		
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Мах	Unit
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B32	CLKOUT falling edge to \overline{BS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to \overline{BS} valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns

Table 9. Bus Operation Timings (continued)

Bus Signal Timing

Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
P50	CLKOUT to \overline{PCOE} , \overline{IORD} , \overline{PCWE} , \overline{IOWR} assert time (MAX = 0.00 x B1 + 11.00)	_	11.00	_	11.00	_	11.00	_	11.00	ns
P51	CLKOUT to \overline{PCOE} , \overline{IORD} , \overline{PCWE} , \overline{IOWR} negate time (MAX = 0.00 x B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
P53	CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00)		15.60	—	14.30	—	13.00	_	11.80	ns
P54	$\overline{\text{PCWE}}$, $\overline{\text{IOWR}}$ negated to D(0:31) invalid ¹ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00		1.80	_	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge ¹ (MIN = 0.00 x B1 + 8.00)	8.00		8.00		8.00		8.00	_	ns
P56	CLKOUT rising edge to $\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ invalid ¹ (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	—	ns

Table 11. PCMCIA Timing (continued)

¹ PSST = 1. Otherwise, add PSST times cycle time.

PSHT = 0. Otherwise, add PSHT times cycle time.

These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC866 PowerQUICC User's Manual.

Figure 40. Boundary Scan (JTAG) Timing Diagram

12 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC866/859.

12.1 PIP/PIO AC Electrical Specifications

Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.

Num	Charactoristia	All Freq	Unit	
Nulli	Onaracteristic		Max	Onit
21	Data-in setup time to STBI low	0	_	ns
22	Data-In hold time to STBI high	2.5 – t3 ¹	_	clk
23	STBI pulse width	1.5	_	clk
24	STBO pulse width	1 clk – 5ns	_	ns
25	Data-out setup time to STBO low	2	_	clk
26	Data-out hold time from STBO high	5	_	clk
27	STBI low to STBO low (Rx interlock)	_	2	clk
28	STBI low to STBO high (Tx interlock)	2	_	clk
29	Data-in setup time to clock high	15	_	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

¹ t3 = Specification 23

12.5 Timer AC Electrical Specifications

Table 20 shows the general-purpose timer timings as shown in Figure 52.

Table 20. Timer Timing

Num	Characteristic	All Freq	Unit	
			Мах	Onit
61	TIN/TGATE rise and fall time	10		ns
62	TIN/TGATE low time	1	_	clk
63	TIN/TGATE high time	2	_	clk
64	TIN/TGATE cycle time	3	_	clk
65	CLKO low to TOUT valid	3	25	ns

Figure 52. CPM General-Purpose Timers Timing Diagram

12.6 Serial Interface AC Electrical Specifications

Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57.

Table 21. SI Timing

Num	Characteristic	All F	Unit	
Num	Characteristic	Min	Мах	Unit
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	_	SYNCCLK/2.5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) ²	P + 10	_	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns
72	L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time	—	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20.00	—	ns

Num	Characteristic		All Frequencies		
Num			Max	Unit	
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns	
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns	
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns	
137	REJECT width low	1	—	CLK	
138	CLKO1 low to SDACK asserted ²	—	20	ns	
139	CLKO1 low to SDACK negated ²	_	20	ns	

Table 24. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

Figure 61. Ethernet Collision Timing Diagram

Figure 65. CAM Interface REJECT Timing Diagram

12.9 SMC Transparent AC Electrical Specifications

Table 25 shows the SMC transparent timings as shown in Figure 66.

MPC866/MPC859 Hardware Specifications, Rev. 2

Figure 69. SPI Slave (CP = 0) Timing Diagram

Table 28 shows the I^2C (SCL < 100 kHz) timings.

Table 28. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Max	Onit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	_	μs
203	Low period of SCL	4.7	—	μs
204	High period of SCL	4.0	—	μs
205	Start condition setup time	4.7	—	μs
206	Start condition hold time	4.0	—	μs
207	Data hold time	0	—	μs
208	Data setup time	250	—	ns
209	SDL/SCL rise time	—	1	μs
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 shows the I^2C (SCL > 100 kHz) timings.

Table 29. I^2C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
Num	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	—	1/(2.2 * fSCL)	_	s
203	Low period of SCL	—	1/(2.2 * fSCL)	—	s
204	High period of SCL	—	1/(2.2 * fSCL)	—	s
205	Start condition setup time	—	1/(2.2 * fSCL)	—	s
206	Start condition hold time	—	1/(2.2 * fSCL)	—	s
207	Data hold time	—	0	—	s
208	Data setup time	—	1/(40 * fSCL)	—	s
209	SDL/SCL rise time	—	—	1/(10 * fSCL)	s
210	SDL/SCL fall time	—	—	1/(33 * fSCL)	S
211	Stop condition setup time	—	1/2(2.2 * fSCL)	—	S

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 73 shows signal timings during UTOPIA transmit operations.

