

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFLGA
Supplier Device Package	100-TFLGA (5.5x5.5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f52105bdla-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.1

How to Read the Product Part No., Memory Capacity, and Package Type

Table 4.1 List of I/O Registers (Address Order) (2 / 29)

						Number of Access Cycles
Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	ICLK≥ ICLK < PCLK PCLK
0008 201Dh	DMAC0	DMA software start register	DMREQ	8	8	2 ICLK
0008 201Eh	DMAC0	DMA status register	DMSTS	8	8	2 ICLK
0008 201Fh	DMAC0	DMA activation source flag control register	DMCSL	8	8	2 ICLK
0008 2040h	DMAC1	DMA source address register	DMSAR	32	32	2 ICLK
0008 2044h	DMAC1	DMA destination address register	DMDAR	32	32	2 ICLK
0008 2048h	DMAC1	DMA transfer count register	DMCRA	32	32	2 ICLK
0008 204Ch	DMAC1	DMA block transfer count register	DMCRB	16	16	2 ICLK
0008 2050h	DMAC1	DMA transfer mode register	DMTMD	16	16	2 ICLK
0008 2053h	DMAC1	DMA interrupt setting register	DMINT	8	8	2 ICLK
0008 2054h	DMAC1	DMA address mode register	DMAMD	16	16	2 ICLK
0008 205Ch	DMAC1	DMA transfer enable register	DMCNT	8	8	2 ICLK
0008 205Dh	DMAC1	DMA software start register	DMREQ	8	8	2 ICLK
0008 205Eh	DMAC1	DMA status register	DMSTS	8	8	2 ICLK
0008 205Fh	DMAC1	DMA activation source flag control register	DMCSL	8	8	2 ICLK
0008 2080h	DMAC2	DMA source address register	DMSAR	32	32	2 ICLK
0008 2084h	DMAC2	DMA destination address register	DMDAR	32	32	2 ICLK
0008 2088h	DMAC2	DMA transfer count register	DMCRA	32	32	2 ICLK
0008 208Ch	DMAC2	DMA block transfer count register	DMCRB	16	16	2 ICLK
0008 2090h	DMAC2	DMA transfer mode register	DMTMD	16	16	2 ICLK
0008 2093h	DMAC2	DMA interrupt setting register	DMINT	8	8	2 ICLK
0008 2094h	DMAC2	DMA address mode register	DMAMD	16	16	2 ICLK
0008 209Ch	DMAC2	DMA transfer enable register	DMCNT	8	8	2 ICLK
0008 209Dh	DMAC2	DMA software start register	DMREQ	8	8	2 ICLK
0008 209Eh	DMAC2	DMA status register	DMSTS	8	8	2 ICLK
0008 209Fh	DMAC2	DMA activation source flag control register	DMCSL	8	8	2 ICLK
0008 20C0h	DMAC3	DMA source address register	DMSAR	32	32	2 ICLK
0008 20C4h	DMAC3	DMA destination address register	DMDAR	32	32	2 ICLK
0008 20C8h	DMAC3	DMA transfer count register	DMCRA	32	32	2 ICLK
0008 20CCh	DMAC3	DMA block transfer count register	DMCRB	16	16	2 ICLK
0008 20D0h	DMAC3	DMA transfer mode register	DMTMD	16	16	2 ICLK
0008 20D3h	DMAC3	DMA interrupt setting register	DMINT	8	8	2 ICLK
0008 20D4h	DMAC3	DMA address mode register	DMAMD	16	16	2 ICLK
0008 20DCh	DMAC3	DMA transfer enable register	DMCNT	8	8	2 ICLK
0008 20DDh	DMAC3	DMA software start register	DMREQ	8	8	2 ICLK
0008 20DEh	DMAC3	DMA status register	DMSTS	8	8	2 ICI K
0008 20DFh	DMAC3	DMA activation source flag control register	DMCSL	8	8	2 ICLK
0008 2200h	DMAC	DMA module activation register	DMAST	8	8	2 ICL K
0008 2400h	DTC	DTC control register	DTCCR	8	8	2 ICL K
0008 2404h	DTC	DTC vector base register	DTCVBR	32	32	2 ICL K
0008 2408h	DTC	DTC address mode register		8	8	2 ICL K
0008 240Ch	DTC	DTC module start register	DTCST	8	8	2 ICL K
0008 240Eb	DTC		DTCSTS	16	16	2 10 1 K
0000 240211	BSC		CSOMOD	16	16	
0008 30021	BSC	CS0 wait control register 1		22	22	1, 2 BCLK
0000 300411	BSC	CS0 wait control register 1	CSOMCRI	32	32	1.2 DOLK
0000 300811	BSC	CS1 mode register		32	ید ۱۵	1.2 DULK
0000 30120	BSC			01	22	1.2 POLK
0000 20405	BSC		CSIWCRI	32	32	1, 2 DULK
0008 20225	BSC	CS1 wait collitor register 2	CS2MOD	32	32	1, 2 BULK
0000 2024	BSC		CO2IVIOD	01	01	1, 2 DULK
0000 3024h	BSC	CS2 wait control register 1	CS2WCR1	32	32	I, Z BULK
UUUX 3028h	B2C	US2 wait control register 2	CS2WCR2	32	32	1, Z BULK

Table 4.1 List of I/O Registers (Address Order) (13 / 29)

						Number of A	ccess Cycles
Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	ICLK ≥ PCLK	ICLK < PCLK
0008 820Ah	TMR0	Timer counter control register	TCCR	8	8	2, 3 PCLKB	2 ICLK
0008 820Bh	TMR1	Timer counter control register	TCCR	8	8*1	2, 3 PCLKB	2 ICLK
0008 820Ch	TMR0	Time count start register	TCSTR	8	8	2, 3 PCLKB	2 ICLK
0008 8210h	TMR2	Timer control register	TCR	8	8	2, 3 PCLKB	2 ICLK
0008 8211h	TMR3	Timer control register	TCR	8	8	2, 3 PCLKB	2 ICLK
0008 8212h	TMR2	Timer control/status register	TCSR	8	8	2, 3 PCLKB	2 ICLK
0008 8213h	TMR3	Timer control/status register	TCSR	8	8	2, 3 PCLKB	2 ICLK
0008 8214h	TMR2	Time constant register A	TCORA	8	8	2, 3 PCLKB	2 ICLK
0008 8215h	TMR3	Time constant register A	TCORA	8	8* ¹	2, 3 PCLKB	2 ICLK
0008 8216h	TMR2	Time constant register B	TCORB	8	8	2, 3 PCLKB	2 ICLK
0008 8217h	TMR3	Time constant register B	TCORB	8	8*1	2, 3 PCLKB	2 ICLK
0008 8218h	TMR2	Timer counter	TCNT	8	8	2, 3 PCLKB	2 ICLK
0008 8219h	TMR3	Timer counter	TCNT	8	8* ¹	2, 3 PCLKB	2 ICLK
0008 821Ah	TMR2	Timer counter control register	TCCR	8	8	2, 3 PCLKB	2 ICLK
0008 821Bh	TMR3	Timer counter control register	TCCR	8	8*1	2, 3 PCLKB	2 ICLK
0008 821Ch	TMR2	Time count start register	TCSTR	8	8	2, 3 PCLKB	2 ICLK
0008 8280h	CRC	CRC control register	CRCCR	8	8	2, 3 PCLKB	2 ICLK
0008 8281h	CRC	CRC data input register	CRCDIR	8	8	2, 3 PCLKB	2 ICLK
0008 8282h	CRC	CRC data output register	CRCDOR	16	16	2, 3 PCLKB	2 ICLK
0008 8300h	RIIC0	I ² C bus control register 1	ICCR1	8	8	2, 3 PCLKB	2 ICLK
0008 8301h	RIIC0	I ² C bus control register 2	ICCR2	8	8	2, 3 PCLKB	2 ICLK
0008 8302h	RIIC0	I ² C bus mode register 1	ICMR1	8	8	2, 3 PCLKB	2 ICLK
0008 8303h	RIIC0	I ² C bus mode register 2	ICMR2	8	8	2, 3 PCLKB	2 ICLK
0008 8304h	RIIC0	I ² C bus mode register 3	ICMR3	8	8	2, 3 PCLKB	2 ICLK
0008 8305h	RIIC0	I ² C bus function enable register	ICFER	8	8	2, 3 PCLKB	2 ICLK
0008 8306h	RIIC0	I ² C bus status enable register	ICSER	8	8	2, 3 PCLKB	2 ICLK
0008 8307h	RIIC0	I ² C bus interrupt enable register	ICIER	8	8	2, 3 PCLKB	2 ICLK
0008 8308h	RIIC0	I ² C bus status register 1	ICSR1	8	8	2, 3 PCLKB	2 ICLK
0008 8309h	RIIC0	I ² C bus status register 2	ICSR2	8	8	2, 3 PCLKB	2 ICLK
0008 830Ah	RIIC0	Slave address register L0	SARL0	8	8	2, 3 PCLKB	2 ICLK
0008 830Ah	RIIC0	Timeout internal counter L	TMOCNTL	8	8	2, 3 PCLKB	2 ICLK
0008 830Bh	RIIC0	Slave address register U0	SARU0	8	8	2, 3 PCLKB	2 ICLK
0008 830Bh	RIIC0	Timeout internal counter U	TMOCNTU	8	8*2	2, 3 PCLKB	2 ICLK
0008 830Ch	RIIC0	Slave address register L1	SARL1	8	8	2, 3 PCLKB	2 ICLK
0008 830Dh	RIIC0	Slave address register U1	SARU1	8	8	2. 3 PCLKB	2 ICLK
0008 830Eh	RIICO	Slave address register L2	SARL2	8	8	2. 3 PCLKB	2 ICLK
0008 830Fh	RIICO	Slave address register U2	SARU2	8	8	2. 3 PCLKB	2 ICLK
0008 8310h	RIICO	I ² C bus bit rate low-level register	ICBRL	8	8	2. 3 PCLKB	2 ICLK
0008 8311h	RIICO	I ² C bus bit rate high-level register	ICBRH	8	8	2. 3 PCLKB	2 ICLK
0008 8312h	RIICO	I ² C bus transmit data register	ICDRT	8	8	2 3 PCI KB	2 ICI K
0008 8313h	RIICO	I ² C bus receive data register	ICDRR	8	8	2, 3 PCLKB	2 ICLK
0008 8380h	RSPI0	RSPI control register	SPCR	8	8	2, 3 PCI KB	2 ICL K
0008 8381b	RSPI0	RSPI slave select notarity register	SSLP	8	8	2, 3 PCI KB	2 ICL K
0008 83826	RSPIO		SPPCR	8	8	2, 3 PCI KB	2 10 1 K
0008 83835	RSPIO	RSPI status register	SPSR	8	8	2, 3 PCI KB	2 IOLK
0008 83846	RSPIO	RSPI data register	SPDR	32	16 32	2,31 OLIND	2 ICLK
0000 000411	RCDIO	RSPI sequence control registor		22	ιυ, 32 Ω	2, 3 FOLKB	2 10 LK
0000 030011				0	0	2, 3 FULND	2 10LK
	ROPIU	RSFI sequence status register	SPOOK	8	ő	2, 3 PULKB	2 ICLK
0000 0300				0	0	2, 3 FULNB	2 10LK
	ROPIU		SPOCK	0	Ö	2, 3 PULKB	2 101K
0000 030011	ROPIU	NOF I GOOK WEIDY TEYISTER	SPURD	o	ō	2, J FULND	2 10LN

Table 4.1 List of I/O Registers (Address Order) (14 / 29)

						Number of A	ccess Cycles
Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	ICLK ≥ PCLK	ICLK < PCLK
0008 838Dh	RSPI0	RSPI slave select negation delay register	SSLND	8	8	2, 3 PCLKB	2 ICLK
0008 838Eh	RSPI0	RSPI next-access delay register	SPND	8	8	2, 3 PCLKB	2 ICLK
0008 838Fh	RSPI0	RSPI control register 2	SPCR2	8	8	2, 3 PCLKB	2 ICLK
0008 8390h	RSPI0	RSPI command register 0	SPCMD0	16	16	2, 3 PCLKB	2 ICLK
0008 8392h	RSPI0	RSPI command register 1	SPCMD1	16	16	2, 3 PCLKB	2 ICLK
0008 8394h	RSPI0	RSPI command register 2	SPCMD2	16	16	2, 3 PCLKB	2 ICLK
0008 8396h	RSPI0	RSPI command register 3	SPCMD3	16	16	2, 3 PCLKB	2 ICLK
0008 8398h	RSPI0	RSPI command register 4	SPCMD4	16	16	2, 3 PCLKB	2 ICLK
0008 839Ah	RSPI0	RSPI command register 5	SPCMD5	16	16	2, 3 PCLKB	2 ICLK
0008 839Ch	RSPI0	RSPI command register 6	SPCMD6	16	16	2, 3 PCLKB	2 ICLK
0008 839Eh	RSPI0	RSPI command register 7	SPCMD7	16	16	2, 3 PCLKB	2 ICLK
0008 8600h	MTU3	Timer control register	TCR	8	8	2, 3 PCLKB	2 ICLK
0008 8601h	MTU4	Timer control register	TCR	8	8	2, 3 PCLKB	2 ICLK
0008 8602h	MTU3	Timer mode register	TMDR	8	8	2, 3 PCLKB	2 ICLK
0008 8603h	MTU4	Timer mode register	TMDR	8	8	2, 3 PCLKB	2 ICLK
0008 8604h	MTU3	Timer I/O control register H	TIORH	8	8	2, 3 PCLKB	2 ICLK
0008 8605h	MTU3	Timer I/O control register L	TIORL	8	8	2, 3 PCLKB	2 ICLK
0008 8606h	MTU4	Timer I/O control register H	TIORH	8	8	2, 3 PCLKB	2 ICLK
0008 8607h	MTU4	Timer I/O control register L	TIORL	8	8	2, 3 PCLKB	2 ICLK
0008 8608h	MTU3	Timer interrupt enable register	TIER	8	8	2, 3 PCLKB	2 ICLK
0008 8609h	MTU4	Timer interrupt enable register	TIER	8	8	2, 3 PCLKB	2 ICLK
0008 860Ah	MTU	Timer output master enable register	TOER	8	8	2, 3 PCLKB	2 ICLK
0008 860Dh	MTU	Timer gate control register	TGCR	8	8	2, 3 PCLKB	2 ICLK
0008 860Eh	MTU	Timer output control register 1	TOCR1	8	8	2, 3 PCLKB	2 ICLK
0008 860Fh	MTU	Timer output control register 2	TOCR2	8	8	2, 3 PCLKB	2 ICLK
0008 8610h	MTU3	Timer counter	TCNT	16	16	2, 3 PCLKB	2 ICLK
0008 8612h	MTU4	Timer counter	TCNT	16	16	2, 3 PCLKB	2 ICLK
0008 8614h	MTU	Timer cycle data register	TCDR	16	16	2, 3 PCLKB	2 ICLK
0008 8616h	MTU	Timer dead time data register	TDDR	16	16	2, 3 PCLKB	2 ICLK
0008 8618h	МТИЗ	Timer general register A	TGRA	16	16	2. 3 PCLKB	2 ICLK
0008 861Ah	MTU3	Timer general register B	TGRB	16	16	2, 3 PCLKB	2 ICLK
0008 861Ch	MTU4	Timer general register A	TGRA	16	16	2. 3 PCLKB	2 ICLK
0008 861Eh	MTU4	Timer general register B	TGRB	16	16	2. 3 PCLKB	2 ICLK
0008 8620h	MTU	Timer subcounter	TCNTS	16	16	2. 3 PCLKB	2 ICLK
0008 8622h	MTU	Timer cvcle buffer register	TCBR	16	16	2. 3 PCLKB	2 ICLK
0008 8624h	MTU3	Timer general register C	TGRC	16	16	2, 3 PCLKB	2 ICLK
0008 8626h	MTU3	Timer general register D	TGRD	16	16	2 3 PCI KB	2 ICI K
0008 8628h	MTU4		TGRC	16	16	2 3 PCI KB	2 ICL K
0008 862Ah	MTU4		TGRD	16	16	2 3 PCI KB	2 ICLK
0008 862Cb	MTU3		TSR	8	8	2, 3 PCI KB	2 ICLK
0008 862Dh	MTU4		TSR	8	8	2, 3 PCI KB	2 ICLK
0008 86305	MTU	Timer interrunt skinning set register	TITCR	8	8	2, 3 PCI KB	2 ICL K
0008 8631b	MTU		TITON	8	8	2, 3 PCI KB	2 10 1 K
0008 86325	MTU	Timer huffer transfer set register	TRTER	8	8	2, 3 PCLKB	2 ICLK
0008 86246	MTU		TDER	D R	2 R	2 3 001 10	2 10 11
0008 86365	MTU	Timer output level huffer register		D R	Q Q	2, 3 FOLKD	2 10 LK
0000 003011	MTU2		TRTM	0	0	2, 3 FULND	2 10 LN
	MTUA			0	ö	2, 3 FULND	210LK
	MTU4			0	0	2, 3 PULKB	2 101K
	MTU4			10	10	2, 3 PULKB	2 ICLK
	MTU4		TADCORA	10	10	2, 3 FULKB	2 ICLK
UUU& 8646h	WH U4	Inner A/D converter start request cycle set register B	IADCORB	16	16	2, 3 PULKB	2 IULK

						Number of Access Cycles		
Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	ICLK ≥ PCLK	ICLK < PCLK	
0008 C04Ch	PORTC	Port input data register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	3 ICLK cycles when reading, 2 ICLK cycles when writing	
0008 C04Dh	PORTD	Port input data register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	3 ICLK cycles when reading, 2 ICLK cycles when writing	
0008 C04Eh	PORTE	Port input data register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	3 ICLK cycles when reading, 2 ICLK cycles when writing	
0008 C04Fh	PORTF	Port input data register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	3 ICLK cycles when reading, 2 ICLK cycles when writing	
0008 C051h	PORTH	Port input data register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	3 ICLK cycles when reading, 2 ICLK cycles when writing	
0008 C052h	PORTJ	Port input data register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	3 ICLK cycles when reading, 2 ICLK cycles when writing	
0008 C053h	PORTK	Port input data register	PIDR	8	8	2, 3 PCLKB	2 ICLK	
0008 C054h	PORTL	Port input data register	PIDR	8	8	2, 3 PCLKB	2 ICLK	
0008 C060h	PORT0	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C061h	PORT1	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C062h	PORT2	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C063h	PORT3	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C064h	PORT4	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C065h	PORT5	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C066h	PORT6	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C067h	PORT7	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C068h	PORT8	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C069h	PORT9	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C06Ah	PORTA	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C06Bh	PORTB	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C06Ch	PORTC	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C06Dh	PORTD	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C06Eh	PORTE	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C06Fh	PORTF	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C071h	PORTH	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C072h	PORTJ	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C073h	PORTK	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	
0008 C074h	PORTL	Port mode register	PMR	8	8	2, 3 PCLKB	2 ICLK	

Table 4.1 List of I/O Registers (Address Order) (24 / 29)

Figure 5.1 Voltage Dependency in High-Speed Operating Mode (Reference Data) for Chip Version A

Figure 5.2 Voltage Dependency in Middle-Speed Operating Modes 1A and 1B (Reference Data) for Chip Version A

RENESAS

[Chip version C]

Table 5.9DC Characteristics (8)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, T_a = -40 to +105°C

	Item						Max.	Unit	Test Conditions
Supply current*1	High-speed operating mode	Normal operating mode	No peripheral operation* ²	ICLK = 50 MHz	I _{CC}	10	—	mA	
			All peripheral operation: Normal* ³	ICLK = 50 MHz		31.5	—		
			All peripheral operation: Max.* ³	ICLK = 50 MHz			55		
		Sleep mode	No peripheral operation	ICLK = 50 MHz		7.5	—		
			All peripheral operation: Normal	ICLK = 50 MHz		17.5	_		
All-module clock stop mode	top mode	ICLK = 50 MHz	z 6.7	_					
		Increase during BC	GO operation*4			25	—		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 100 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 100 MHz. BCLK, FCLK, and PCLK are ICLK divided by 2.

Note 4. This is the increase if data is programmed to or erasing from the ROM or E2 DataFlash during program execution.

	Item						Max.	Unit	Test Conditions
Supply	Low-speed	Normal	No peripheral	ICLK = 8 MHz	I _{CC}	2.1	_	mA	
current*1	operating mode	operating mode	operation*7	ICLK = 4 MHz		1.7			
	•			ICLK = 2 MHz		1.5	—		
			All peripheral	ICLK = 8 MHz		7.3	—		
			operation: Normal* ⁸	ICLK = 4 MHz		4.5	—		
				ICLK = 2 MHz		3.1	—		
			All peripheral	ICLK = 8 MHz	1 [-	—	12		
			operation: Max.*/	ICLK = 4 MHz			_	1	
				ICLK = 2 MHz			_		
		Sleep mode	No peripheral	ICLK = 8 MHz		1.5	_		
			operation	ICLK = 4 MHz		1.4	_		
				ICLK = 2 MHz		1.3	_		
			All peripheral	ICLK = 8 MHz		4.1	—		
		operation: Normal	ICLK = 4 MHz		3.0	—			
				ICLK = 2 MHz		2.3			
	All-module clock stop mode	stop mode	ICLK = 8 MHz	1.4	_				
				ICLK = 4 MHz	1.3	1.3	_		
				ICLK = 2 MHz		1.2			
	Low-speed operating mode	Normal operating mode	No peripheral operation*9	ICLK = 32 kHz		0.022			
2	2		All peripheral operation: Normal* ¹⁰	ICLK = 32 kHz	0.06	0.06	—		
			All peripheral operation: Max.* ¹⁰	ICLK = 32 kHz			3*11		
		Sleep mode	No peripheral operation	ICLK = 32 kHz		0.017	—		
			All peripheral operation: Normal	ICLK = 32 kHz		0.036	_		
		All-module clock	stop mode			0.017	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 64 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

- Note 3. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 40 MHz. BCLK, FCLK, and PCLK are set to divided by 64.
- Note 4. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 64 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.
- Note 5. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 40 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.

Note 6. This is the increase if data is programmed to or erasing from the ROM or E2 DataFlash during program execution.

Note 7. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 32 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 8. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 32 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.

Note 9. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is the sub oscillation circuit. BCLK, FCLK, and PCLK are set to divided by 64.

Note 10. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is the sub oscillation circuit. BCLK, FCLK, and PCLK are ICLK divided by 1.

Note 11. Value when the main clock continues oscillating at 12.5 MHz.

[Chip version B with 512 Kbytes or less of flash memory and 144 and 145 pins]

Table 5.18DC Characteristics (17)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

Item						Тур.	Max.	Unit	Test Conditions
Supply current*1	High-speed operating mode	Normal operating mode	No peripheral operation*2	ICLK = 50 MHz	I _{CC}	7.2	_	mA	
			All peripheral operation: Normal* ³	ICLK = 50 MHz		25.9	_		
			All peripheral operation: Max.* ³	ICLK = 50 MHz			45		
		Sleep mode	No peripheral operation	ICLK = 50 MHz		4.3	_		
			All peripheral operation: Normal	ICLK = 50 MHz		13	_		
		All-module clock st	All-module clock stop mode			3.7	_	1	
		Increase during BC	GO operation*4			21	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 100 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 100 MHz. BCLK, FCLK, and PCLK are ICLK divided by 2.

Note 4. This is the increase if data is programmed to or erasing from the ROM or E2 DataFlash during program execution.

[Chip version B with 512 Kbytes or less of flash memory and 144 and 145 pins]

Table 5.19DC Characteristics (18)

Conditions: VCC = AVCC0 = 1.62 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

		Item			Symbol	Тур.	Max.	Unit	Test Conditions
Supply	Middle-speed	Normal	No peripheral	ICLK = 32 MHz*2	I _{CC}	5.3	—	mA	
current*1	operating modes	operating mode	operation	ICLK = 20 MHz*3		4.6			
			All peripheral	ICLK = 32 MHz*4		22.3	_		
			operation: Normal	ICLK = 20 MHz*5		15.6			
			All peripheral	ICLK = 32 MHz*4			35		
			operation: Max.	ICLK = 20 MHz*5			_		
		Sleep mode	No peripheral	ICLK = 32 MHz		3.4	_		
			operation	ICLK = 20 MHz		3.3	_		
			All peripheral	ICLK = 32 MHz		12.8	_		
			operation: Normal	ICLK = 20 MHz		9.8	_		
		All-module clock	stop mode	ICLK = 32 MHz		3	_		
				ICLK = 20 MHz	1	3	—		
		Increase during	Middle-speed ope	rating mode 1A		21	_		
		BGO operation*6	Middle-speed ope	rating mode 1B		19	_		
	Middle-speed	Normal	No peripheral	ICLK = 32 MHz		4.7	_		
operating modes opera 2A and 2B	operating modes	operating mode	operation*2	ICLK = 16 MHz		3.4	_		
			ICLK = 8 MHz		2.7	_			
			All peripheral operation: Normal* ⁴	ICLK = 32 MHz*3		21.7	_		
				ICLK = 16 MHz*3		12.3	_		
		-		ICLK = 8 MHz		7.6	_		
			All peripheral	ICLK = 32 MHz*3		_	34		
			operation: Max.*4	ICLK = 16 MHz*3		_	_		
				ICLK = 8 MHz		_	_		
		Sleep mode	No peripheral	ICLK = 32 MHz		2.9	_		
			operation	ICLK = 16 MHz		2.5	_		
				ICLK = 8 MHz		2.2	_		
			All peripheral	ICLK = 32 MHz		12.3	_		
			operation:	ICLK = 16 MHz		7.8	_		
			Norman	ICLK = 8 MHz		5.6	_		
		All-module clock	stop mode	ICLK = 32 MHz		2.5	_	1	
				ICLK = 16 MHz		2.2	_		
				ICLK = 8 MHz	-	2.1	_		
		Increase during BGO operation*6	Middle-speed ope	rating mode 1A		21	_		
			Middle-speed ope	rating mode 1B		19	—	1	

Figure 5.39 Voltage Dependency in Low-Speed Operating Mode 2 (Reference Data) for Chip Version B with 512 Kbytes or Less of Flash Memory and 144 and 145 Pins

