

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc866pvr133a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Dissipation

5 Power Dissipation

Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice the bus speed.

Die Revision	Bus Mode	CPU Frequency	Typical ¹	Maximum ²	Unit
0	1:1	50 MHz	110	140	mW
		66 MHz	150	180	mW
	2:1	66 MHz	140	160	mW
		80 MHz	170	200	mW
		100 MHz	210	250	mW
		133 MHz	260	320	mW

Table 5. Power Dissipation (P_D)

¹ Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V.

² Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V.

NOTE

Values in Table 5 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry. The VDDSYN power dissipation is negligible.

6 DC Characteristics

Table 6 shows the DC electrical characteristics for the MPC866/859.

Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage	VDDL (core)	1.7	1.9	V
	VDDH (I/O)	3.135	3.465	V
	VDDSYN ¹	1.7	1.9	V
	Difference between VDDL to VDDSYN	—	100	mV
Input high voltage (all inputs except EXTAL and EXTCLK) ²	VIH	2.0	3.465	V

Num	Characteristic	33 I	MHz	40 1	MHz 50 MHz			66 MHz		11
NUIII		Min	Max	Min	Мах	Min	Max	Min	Мах	Unit
B30	$\overline{\text{CS}}$, $\overline{\text{WE}}$ (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access ⁷ (MIN = 0.25 x B1 – 2.00)	5.60		4.30		3.00		1.80	_	ns
B30a	$\label{eq:weighted} \begin{array}{l} \overline{\text{WE}}(0:3) \text{ negated to } A(0:31), \\ \text{BADDR}(28:30) \text{ invalid GPCM, write} \\ \text{access, TRLX} = 0, \text{ CSNT} = 1, \overline{\text{CS}} \\ \text{negated to } A(0:31) \text{ invalid GPCM write} \\ \text{access TRLX} = 0, \text{ CSNT} = 1 \text{ ACS} = 10, \\ \text{or ACS} == 11, \text{ EBDF} = 0 (\text{MIN} = 0.50 \text{ x} \\ \text{B1} - 2.00) \end{array}$	13.20		10.50		8.00		5.60		ns
B30b	$\overline{\text{WE}}(0:3)$ negated to A(0:31) invalid GPCM BADDR(28:30) invalid GPCM write access, TRLX = 1, CSNT = 1. $\overline{\text{CS}}$ negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10, or ACS == 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50		35.50	_	28.00		20.70		ns
B30c	$\label{eq:weighted} \hline \hline WE(0:3) \ negated to \ A(0:31), \\ BADDR(28:30) \ invalid \ GPCM \ write \\ access, TRLX = 0, \ CSNT = 1. \ \overline{CS} \\ negated to \ A(0:31) \ invalid \ GPCM \ write \\ access, TRLX = 0, \ CSNT = 1 \ ACS = \\ 10, \ ACS == 11, \ EBDF = 1 \ (MIN = 0.375 \\ x \ B1 - 3.00) \end{aligned}$	8.40	_	6.40	_	4.50	_	2.70	_	ns
B30d	$\overline{WE}(0:3) \text{ negated to } A(0:31), \\ BADDR(28:30) \text{ invalid GPCM write} \\ access TRLX = 1, CSNT = 1, \overline{CS} \\ negated to A(0:31) \text{ invalid GPCM write} \\ access TRLX = 1, CSNT = 1, ACS = 10 \\ or 11, EBDF = 1 \\ \end{array}$	38.67	_	31.38	_	24.50	_	17.83	_	ns
B31	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B31b	CLKOUT rising edge to \overline{CS} valid, as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid, as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns

Table 9. Bus Operation Timings (continued)

Bus Signal Timing

Niumo	Characteristic	33	MHz	40	MHz	50 I	MHz	66 MHz		l l mit
Num		Min	Max	Min	Мах	Min	Max	Min	Мах	Unit
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B32	CLKOUT falling edge to \overline{BS} valid, as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to \overline{BS} valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	13.30	18.00	11.30	16.00	9.40	14.10	7.60	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70		13.00		9.40	_	ns

Table 9. Bus Operation Timings (continued)

Bus Signal Timing

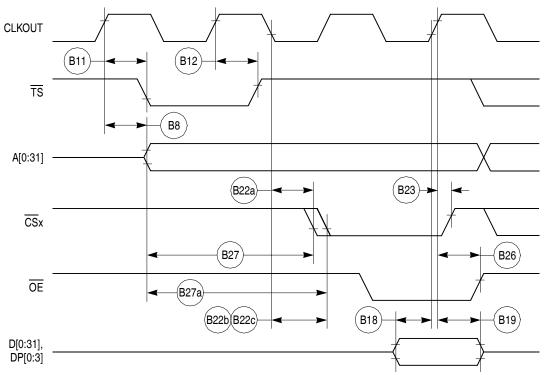


Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)