Figure 73. UTOPIA Transmit Timing

14 FEC Electrical Characteristics

This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency -1%. Table 33 shows the timings for MII receive signal.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
MЗ	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 33. MII Receive Signal Timing

Figure 74 shows the timings for MII receive signal.

Num	Characteristic	Min	Max	Unit
M13	MII_MDIO (input) to MII_MDC rising edge hold	0		ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Figure 77 shows the MII serial management channel timing diagram.

Figure 77. MII Serial Management Channel Timing Diagram

15 Mechanical Data and Ordering Information

Table 37 shows information on the MPC866/859 derivative devices.

Table 37. MPC866/859 Derivatives

Dovice	Number of Ethe	Ethernet	Ethernet Multi-Channel	ATM Support	Cache Size	
Device	SCCs ¹	Support	HDLC Support		Instruction	Data
MPC866T	4	10/100 Mbps	Yes	Yes	4 Kbyte	4 Kbytes
MPC866P	4	10/100 Mbps	Yes	Yes	16 Kbyte	8 Kbytes
MPC859T	1 (SCC1)	10/100 Mbps	Yes	Yes	4 Kbyte	4 Kbytes
MPC859DSL	1 (SCC1)	10/100 Mbps	No	Up to 4 addresses	4 Kbyte	4 Kbytes

¹ Serial communications controller (SCC).

Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative devices.

Table 38. MPC866/859 Package/Frequency Orderable

Package Type	Temperature (Tj)	Frequency (MHz)	Order Number
Plastic ball grid array	0° to 95°C	50	MPC859DSLZP50A
Non lead free		66	MPC859DSLZP66A
		100	MPC859PZP100A MPC859TZP100A MPC866PZP100A MPC866TZP100A
		133	MPC859PZP133A MPC859TZP133A MPC866PZP133A MPC866TZP133A
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCZP50A
Non lead free		66	MPC859DSLCZP66A
		100	MPC859PCZP100A MPC859TCZP100A MPC866PCZP100A MPC866TCZP100A

Plastic ball grid array	0° to 95°C	50	MPC859DSLVR50A
Lead free		66	MPC859DSLVR66A
		100	MPC859PVR100A
			MPC859TVR100A
			MPC866PVR100A
			MPC866TVR100A
		133	MPC859PVR133A
			MPC859TVR133A
			MPC866PVR133A
			MPC866TVR133A
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCVR50A
Lead free		66	MPC859DSLCVR66A
		100	MPC859PCVR100A
			MPC859TCVR100A
			MPC866PCVR100A
			MPC866TCVR100A

Table 38. MPC866/859 Package/Frequency Orderable (continued)

Table 39 contains a list of the MPC866 input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, C10, A13, A10, A12, A11, A9	Bidirectional Three-state
TSIZ0 REG	В9	Bidirectional Three-state
TSIZ1	С9	Bidirectional Three-state
RD/WR	B2	Bidirectional Three-state
BURST	F1	Bidirectional Three-state
BDIP GPL_B5	D2	Output
TS	F3	Bidirectional Active Pull-up
TA	C2	Bidirectional Active Pull-up
TEA	D1	Open-drain
BI	E3	Bidirectional Active Pull-up
IRQ2 RSV	НЗ	Bidirectional Three-state
IRQ4 KR RETRY SPKROUT	К1	Bidirectional Three-state
CR IRQ3	F2	Input
D[0:31]	W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7	Bidirectional Three-state
DP0 IRQ3	V3	Bidirectional Three-state
DP1 IRQ4	V5	Bidirectional Three-state
DP2 IRQ5	W4	Bidirectional Three-state
DP3 IRQ6	V4	Bidirectional Three-state

Table 39. Pin Assignments

Name	Pin Number	Туре
IP_A5 UTPB_Split5 ² MII-RXERR	U5	Input
IP_A6 UTPB_Split6 ² MII-TXERR	Т6	Input
IP_A7 UTPB_Split7 ² MII-RXDV	Т3	Input
ALE_B DSCK/AT1	J1	Bidirectional Three-state
IP_B[0:1] IWP[0:1] VFLS[0:1]	H2, J3	Bidirectional
IP_B2 IOIS16_B AT2	J2	Bidirectional Three-state
IP_B3 IWP2 VF2	G1	Bidirectional
IP_B4 LWP0 VF0	G2	Bidirectional
IP_B5 LWP1 VF1	J4	Bidirectional
IP_B6 DSDI AT0	К3	Bidirectional Three-state
IP_B7 PTR AT3	H1	Bidirectional Three-state
OP0 MII-TXD0 UtpClk_Split ²	L4	Bidirectional
OP1	L2	Output
OP2 MODCK1 STS	L1	Bidirectional

Table 39. Pin Assignments (continued)

15.2 Mechanical Dimensions of the PBGA Package

For more information on the printed-circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to *Plastic Ball Grid Array Application Note* (order number: AN1231/D) available from your local Freescale sales office. Figure 79 shows the mechanical dimensions of the PBGA package.

Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag

Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package

MPC866/MPC859 Hardware Specifications, Rev. 2

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK