

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFLGA
Supplier Device Package	100-TFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f52108cdlj-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RX210 Group

1.2 List of Products

Table 1.3 to Table 1.7 are a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Group	Part No.	Orderable Part No.	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operating Frequency (Max.)	Operating Temperature
RX210	R5F52108ADFP	R5F52108ADFP#V0	PLQP0100KB-A					
	R5F52108ADFN	R5F52108ADFN#V0	PLQP0080KB-A	540 Khutaa				
	R5F52108ADFM	R5F52108ADFM#V0	PLQP0064KB-A	512 Kbytes				
	R5F52108ADLJ	R5F52108ADLJ#U0	PTLG0100JA-A		C 4 Khutaa		50 MHz	
	R5F52107ADFP	R5F52107ADFP#V0	PLQP0100KB-A		64 Kbytes			40.40.19590
	R5F52107ADFN	R5F52107ADFN#V0	PLQP0080KB-A	004141				
	R5F52107ADFM	R5F52107ADFM#V0	PLQP0064KB-A	- 384 Kbytes				
	R5F52107ADLJ	R5F52107ADLJ#U0	PTLG0100JA-A					
	R5F52106ADFP	R5F52106ADFP#V0	PLQP0100KB-A			8 Kbytes		–40 to +85°C
	R5F52106ADFN	R5F52106ADFN#V0	PLQP0080KB-A	OFC Khutaa	00 1/1-1			
	R5F52106ADFM	R5F52106ADFM#V0	PLQP0064KB-A	256 Kbytes	32 Kbytes			
	R5F52106ADLJ	R5F52106ADLJ#U0	PTLG0100JA-A					
	R5F52105ADFP	R5F52105ADFP#V0	PLQP0100KB-A		5 20 Kbytes			
	R5F52105ADFN	R5F52105ADFN#V0	PLQP0080KB-A	100 Khut				
	R5F52105ADFM	R5F52105ADFM#V0	PLQP0064KB-A	128 Kbytes				
	R5F52105ADLJ	R5F52105ADLJ#U0	PTLG0100JA-A	1				

List of Products Chip Version A: D Version (Ta = -40 to +85°C) Table 1.3

Note: • Orderable part numbers are current as of when this manual was published. Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

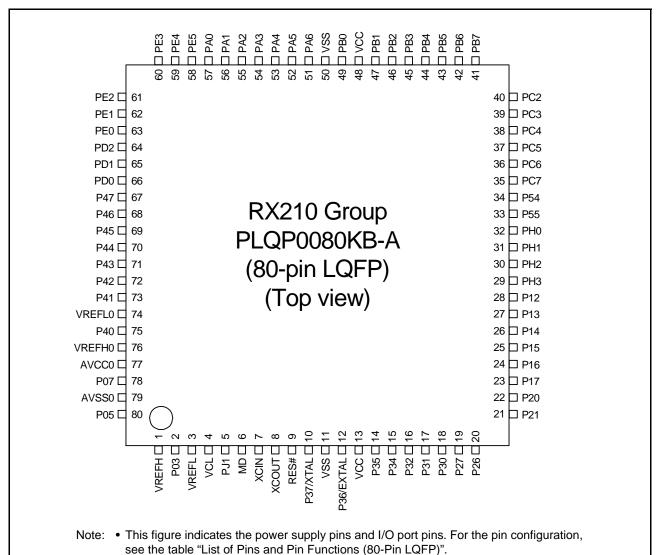
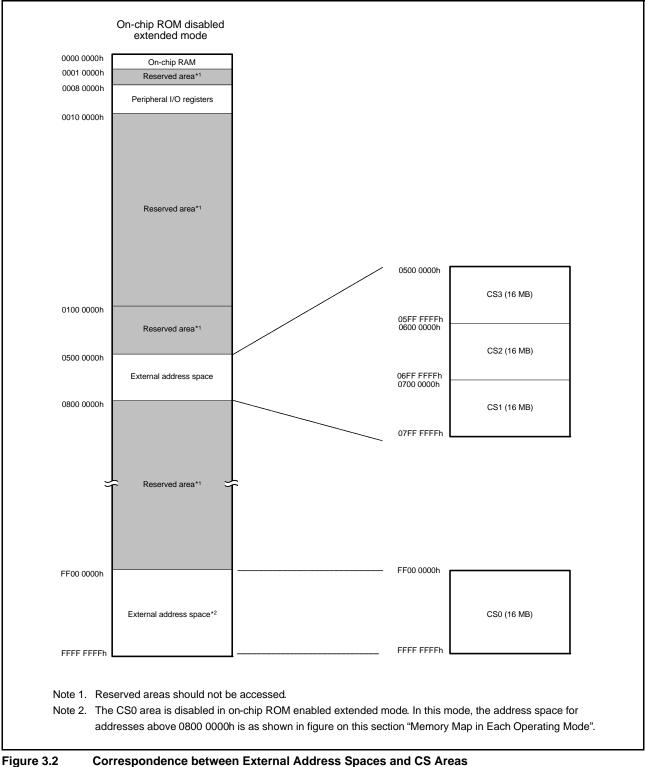


Figure 1.7 Pin Assignments of the 80-Pin LQFP

Pin	Power Supply, Clock,			Timers	Communications	
No.	System Control	I/O Port	External Bus	(MTU, TMR, POE)	(SCIc, SCId, RSPI, RIIC)	Others
122		PD4	D4[A4/D4]	POE3#		IRQ4
123		PD3	D3[A3/D3]	POE8#		IRQ3
124		PD2	D2[A2/D2]	MTIOC4D		IRQ2
125		PD1	D1[A1/D1]	MTIOC4B		IRQ1
126		PD0	D0[A0/D0]			IRQ0
127		P93			CTS7#/RTS7#/SS7#	
128		P92			RXD7/SMISO7/SSCL7	
129		P91			SCK7	
130	VSS					
131		P90			TXD7/SMOSI7/SSDA7	
132	VCC					
133		P47				AN007
134		P46				AN006
135		P45				AN005
136		P44				AN004
137		P43				AN003
138		P42				AN002
139		P41				AN001
140	VREFL0					
141		P40				AN000
142	VREFH0					
143	AVCC0					
144		P07				ADTRG0#

 Table 1.10
 List of Pins and Pin Functions (144-Pin LQFP) (4 / 4)

Note: • Pin names to which -DS is appended are for pins that can be used to trigger release from deep software standby mode.


Note: • Leave the NC pin open.

3.2 External Address Space

The external address space is divided into up to four CS areas (CS0 to CS3), each corresponding to the CSn# signal output from a CSn# (n = 0 to 3) pin.

Figure 3.2 shows the address ranges corresponding to the individual CS areas (CS0 to CS3) in on-chip ROM disabled extended mode.

(In On-Chip ROM Disabled Extended Mode)

Table 4.1 List of I/O Registers (Address Order) (2 / 29)

						Number of Access Cyc
Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	ICLK ≥ ICLK < PCLK PCLK
0008 201Dh	DMAC0	DMA software start register	DMREQ	8	8	2 ICLK
0008 201Eh	DMAC0	DMA status register	DMSTS	8	8	2 ICLK
008 201Fh	DMAC0	DMA activation source flag control register	DMCSL	8	8	2 ICLK
008 2040h	DMAC1	DMA source address register	DMSAR	32	32	2 ICLK
008 2044h	DMAC1	DMA destination address register	DMDAR	32	32	2 ICLK
008 2048h	DMAC1	DMA transfer count register	DMCRA	32	32	2 ICLK
008 204Ch	DMAC1	DMA block transfer count register	DMCRB	16	16	2 ICLK
008 2050h	DMAC1	DMA transfer mode register	DMTMD	16	16	2 ICLK
008 2053h	DMAC1	DMA interrupt setting register	DMINT	8	8	2 ICLK
008 2054h	DMAC1	DMA address mode register	DMAMD	16	16	2 ICLK
008 205Ch	DMAC1	DMA transfer enable register	DMCNT	8	8	2 ICLK
008 205Dh	DMAC1	DMA software start register	DMREQ	8	8	2 ICLK
008 205Eh	DMAC1	DMA status register	DMSTS	8	8	2 ICLK
008 205Fh	DMAC1	DMA activation source flag control register	DMCSL	8	8	2 ICLK
008 2080h	DMAC2	DMA source address register	DMSAR	32	32	2 ICLK
008 2084h	DMAC2	DMA destination address register	DMDAR	32	32	2 ICLK
008 2088h	DMAC2	DMA transfer count register	DMCRA	32	32	2 ICLK
008 208Ch	DMAC2	DMA block transfer count register	DMCRB	16	16	2 ICLK
008 2090h	DMAC2	DMA transfer mode register	DMTMD	16	16	2 ICLK
008 2093h	DMAC2	DMA interrupt setting register	DMINT	8	8	2 ICLK
008 2094h	DMAC2	DMA address mode register	DMAMD	16	16	2 ICLK
008 209Ch	DMAC2	DMA transfer enable register	DMCNT	8	8	2 ICLK
008 209Dh	DMAC2	DMA software start register	DMREQ	8	8	2 IOLK
008 209Eh	DMAC2		DMSTS	8	8	2 IOLK
		DMA status register		8	8	
008 209Fh	DMAC2	DMA activation source flag control register	DMCSL			2 ICLK
008 20C0h	DMAC3	DMA source address register	DMSAR	32	32	2 ICLK
008 20C4h	DMAC3	DMA destination address register	DMDAR	32	32	2 ICLK
008 20C8h	DMAC3	DMA transfer count register	DMCRA	32	32	2 ICLK
008 20CCh	DMAC3	DMA block transfer count register	DMCRB	16	16	2 ICLK
008 20D0h	DMAC3	DMA transfer mode register	DMTMD	16	16	2 ICLK
008 20D3h	DMAC3	DMA interrupt setting register	DMINT	8	8	2 ICLK
008 20D4h	DMAC3	DMA address mode register	DMAMD	16	16	2 ICLK
008 20DCh	DMAC3	DMA transfer enable register	DMCNT	8	8	2 ICLK
008 20DDh	DMAC3	DMA software start register	DMREQ	8	8	2 ICLK
008 20DEh	DMAC3	DMA status register	DMSTS	8	8	2 ICLK
008 20DFh	DMAC3	DMA activation source flag control register	DMCSL	8	8	2 ICLK
008 2200h	DMAC	DMA module activation register	DMAST	8	8	2 ICLK
008 2400h	DTC	DTC control register	DTCCR	8	8	2 ICLK
008 2404h	DTC	DTC vector base register	DTCVBR	32	32	2 ICLK
008 2408h	DTC	DTC address mode register	DTCADMOD	8	8	2 ICLK
008 240Ch	DTC	DTC module start register	DTCST	8	8	2 ICLK
008 240Eh	DTC	DTC status register	DTCSTS	16	16	2 ICLK
008 3002h	BSC	CS0 mode register	CS0MOD	16	16	1, 2 BCLK
008 3004h	BSC	CS0 wait control register 1	CS0WCR1	32	32	1, 2 BCLK
008 3008h	BSC	CS0 wait control register 2	CS0WCR2	32	32	1, 2 BCLK
008 3012h	BSC	CS1 mode register	CS1MOD	16	16	1, 2 BCLK
008 3014h	BSC	CS1 wait control register 1	CS1WCR1	32	32	1, 2 BCLK
008 3018h	BSC	CS1 wait control register 2	CS1WCR2	32	32	1, 2 BCLK
008 3022h	BSC	CS2 mode register	CS2MOD	16	16	1, 2 BCLK
008 3024h	BSC	CS2 wait control register 1	CS2WCR1	32	32	1, 2 BCLK
008 3028h	BSC	CS2 wait control register 2	CS2WCR2	32	32	1, 2 BCLK

Table 4.1 List of I/O Registers (Address Order) (5 / 29)

						Number of Access Cycle		
Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	ICLK ≥ ICLK < PCLK PCLK		
008 70ABh	ICU	Interrupt request register 171	IR171	8	8	2 ICLK		
008 70AEh	ICU	Interrupt request register 174	IR174	8	8	2 ICLK		
008 70AFh	ICU	Interrupt request register 175	IR175	8	8	2 ICLK		
008 70B0h	ICU	Interrupt request register 176	IR176	8	8	2 ICLK		
008 70B1h	ICU	Interrupt request register 177	IR177	8	8	2 ICLK		
008 70B2h	ICU	Interrupt request register 178	IR178	8	8	2 ICLK		
008 70B3h	ICU	Interrupt request register 179	IR179	8	8	2 ICLK		
008 70B4h	ICU	Interrupt request register 180	IR180	8	8	2 ICLK		
008 70B5h	ICU	Interrupt request register 181	IR181	8	8	2 ICLK		
008 70B6h	ICU	Interrupt request register 182	IR182	8	8	2 ICLK		
008 70B7h	ICU	Interrupt request register 183	IR183	8	8	2 ICLK		
008 70B8h	ICU	Interrupt request register 184	IR184	8	8	2 ICLK		
008 70B9h	ICU	Interrupt request register 185	IR185	8	8	2 ICLK		
008 70BAh	ICU	Interrupt request register 186	IR186	8	8	2 ICLK		
008 70BBh	ICU	Interrupt request register 187	IR187	8	8	2 ICLK		
008 70BCh	ICU	Interrupt request register 188	IR188	8	8	2 ICLK		
008 70BDh	ICU	Interrupt request register 189	IR189	8	8	2 ICLK		
008 70BEh	ICU	Interrupt request register 190	IR190	8	8	2 ICLK		
008 70BFh	ICU	Interrupt request register 191	IR191	8	8	2 ICLK		
008 70C0h	ICU	Interrupt request register 192	IR192	8	8	2 ICLK		
008 70C1h	ICU	Interrupt request register 193	IR193	8	8	2 ICLK		
008 70C2h	ICU	Interrupt request register 194	IR194	8	8	2 ICLK		
008 70C3h	ICU	Interrupt request register 195	IR195	8	8	2 ICLK		
008 70C4h	ICU	Interrupt request register 196	IR196	8	8	2 ICLK		
008 70C5h	ICU	Interrupt request register 197	IR197	8	8	2 ICLK		
008 70C6h	ICU	Interrupt request register 197	IR198	8	8	2 ICLK		
008 70C7h	ICU	Interrupt request register 199	IR199	8	8	2 ICLK		
008 70C8h	ICU	Interrupt request register 200	IR200	8	8	2 ICLK		
008 70C9h	ICU	Interrupt request register 200	IR201	8	8	2 ICLK		
008 70C5h	ICU		IR206	8	8	2 ICLK		
008 70CEn	ICU	Interrupt request register 206	IR200			2 ICLK		
		Interrupt request register 207		8	8			
008 70D0h		Interrupt request register 208	IR208 IR209	8	8	2 ICLK		
008 70D1h	ICU	Interrupt request register 209		-	-			
008 70D2h	ICU	Interrupt request register 210	IR210	8	8	2 ICLK		
008 70D3h	ICU	Interrupt request register 211	IR211	8	8	2 ICLK		
008 70D4h	ICU	Interrupt request register 212	IR212	8	8	2 ICLK		
008 70D5h	ICU	Interrupt request register 213	IR213	8	8	2 ICLK		
008 70D6h	ICU	Interrupt request register 214	IR214	8	8	2 ICLK		
008 70D7h	ICU	Interrupt request register 215	IR215	8	8	2 ICLK		
008 70D8h	ICU	Interrupt request register 216	IR216	8	8	2 ICLK		
008 70D9h	ICU	Interrupt request register 217	IR217	8	8	2 ICLK		
008 70DAh	ICU	Interrupt request register 218	IR218	8	8	2 ICLK		
008 70DBh	ICU	Interrupt request register 219	IR219	8	8	2 ICLK		
008 70DCh	ICU	Interrupt request register 220	IR220	8	8	2 ICLK		
008 70DDh	ICU	Interrupt request register 221	IR221	8	8	2 ICLK		
008 70DEh	ICU	Interrupt request register 222	IR222	8	8	2 ICLK		
008 70DFh	ICU	Interrupt request register 223	IR223	8	8	2 ICLK		
008 70E0h	ICU	Interrupt request register 224	IR224	8	8	2 ICLK		
008 70E1h	ICU	Interrupt request register 225	IR225	8	8	2 ICLK		
008 70E2h	ICU	Interrupt request register 226	IR226	8	8	2 ICLK		
008 70E3h	ICU	Interrupt request register 227	IR227	8	8	2 ICLK		

[Chip version A]

Table 5.7DC Characteristics (6)

Conditions: VCC = AVCC0 = 1.62 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, T_a = -40 to +105°C