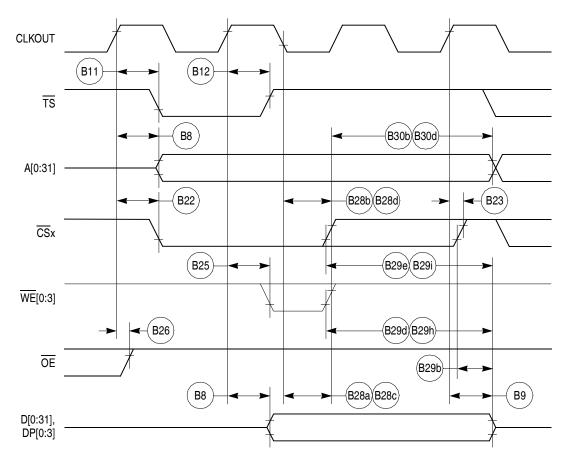


Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Bus Signal Timing

Figure 27 shows the PCMCIA access cycle timing for the external bus read.

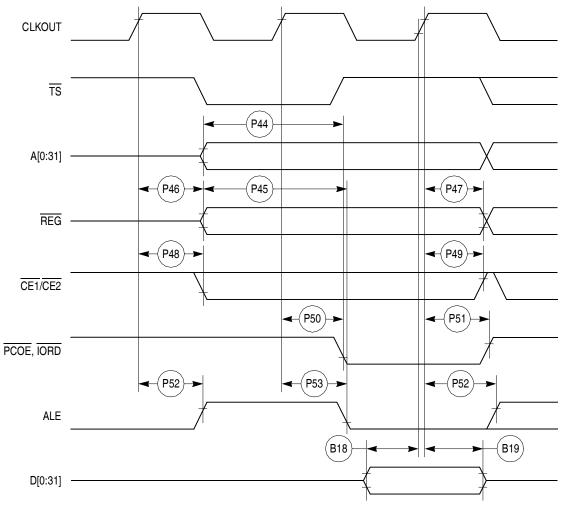
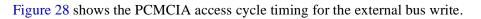



Figure 27. PCMCIA Access Cycles Timing External Bus Read

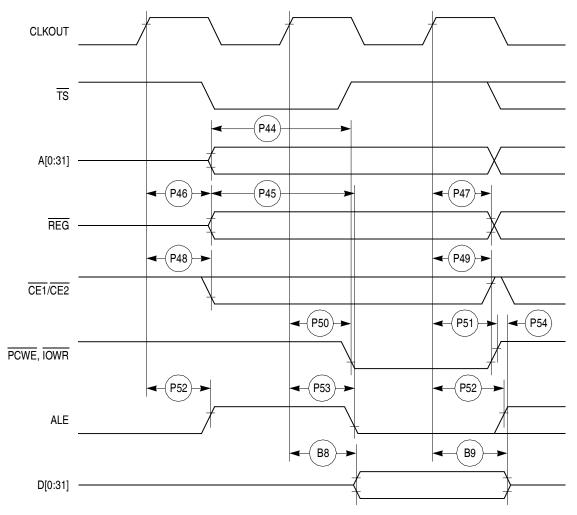


Figure 28. PCMCIA Access Cycles Timing External Bus Write

Figure 29 shows the PCMCIA WAIT signals detection timing.

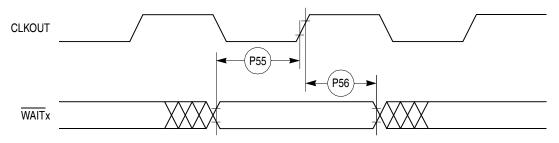


Figure 29. PCMCIA WAIT Signals Detection Timing

MPC866/MPC859 Hardware Specifications, Rev. 2

Figure 34 shows the reset timing for the data bus configuration.

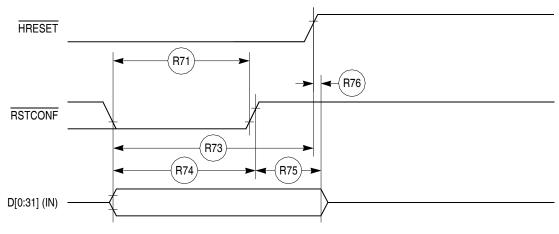


Figure 34. Reset Timing—Configuration from Data Bus

Figure 35 shows the reset timing for the data bus weak drive during configuration.