Figure 5.59 BCLK Pin Output Timing

Figure 5.60 EXTAL External Clock Input Timing

Figure 5.61 Main Clock Oscillation Start Timing

Figure 5.62 LOCO Clock Oscillation Start Timing

Table 5.51Bus Timing (3)

Conditions: VCC = AVCC0 = 1.62 to 1.8 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, fBCLK ≤ 12 MHz (BCLK pin output frequency ≤ 6 MHz), $T_a = -40$ to +105°C, $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, $I_{OH} = -0.5$ mA, $I_{OL} = 0.5$ mA, $C_L = 30$ pF When normal output is selected by the drive capacity register

Item	Symbol	Min.	Max.	Unit	Test Conditions
Address delay time	t _{AD}	—	125	ns	Figure 5.76 to
Byte control delay time	t _{BCD}	—	125	ns	Figure 5.79
CS# delay time	t _{CSD}	—	125	ns	
RD# delay time	t _{RSD}	—	125	ns	
Read data setup time	t _{RDS}	85		ns	
Read data hold time	t _{RDH}	0	—	ns	
WR# delay time	t _{WRD}	—	125	ns	
Write data delay time	t _{WDD}	—	125	ns	
Write data hold time	t _{WDH}	0	—	ns	
WAIT# setup time	t _{WTS}	85		ns	Figure 5.80
WAIT# hold time	t _{WTH}	0	—	ns	

Table 5.54 Bus Timing (Multiplexed Bus) (3)

Conditions: VCC = AVCC0 = 1.62 to 1.8 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, fBCLK ≤ 12 MHz (BCLK pin output frequency ≤ 6 MHz), $T_a = -40$ to +105°C, $V_{OH} = VCC \times 0.5$, $V_{OL} = VCC \times 0.5$, $I_{OH} = -0.5$ mA, $I_{OL} = 0.5$ mA, $C_L = 30$ pF When normal output is selected by the drive capacity register

Item	Symbol	Min.	Тур.	Max.	Unit
Address delay time	t _{AD}	—	125	ns	Figure 5.81 and
Byte control delay time	t _{BCD}	—	125	ns	Figure 5.82
CS# delay time	t _{CSD}	—	125	ns	
RD# delay time	t _{RSD}	—	125	ns	
ALE delay time	t _{ALED}	—	125	ns	
Read data setup time	t _{RDS}	85	—	ns	
Read data hold time	t _{RDH}	0	—	ns	
WR# delay time	t _{WRD}	—	125	ns	
Write data delay time	t _{WDD}	—	125	ns	
Write data hold time	t _{WDH}	0	—	ns	
WAIT# setup time	t _{WTS}	85		ns	Figure 5.80
WAIT# hold time	t _{WTH}	0		ns	

Figure 5.84 MTU/TPU Input/Output Timing

Figure 5.85 MTU/TPU Clock Input Timing

Figure 5.86 POE# Input Timing

Figure 5.95 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCLKB Set to Divided by 2)

Table 5.66 Sampling Time

Conditions: VCC = AVCC0 = 1.62 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

	Item	Symbol	Тур.	Unit	Test Conditions
Sampling time	e High-precision channel		0.2 + 0.14 × R0 (KΩ)	μs	Figure 5.100
	Normal-precision channel		0.35 + 0.14 × R0 (KΩ)		

Figure 5.100 Internal Equivalent Circuit of Analog Input Pin

Figure 5.101 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 5.12 V), then 1-LSB width becomes 1.25 mV, and 0 mV, 1.25 mV, 2.5 mV, ... are used as analog input voltages.

If analog input voltage is 10 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

David	Data	Description		
Rev.	Date	Page	Summary	
1.30	Jan 22, 2013	11	Table 1.6 List of Products Chip Version C: D Version (Ta = -40 to +85°C), Table 1.7 List of Products Chip Version C: G Version (Ta = -40 to +105°C), changed	
		12	Figure 1.1 How to Read the Product Part No., Memory Capacity, and Package Type, changed	
		13	Figure 1.2 Block Diagram, changed	
		14 to 17	Table 1.8 Pin Functions, changed	
		18	Figure 1.3 Pin Assignments of the 145-Pin TFLGA (Upper Perspective View), added	
		19	Figure 1.4 Pin Assignments of the 144-Pin I QEP, added	
		25 to 28	Table 1.9 List of Pins and Pin Functions (145-Pin TFLGA), changed	
		29 to 32	Table 1.10 List of Pins and Pin Functions (144-Pin LQFP), changed	
		3. Address	Space	
		48	Figure 3.1 Memory Map in Each Operating Mode, changed	
		4. I/O Regi	sters	
		52 to 81	Table 4.1 List of I/O Registers (Address Order, changed	
		5. Electrical Characteristics		
		83	Table 5.2 DC Characteristics (1),	
			Table 5.3 DC Characteristics (2), changed	
		84 to 122	Table 5.6 DC Characteristics (5) to Table 5.20 DC Characteristics (19), changed	
			Figure 5.1 Voltage Dependency in High-Speed for Chip Version A to	
			Figure 5.34 Temperature Dependency in and 100 to 145 pins, changed	
		158	Table 5.55 Timing of On-Chip Peripheral Modules (1), changed	
		159	[512 Kbytes or less of flash memory and 48 to 100 pins] Table 5 56 Timing of On-Chip Peripheral Modules (2), added	
		160 161	[768 Kbytes/1 Mbyte of flash memory or 145/145 nins]	
		100, 101	Table 5.57 Timing of On-Chip Peripheral Modules (3), added	
		162	Table 5.58 Timing of On-Chip Peripheral Modules (4), changed	
		165	Figure 5.75 MTU/TPU Input/Output Timing.	
			Figure 5.76 MTU/TPU Clock Input Timing, changed	
		166	Figure 5.79 SCK Clock Input Timing, Figure 5.80 SCI Input/Output Timing: Clock Synchronous Mode, changed	
		167	Figure 5.82 RSPI Clock Timing and Simple SPI Clock Timing, changed	
		168	Figure 5.83 RSPI Timing (Master, CPHA = 0), and Simple SPI Timing (Master, CKPH = 1).	
			Figure 5.84 RSPI Timing (Master, CPHA = 0) (Bit Rate: PCLKB Set to Divided by 2), changed	
		169	Figure 5.85 RSPI Timing (Master, CPHA = 1) and Simple SPI Timing (Master, CKPH = 0), Figure 5.86 RSPI Timing (Master, CPHA = 1) (Bit Rate: PCI KB Set to Divided by 2), changed	
		170	Figure 5.87 RSPI Timing (Slave, CPHA = 0) and Simple SPI Timing (Slave, CKPH = 1),	
		172	Figure 5.88 RSPT Timing (Slave, CPHA = 1) and Simple SPT Timing (Slave, CRPH = 0), changed	
		175	Figure 5.01 Illustration of A/D Converter Characteristic Terms	
		175	Absolute accuracy, changed	
		184	Table 5.74 ROM (Flash Memory for Code Storage) Characteristics (1), changed	
		189	Table 5.80 E2 DataFlash Characteristics (1), Table 5.81 E2 DataFlash Characteristics (2), changed	
		Appendix 1	. Package Dimensions	
		195	Figure A 145-Pin TFLGA (PTLG0145KA-A), added	
		196	Figure B 144-Pin LQFP (PLQP0144KA-A), added	
1.40	Feb 19, 2013	1. Overviev	Ν	
		2 to 6	Table 1.1 Outline of Specifications, changed	
		0	Note 2, added	
		9	Table 1.4 List of Products Chip Version B. D Version (Ta = -40 to +65 C), changed Table 4.5 List of Products Chip Version P_{12} C Version (Ta = -40 to +405%), changed	
		10	Note, added	
		11	Table 1.6 List of Products Chip Version C: D Version (Ta = -40 to +85°C): Note 1,	
			Table 1.7 List of Products Chip Version C: G Version (Ta = -40 to +105°C): Note 1 deleted,	
		40	Note added	
		12	FIGURE 1.1 HOW TO KEAD THE PRODUCT PART NO., MEMORY CAPACITY, and Package Type, changed	
		4. I/U Regi	Sicis Table 5.1 Liet of I/O Registers (Address Order), changed	
		5 Electrica	I Characteristics	
			Table 5.4 DC Characteristics (3) changed	
		88	Table 5.8 DC Characteristics (7), changed	
1	1	00	Table 5.6 DO Onaraciensilos (1), changed	

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please valuate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarkst, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milloadr Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrase 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-211-6503-1327 Renesas Electronics (Shangha) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-6325-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shangha) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-2757-1818, Fax: +86-2-1087-7888 Renesas Electronics Towner 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +85-2886-9318, Fax: +852 2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 107, No. 35, Fu Shing North Road, Taipel, Taiwan Tel: +862-24175-9600, Fax: +852 -2887-970 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit f06-102 Hyflux Innovation Centre Singapore 339949 Tel: +65-213-0200, Fax: +65-213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petalling Jaya, Selangor Darul Ehsan, Malaysia Tel: +69-27-55-9399, Fax: +60-32755-5510