		Item			Symbol	Тур.	Max.	Unit	Test Conditions
Supply	Middle-speed	Normal	No peripheral	ICLK = 32 MHz*2	I _{CC}	7.0	—	mA	
current*1	operating modes 1A and 1B	operating mode	operation	ICLK = 20 MHz*3		6.0	—		
			All peripheral	ICLK = 32 MHz*4		26	_		
			operation: Normal	ICLK = 20 MHz*5		18.5	—		
			All peripheral	ICLK = 32 MHz*4			40		
			operation: Max.	ICLK = 20 MHz*5			30		
		Sleep mode	No peripheral	ICLK = 32 MHz		5.0	—		
			operation	ICLK = 20 MHz		4.6	—	1	
			All peripheral	ICLK = 32 MHz		15.5	—		
			operation: Normal	ICLK = 20 MHz		12			
		All-module clock	stop mode	ICLK = 32 MHz		4.5	—		
		Increase during		ICLK = 20 MHz		4.3	—		
			Middle-speed ope	rating mode 1A		25	—		
		BGO operation*6	Middle-speed operating mode 1B			20	_		
	Low-speed operating mode	Normal operating mode	No peripheral operation*7	ICLK = 1 MHz		0.68	—		
	1 Sleep mode		All peripheral operation: Normal*8	ICLK = 1 MHz		2.4	_		
			All peripheral operation: Max.*8	ICLK = 1 MHz			7		
		Sleep mode	No peripheral operation	ICLK = 1 MHz		0.6	—		
			All peripheral operation: Normal	ICLK = 1 MHz		2			
		All-module clock	stop mode	I		0.58	_		
	Low-speed operating mode	Normal operating mode	No peripheral operation*9	ICLK = 32 kHz		0.024	-		
	2		All peripheral operation: Normal* ¹⁰	ICLK = 32 kHz		0.05		-	
			All peripheral operation: Max.* ¹⁰	ICLK = 32 kHz		—	3* ¹¹		
		Sleep mode	No peripheral operation	ICLK = 32 kHz		0.02	-		
			All peripheral operation: Normal	ICLK = 32 kHz		0.04	_		
		All-module clock	stop mode	1		0.018	—		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 64 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 3. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 40 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 4. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 64 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.

RENESAS

- Note 5. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 40 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.
- Note 6. This is the increase if data is programmed to or erasing from the ROM or E2 DataFlash during program execution.
- Note 7. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 32 MHz. BCLK, FCLK, and PCLK are set to divided by 64.
- Note 8. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 32 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.
- Note 9. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is the sub oscillation circuit. BCLK, FCLK, and PCLK are set to divided by 64.
- Note 10. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is the sub oscillation circuit. BCLK, FCLK, and PCLK are ICLK divided by 1.
- Note 11. Value when the main clock continues oscillating at 12.5 MHz.

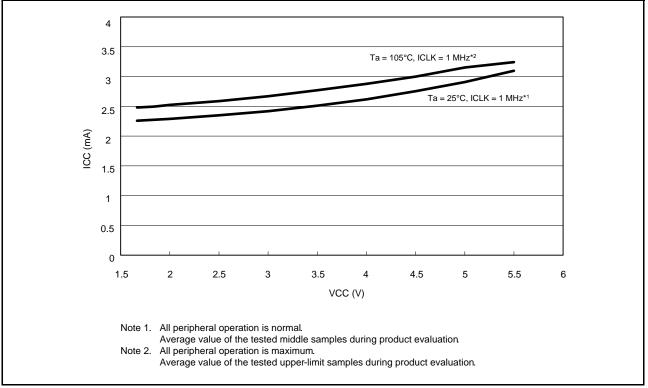


Figure 5.3 Voltage Dependency in Low-Speed Operating Mode 1 (Reference Data) for Chip Version A

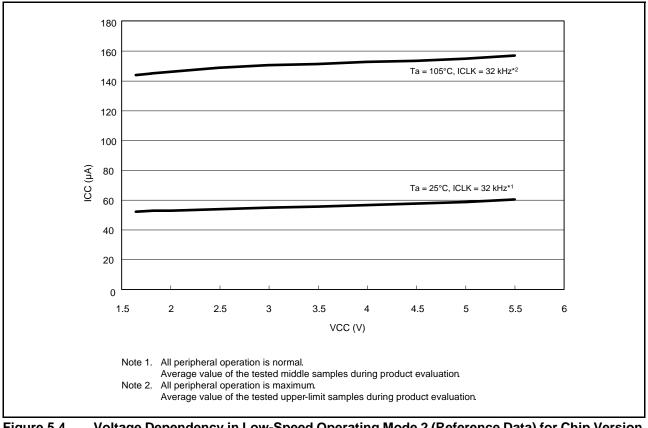


Figure 5.4 Voltage Dependency in Low-Speed Operating Mode 2 (Reference Data) for Chip Version A

[Chip version B with 768 Kbytes/1 Mbyte of flash memory and 100 to 145 pins]

Table 5.15DC Characteristics (14)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

		Item			Symbol	Тур.	Max.	Unit	Test Conditions
Supply current*1	High-speed operating mode	Normal operating mode	No peripheral operation*2	ICLK = 50 MHz	I _{CC}	7.8	_	mA	
			All peripheral operation: Normal* ³	ICLK = 50 MHz		29.8	—		
			All peripheral operation: Max.* ³	ICLK = 50 MHz		_	45		
		Sleep mode	No peripheral operation	ICLK = 50 MHz		4.3	—		
			All peripheral operation: Normal	ICLK = 50 MHz		13.5	—		
	All-module clock stop mode		top mode			3.7	—		
		Increase during BC	GO operation*4			23	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 100 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 100 MHz. BCLK, FCLK, and PCLK are ICLK divided by 2.

Note 4. This is the increase if data is programmed to or erasing from the ROM or E2 DataFlash during program execution.

		Item			Symbol	Тур.	Max.	Unit	Test Conditions
Supply	Low-speed	Normal	No peripheral	ICLK = 8 MHz	I _{CC}	2.1	_	mA	
current*1	operating mode	operating mode	operation*7	ICLK = 4 MHz		1.7	_		
				ICLK = 2 MHz		1.5	_		
			All peripheral	ICLK = 8 MHz		7.3			
			operation: Normal* ⁸	ICLK = 4 MHz		4.5			
				ICLK = 2 MHz		3.1		-	
			All peripheral	ICLK = 8 MHz			12		
			operation: Max.*7	ICLK = 4 MHz					
		Sleep mode		ICLK = 2 MHz					
			No peripheral	ICLK = 8 MHz		1.5	—		
			operation	ICLK = 4 MHz		1.4		ļ	
				ICLK = 2 MHz		1.3			
			All peripheral	ICLK = 8 MHz	4.1	_			
			operation: Normal	ICLK = 4 MHz		3.0 2.3	_	-	
				ICLK = 2 MHz			—		
		All-module clock	stop mode	ICLK = 8 MHz	1.4	1.4	—		
				ICLK = 4 MHz		1.3	—		
				ICLK = 2 MHz		1.2	_		
	Low-speed operating mode	Normal operating mode	No peripheral operation*9	ICLK = 32 kHz		0.022	2 _		
	2		All peripheral operation: Normal* ¹⁰	ICLK = 32 kHz		0.06	_	-	
			All peripheral operation: Max.* ¹⁰	ICLK = 32 kHz			3*11		
		Sleep mode	No peripheral operation	ICLK = 32 kHz		0.017			
			All peripheral operation: Normal	ICLK = 32 kHz		0.036			
		All-module clock	stop mode			0.017	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 64 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

- Note 3. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 40 MHz. BCLK, FCLK, and PCLK are set to divided by 64.
- Note 4. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL and the VCO oscillation frequency is 64 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.
- Note 5. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 40 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.

Note 6. This is the increase if data is programmed to or erasing from the ROM or E2 DataFlash during program execution.

Note 7. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 32 MHz. BCLK, FCLK, and PCLK are set to divided by 64.

Note 8. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is HOCO and the oscillation frequency is 32 MHz. BCLK, FCLK, and PCLK are ICLK divided by 1.

Note 9. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is the sub oscillation circuit. BCLK, FCLK, and PCLK are set to divided by 64.

Note 10. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is the sub oscillation circuit. BCLK, FCLK, and PCLK are ICLK divided by 1.

Note 11. Value when the main clock continues oscillating at 12.5 MHz.

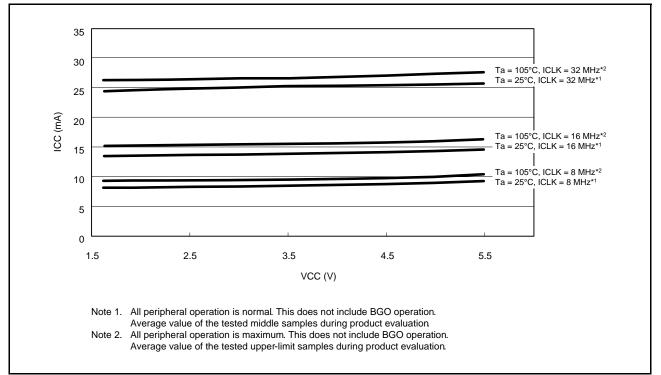


Figure 5.28 Voltage Dependency in Middle-Speed Operating Modes 2A and 2B (Reference Data) for Chip Version B with 768 Kbytes/1 Mbyte of Flash Memory and 100 to 145 Pins

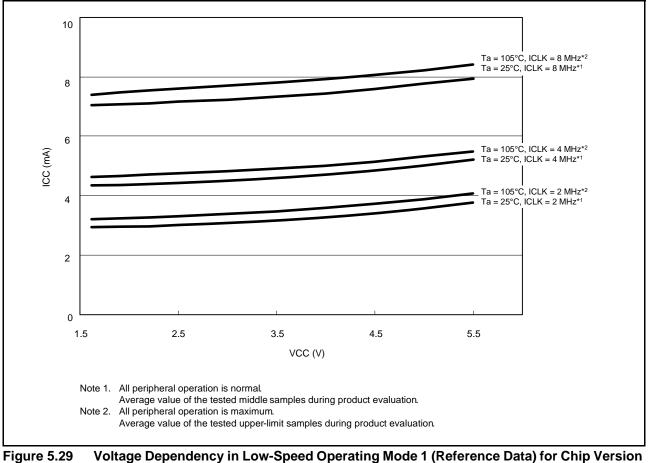


Figure 5.29 Voltage Dependency in Low-Speed Operating Mode 1 (Reference Data) for Chip Version B with 768 Kbytes/1 Mbyte of Flash Memory and 100 to 145 Pins

RENESAS

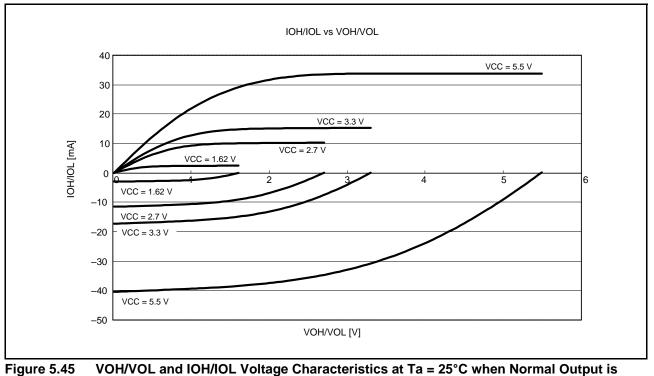
[Chip versions B and C]

 Table 5.31
 Output Values of Voltage (4)

Conditions: VCC = AVCC0 = 2.7 to 4.0 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

	Item				Max.	Unit	Test Conditions
Output low	All output pins Normal output mode		V _{OL}	—	0.5	V	I _{OL} = 1.0 mA
(other than RIIC)		High-drive output mode		—	0.5		I _{OL} = 2.0 mA
	RIIC pins		_	0.4		I _{OL} = 3.0 mA	
				_	0.6	1	I _{OL} = 6.0 mA
Output high	All output pins	Normal output mode	V _{OH}	VCC - 0.5	_	V	I _{OH} = -1.0 mA
		High-drive output mode		VCC - 0.5	—		I _{OH} = -2.0 mA

[Chip versions B and C]


Table 5.32Output Values of Voltage (5)

Conditions: VCC = AVCC0 = 4.0 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

	Item	Symbol	Min.	Max.	Unit	Test Conditions	
Output low	Output low All output pins (other than RIIC) Normal output mode High-drive output mode		V _{OL}	_	0.8	V	I _{OL} = 2.0 mA
				-	0.8		I _{OL} = 4.0 mA
RIIC pins			1	_	0.4		I _{OL} = 3.0 mA
				_	0.6		I _{OL} = 6.0 mA
Output high	All output pins	Normal output mode	V _{OH}	VCC - 0.8	_	V	I _{OH} = -2.0 mA
		High-drive output mode	-	VCC - 0.8			I _{OH} = -4.0 mA

5.2.1 Standard I/O Pin Output Characteristics (1)

Figure 5.45 to Figure 5.49 show the characteristics when normal output is selected by the drive capacity control register.

Selected (Reference Data)

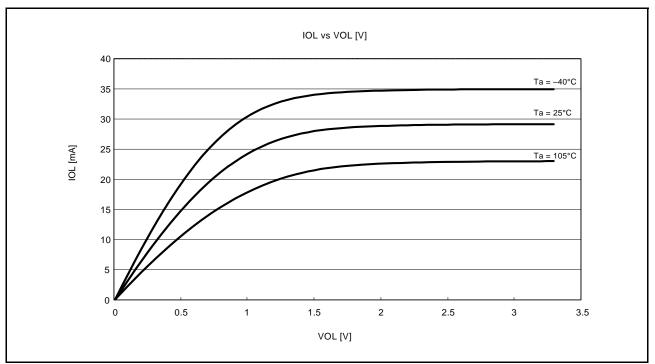


Figure 5.57 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data)

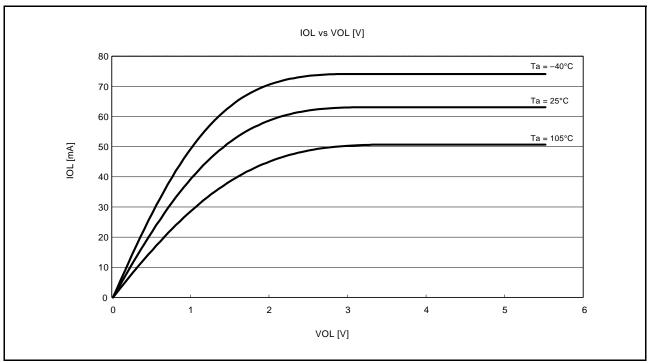


Figure 5.58 VOL and IOL Temperature Characteristics of RIIC Output Pin at VCC = 5.5 V (Reference Data)

				Symbol	Min.	Max.	Unit*1	Test Condition	
יו	Data input setup time	Master	2.7 V ≤ VCC ≤ 5.5 V	t _{SU}	10	_	ns	C = 30pF	
			1.8 V ≤ VCC < 2.7 V		25	—		Figure 5.92 to Figure 5.97	
			1.62 V ≤ VCC < 1.8 V		30	—		ge.e.e.	
		Slave			25 – t _{Pcyc}	—			
	Data input hold time	Master	PCLKB set to a division ratio other than divided by 2	t _H	t _{Pcyc}	—	ns		
			PCLKB set to divided by 2*2	t _{HF}	0	_			
		Slave		t _H	20 + 2 × t _{Pcyc}	—			
	SSL setup time	Master		t _{LEAD}	1	8	t _{SPcyc}		
		Slave			4	—	t _{Pcyc}		
ĺ	SSL hold time	Master		t _{LAG}	1	8	t _{SPcyc}		
		Slave			4	—	t _{Pcyc}		
ĺ	Data output delay	Master	2.7 V ≤ VCC ≤ 5.5 V	t _{OD}	_	14	ns		
	time -		1.8 V ≤ VCC < 2.7 V		_	20			
			1.62 V ≤ VCC < 1.8 V		_	25	l	1	
		Slave	2.7 V ≤ VCC ≤ 5.5 V		_	3 × t _{Pcyc} + 65			
			1.8 V ≤ VCC < 2.7 V		_	3 × tPcyc +85			
			1.62 V ≤ VCC < 1.8 V		_	3 × tPcyc +95			
ĺ	Data output hold time	Master		t _{OH}	0	—	ns		
		Slave			0	—			
	Successive transmission delay	Master		t _{TD}	t_{SPcyc} + 2 × t_{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns		
	time	Slave			4 × t _{Pcyc}				
	MOSI and MISO rise/	Output	2.7 V ≤ VCC ≤ 5.5 V	t _{Dr,} t _{Df}	_	10	ns		
	fall time		1.8 V ≤ VCC < 2.7 V		_	15			
			1.62 V ≤ VCC < 1.8 V		_	20			
		Input			—	1	μs		
	SSL rise/fall time	Output	2.7 V ≤ VCC ≤ 5.5 V	t _{SSLr,}	_	10	ns		
			1.8 V ≤ VCC < 2.7 V	t _{SSLf}	—	15			
			1.62 V ≤ VCC < 1.8 V		_	20			
		Input			_	1	μs		
	Slave access time		2.7 V ≤ VCC ≤ 5.5 V	t _{SA}	_	6	t _{Pcyc}	C = 30pF	
			1.8 V ≤ VCC < 2.7 V		_	7		Figure 5.96 ar Figure 5.97	
			1.62 V ≤ VCC < 1.8 V		_	7			
	Slave output release ti	me	2.7 V ≤ VCC ≤ 5.5 V	t _{REL}	_	5	t _{Pcyc}		
			1.8 V ≤ VCC < 2.7 V		_	6			
			1.62 V ≤ VCC < 1.8 V		_	6			

Note 1. t_{Pcyc}: PCLK cycle Note 2. Divided by 2 can be set only in packages with 768 Kbytes/1 Mbyte of flash memory or 144/145 pins.

Table 5.66 Sampling Time

Conditions: VCC = AVCC0 = 1.62 to 5.5 V, VSS = AVSS0 = VREFL = VREFL0 = 0 V, $T_a = -40$ to +105°C

	Item	Symbol	Тур.	Unit	Test Conditions
Sampling time	mpling time High-precision channel		0.2 + 0.14 × R0 (KΩ)	μs	Figure 5.100
	Normal-precision channel		0.35 + 0.14 × R0 (KΩ)		

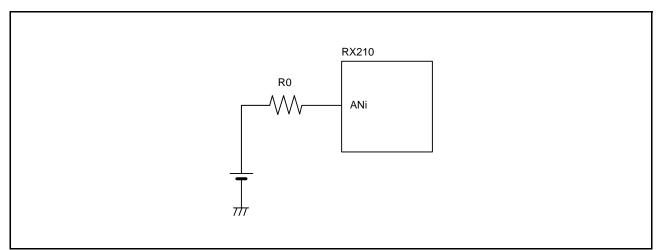


Figure 5.100 Internal Equivalent Circuit of Analog Input Pin

[Chip version B]

Table 5.79 ROM (Flash Memory for Code Storage) Characteristics (6) : middle-speed operating modes 1B and 2B

Conditions: VCC = AVCC0 = 1.62 to 3.6 V, VREFH = VREFH0 = AVCC0, VSS = AVSS0 = VREFL = VREFL0 = 0 V Temperature range for the programming/erasure operation: $T_a = -40$ to +105°C

Item		Symbol	FCLK = 4 MHz				Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	2 bytes	t _{P2}	—	0.25	5.0	—	0.21	2.8	ms
when N _{PEC} ≤ 100 times	8 bytes	t _{P8}	_	0.25	5.3	—	0.21	3.0	
	128 bytes	t _{P128}	_	0.92	14.0	—	0.65	8.3	
Programming time when N _{PEC} > 100 times	2 bytes	t _{P2}	—	0.31	6.2	—	0.26	3.5	ms
	8 bytes	t _{P8}	—	0.31	6.6	—	0.26	3.7	
	128 bytes	t _{P128}	_	1.09	17.5	—	0.77	10.0	
Erasure time when N _{PEC} ≤ 100 times	2 Kbytes	t _{E2K}	—	21.0	113.7	—	18.5	46	ms
Erasure time when N _{PEC} > 100 times	2 Kbytes	t _{E2K}	_	25.6	220.6	—	22.5	90 (1000 times ≥ N _{PEC} > 100 times), 98 (10000 times ≥ N _{PEC} > 1000 times)	ms
Suspend delay time during programming (in programming/erasure priority mode)		t _{SPD}	—		1.7	—		1.6	ms
First suspend delay time during programming (in suspend priority mode)		t _{SPSD1}	—	_	220	—	_	120	μs
Second suspend delay time during programming (in suspend priority mode)		t _{SPSD2}	—	_	1.7	—		1.6	ms
Suspend delay time during erasing (in programming/erasure priority mode)		t _{SED}	—	_	1.7	—		1.6	ms
First suspend delay time during erasing (in suspend priority mode)		t _{SESD1}	—		220	_		120	μs
Second suspend delay time during erasing (in suspend priority mode)		t _{SESD2}	—	_	1.7	—		1.6	ms
FCU reset time		t _{FCUR}	20 µs or longer and FCLK × 6 or greater	_	—	20 µs or longer and FCLK × 6 or greater	_	_	μs

Note 1. The operating frequency is 20 MHz (max.) when the voltage is in the range from 1.62 V to less than 1.8 V.

[Chip version B]

Table 5.84

E2 DataFlash Characteristics (5) : high-speed operating mode, middle-speed operating modes 1A and 2A

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH = VREFH0 = AVCC0, VSS = AVSS0 = VREFL = VREFL0 = 0 V Temperature range for the programming/erasure operation: $T_a = -40$ to +105°C

Item		FCLK = 4 MHz				FCLK = 32 MHz			Linit
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	2 bytes	t _{DP2}	_	0.19	4.4	—	0.13	2.0	ms
when $N_{DPEC} \le 100$ times	8 bytes	t _{DP8}	_	0.24	5.1	—	0.13	2.2	
Programming time	2 bytes	t _{DP2}	_	0.25	6.4	—	0.17	3.0	ms
when $N_{DPEC} > 100$ times	8 bytes	t _{DP8}	_	0.32	7.5	—	0.18	3.2	
Erasure time when N _{DPEC} ≤ 100 times	128 bytes	t _{DE128}	—	3.3	27.1	—	2.5	8	ms
Erasure time when N _{DPEC} > 100 times	128 bytes	t _{DE128}	—	4.0	45.1	—	3.0	12	ms
Blank check time	2 bytes	t _{DBC2}	_	—	98	—	—	35	μs
	2 Kbytes	t _{DBC2K}	_	—	16	—	—	2.5	ms
Suspend delay time during programming/erasure prio	t _{DSPD}	_	_	0.9	—	_	0.8	ms	
First suspend delay time during programming (in suspend priority mode)		t _{DSPSD1}	_	-	220	—	—	120	μs
Second suspend delay time during programming (in suspend priority mode)		t _{DSPSD2}	—	_	0.9	—	—	0.8	ms
Suspend delay time during en (in programming/erasure prio	t _{DSED}	_	—	0.9	_	—	0.8	ms	
First suspend delay time duri (in suspend priority mode)	t _{DSESD1}	_	_	220	—	-	120	μs	
Second suspend delay time of (in suspend priority mode)	cond suspend delay time during erasing suspend priority mode)			-	0.9	—	-	0.8	ms

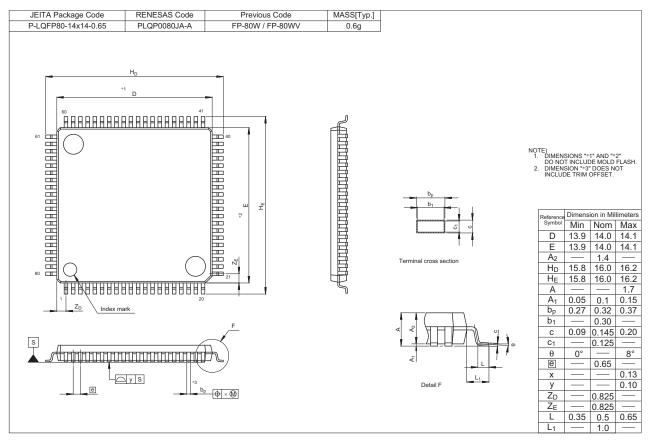


Figure I 80-Pin LQFP (PLQP0080JA-A)

REVISION HISTORY

RX210 Group Datasheet

Boy	Data	Description						
Rev.	Date	Page	Summary					
0.50	Apr.15, 2011	_	First edition, issued					
0.90	Aug.10, 2011							
		4	Table 1.1 Outline of Specifications: Power supply voltage/ Operating frequency, changed					
		17, 21, 24,	Table 1.5 to Table 1.8 List of Pins and Pin Functions (Pin name: LVCMP2 \rightarrow CMPA2), changed					
		26 2. CPU						
		2. CPU 51	Table 2.14 Instructions that are Converted into Multiple Micro-Operations (multiplier: $32 \times 32 \rightarrow 64$					
		51	bits), (memory source operand), added					
		4. I/O Regis						
		63	Table 5.1 List of I/O Registers (Address Order), SOSCWTCR, LOCOWTCR2, HOCOWTCR2,					
			added					
		114 to 116	Table 5.1 List of I/O Registers (Address Order): Interrupt source priority register, changed					
		5. Electrical	Characteristics					
		85 to 137	Newly added					
1.20	I.20 Nov 28, 2012		Information on chip versions A, B, and C, corresponding descriptions and notes, added 48-pin products added, PLQP0080JA-A 14 \times 14 mm, 0.65-mm pitch, package deleted					
		Features						
		1	Description changed					
		1. Overviev	N					
		2	1.1 Outline of Specifications: Description, changed					
		2 to 5	Table 1.1 Outline of Specifications, changed					
		6	Note 1, added Table 1.2 Comparison of Functions for Different Packages, changed					
		6 7	Table 1.3 List of Products, changed					
		7 8 to 10	Tables 1.4 to 1.7 List of Products, added					
		11	Figure 1.1 How to Read the Product Part No., Memory Capacity, and Package Type: G item added					
		12	Figure 1.2 Block Diagram, changed					
		13	Table 1.8 Pin Functions: Power supply and On-chip emulator, changed					
		13	Table 1.8 Pin Functions: Multiplexed bus, added					
		18	Figure 1.4 Pin Assignments of the 100-Pin LQFP, changed					
		21	Figure 1.7 Pin Assignments of the 48-Pin LQFP, added					
		23	Table 1.9 List of Pins and Pin Functions (100-Pin TFLGA): Pin No. G4, changed					
		25	Table 1.10 List of Pins and Pin Functions (100-Pin LQFP): Pin No. 21, changed					
		28	Table 1.11 List of Pins and Pin Functions (80-Pin LQFP): Pin No. 19, changed					
		30	Table 1.12 List of Pins and Pin Functions (64-Pin LQFP): Pin No. 15, changed					
		3. Address						
		37	Figure 3.1 Memory Map in Each Operating Mode: Note 2, changed					
		4. I/O Regi						
		41 to 63	Table 4.1 List of I/O Registers (Address Order): Number of Access, changed					
			Voltage regulator control register, Timeout internal counter L, Timeout internal counter U, and PLL power control register, added					
		63	Table 4.1 List of I/O Registers (Address Order): Notes 1 and 2, added					
			Table 4.1 List of I/O Registers (Address Order): LOCO Wait Control Register 2 (LOCOWTCR2),					
			deleted					
		5. Electrica	I Characteristics					
		64 to 152	Description added					
1.30	Jan 22, 2013	Features						
		1	On-chip flash memory for code, no wait states, On-chip SRAM, no wait states, Real-time clock,					
			Up to 15 communications channels, Up to 20 extended-function timers, changed					
		1.Overview						
		2 to 6	Table 1.1 Outline of Specifications, changed					
		7	Table 1.2 Comparison of Functions for Different Packages, changed					
		9	Table 1.4 List of Products Chip Version B: D Version (Ta = -40 to +85°C), changed					
		10	Table 1.5 List of Products Chip Version B: G Version (Ta = -40 to $+105$ °C), changed					