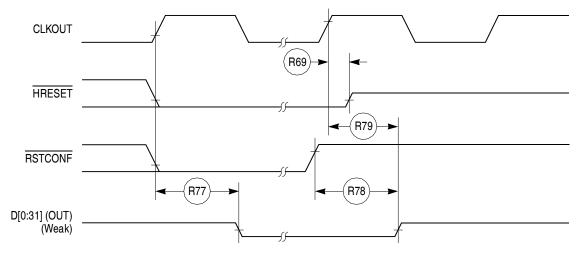


Figure 35. Reset Timing—Data Bus Weak Drive During Configuration

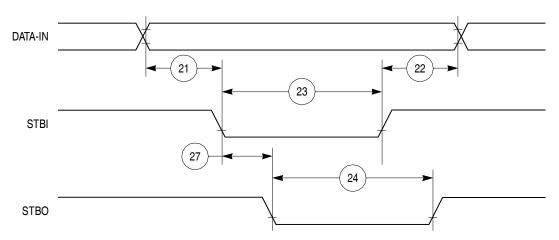


Figure 41. PIP Rx (Interlock Mode) Timing Diagram

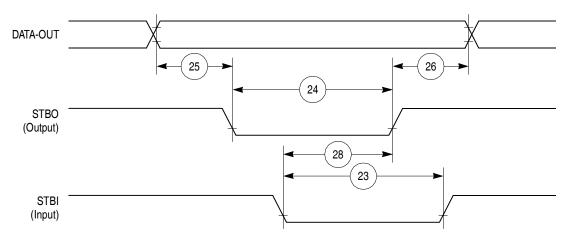


Figure 42. PIP Tx (Interlock Mode) Timing Diagram

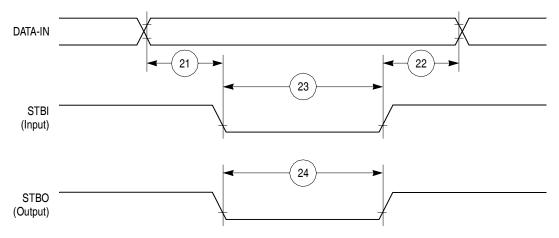


Figure 43. PIP Rx (Pulse Mode) Timing Diagram

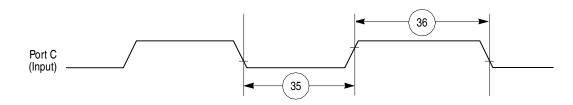


Figure 46. Port C Interrupt Detection Timing

12.3 IDMA Controller AC Electrical Specifications

Table 18 shows the IDMA controller timings as shown in Figure 47 through Figure 50.

Num	Characteristic	All Free	Unit	
Num	Characteristic	Min	Max	Unit
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high	3		ns
42	SDACK assertion delay from clock high		12	ns
43	SDACK negation delay from clock low		12	ns
44	SDACK negation delay from TA low		20	ns
45	SDACK negation delay from clock high	_	15	ns
46	TA assertion to falling edge of the clock setup time (applies to external TA)	7	_	ns

Table 18. IDMA Controller Timing

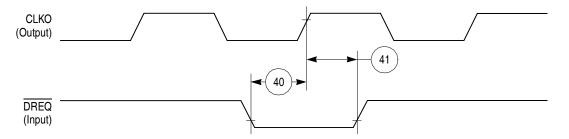


Figure 47. IDMA External Requests Timing Diagram

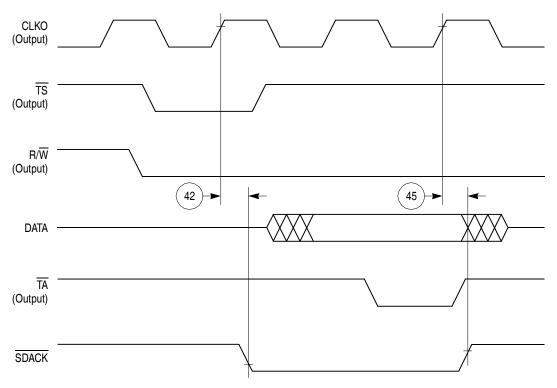


Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

12.4 Baud Rate Generator AC Electrical Specifications

Table 19 shows the baud rate generator timings as shown in Figure 51.

Table 19. Baud Rate Generator Timing

Num	Characteristic	All Freq	Unit	
	Unaracteristic	Min	Max	onn
50	BRGO rise and fall time	_	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	_	ns

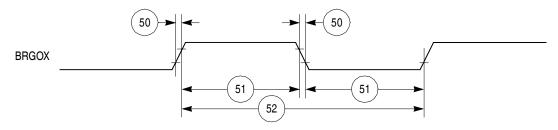
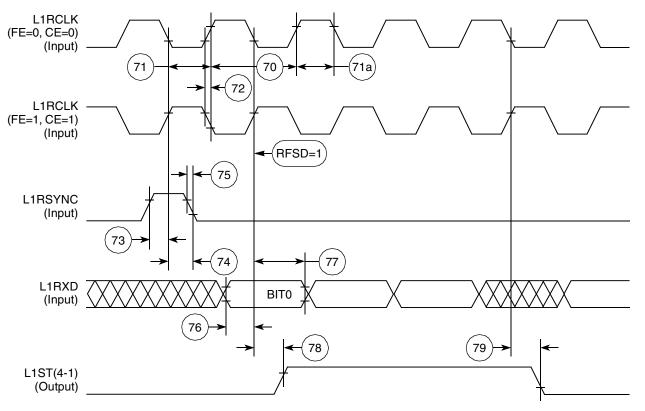



Figure 51. Baud Rate Generator Timing Diagram

MPC866/MPC859 Hardware Specifications, Rev. 2

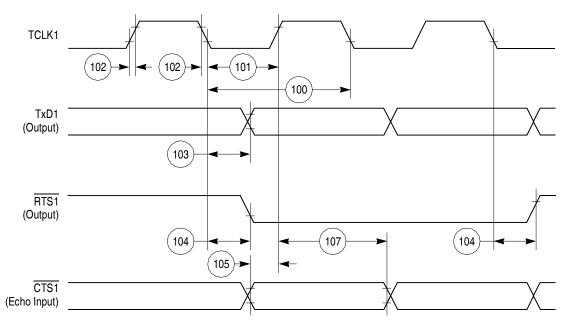


Figure 60. HDLC Bus Timing Diagram

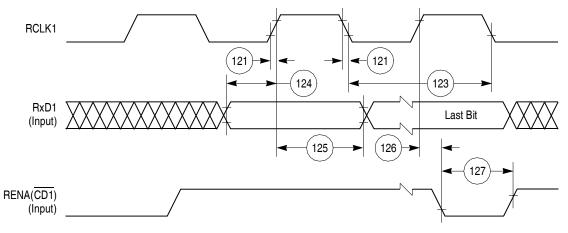
12.8 Ethernet Electrical Specifications

Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.Table 24. Ethernet Timing

Num	Characteristic		uencies	Unit
Num	Characteristic	Min	Max	Unit
120	CLSN width high	40		ns
121	RCLK1 rise/fall time	_	15	ns
122	RCLK1 width low	40	_	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	_	ns
125	RXD1 hold time	5	_	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	_	ns
127	RENA width low	100	_	ns
128	TCLK1 rise/fall time	_	15	ns
129	TCLK1 width low	40	_	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	—	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	6.5	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns

MPC866/MPC859 Hardware Specifications, Rev. 2

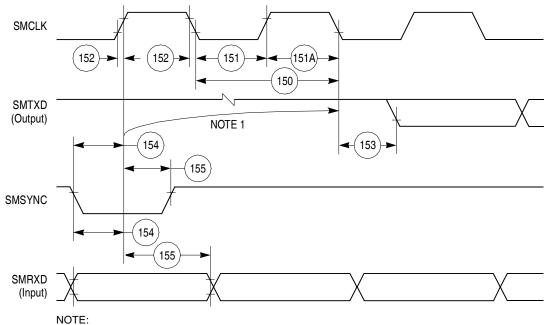
Num	Characteristic	All Freq	Unit	
	Characteristic	Min	Max	Unit
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	_	CLK
138	CLKO1 low to SDACK asserted ²	—	20	ns
139	CLKO1 low to SDACK negated ²	—	20	ns


Table 24. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

Figure 61. Ethernet Collision Timing Diagram



Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Unit
150	SMCLK clock period ¹	100	_	ns
151	SMCLK width low	50	_	ns
151A	SMCLK width high	50	_	ns
152	SMCLK rise/fall time	—	15	ns
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns
154	SMRXD/SMSYNC setup time	20	—	ns
155	RXD1/SMSYNC hold time	5	_	ns
¹ Svnc (CLK must be at least twice as fast as SMCLK.	•		•

Table 25. SMC Transparent Timing

Sync CLK must be at least twice as fast as SMCLK.

1. This delay is equal to an integer number of character-length clocks.

Figure 66. SMC Transparent Timing Diagram

Table 28 shows the I^2C (SCL < 100 kHz) timings.

Table 28. I²C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Num		Min	Max	Unit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7		μs
203	Low period of SCL	4.7	_	μs
204	High period of SCL	4.0	_	μs
205	Start condition setup time	4.7		μs
206	Start condition hold time	4.0	_	μs
207	Data hold time	0	_	μs
208	Data setup time	250	_	ns
209	SDL/SCL rise time	—	1	μs
210	SDL/SCL fall time	—	300	ns
211	Stop condition setup time	4.7	—	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 shows the I^2C (SCL > 100 kHz) timings.

Table 29. I^2C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
num	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	_	1/(2.2 * fSCL)	_	s
203	Low period of SCL	_	1/(2.2 * fSCL)	_	s
204	High period of SCL	—	1/(2.2 * fSCL)	_	s
205	Start condition setup time	—	1/(2.2 * fSCL)	_	s
206	Start condition hold time	—	1/(2.2 * fSCL)	_	s
207	Data hold time	—	0	_	s
208	Data setup time	—	1/(40 * fSCL)	_	s
209	SDL/SCL rise time	—	—	1/(10 * fSCL)	s
210	SDL/SCL fall time	—	—	1/(33 * fSCL)	s
211	Stop condition setup time	—	1/2(2.2 * fSCL)		s

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Num	Characteristic		Max	Unit
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Figure 77 shows the MII serial management channel timing diagram.

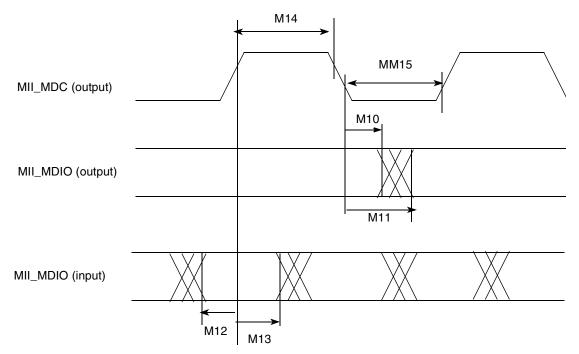


Figure 77. MII Serial Management Channel Timing Diagram

Mechanical Data and Ordering Information

15 Mechanical Data and Ordering Information

Table 37 shows information on the MPC866/859 derivative devices.

Table 37. MPC866/859 Derivatives

Device	Number of SCCs ¹	Ethernet Support	Multi-Channel HDLC Support	ATM Support	Cache Size		
Device					Instruction	Data	
MPC866T	4	10/100 Mbps	Yes	Yes	4 Kbyte	4 Kbytes	
MPC866P	4	10/100 Mbps	Yes	Yes	16 Kbyte	8 Kbytes	
MPC859T	1 (SCC1)	10/100 Mbps	Yes	Yes	4 Kbyte	4 Kbytes	
MPC859DSL	1 (SCC1)	10/100 Mbps	No	Up to 4 addresses	4 Kbyte	4 Kbytes	

¹ Serial communications controller (SCC).

Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative devices.

Table 38. MPC866/859 Package/Frequency Orderable

Package Type	Temperature (Tj)	Frequency (MHz)	Order Number
Plastic ball grid array	0° to 95°C	50	MPC859DSLZP50A
(ZP suffix) Non lead free		66	MPC859DSLZP66A
		100	MPC859PZP100A MPC859TZP100A MPC866PZP100A MPC866TZP100A
		133	MPC859PZP133A MPC859TZP133A MPC866PZP133A MPC866TZP133A
Plastic ball grid array	–40° to 100°C	50	MPC859DSLCZP50A
(CZP suffix) Non lead free		66	MPC859DSLCZP66A
		100	MPC859PCZP100A MPC859TCZP100A MPC866PCZP100A MPC866TCZP100A

16 Document Revision History

Table 40 lists significant changes between revisions of this document.

Table 40. Document Revision History

Revision Number	Date	Substantive Changes
0	5/2002	Initial revision
1	11/2002	Added the 5-V tolerant pins, new package dimensions, and other changes.
1.1	4/2003	Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb 2%Ag to Figure 15-79.
1.2	4/2003	Added the MPC859P.
1.3	5/2003	Changed the SPI Master Timing Specs. 162 and 164.
1.4	7-8/2003	 Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Added nontechnical reformatting.
1.5	3/14/2005	Updated document template.
2	2/10/2006	Updated orderable parts table.

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK