
STMicroelectronics - UPSD3312D-40T6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor 8032

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals LVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 80KB (80K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 52-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/upsd3312d-40t6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/upsd3312d-40t6-4429326
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

UPSD33xx Contents

Doc ID 9685 Rev 7 3/272

7.7.4 Register bank select flags (RS1, RS0) . 38

7.7.5 Overflow flag (OV) . 39

7.7.6 Parity flag (P) . 39

8 Special function registers (SFR) . 40

9 8032 addressing modes . 46

9.1 Register addressing . 46

9.2 Direct addressing . 46

9.3 Register indirect addressing . 46

9.4 Immediate addressing . 47

9.5 External direct addressing . 47

9.6 External indirect addressing . 47

9.7 Indexed addressing . 48

9.8 Relative addressing . 48

9.9 Absolute addressing . 48

9.10 Long addressing . 49

9.11 Bit addressing . 49

10 UPSD33xx instruction set summary . 50

11 Dual data pointers . 56

11.1 Data Pointer Control register, DPTC (85h) . 56

11.2 Data Pointer Mode register, DPTM (86h) . 57

11.2.1 Firmware example . 57

12 Debug unit . 59

13 Interrupt system . 61

13.1 Individual interrupt sources . 64

13.1.1 External interrupts Int0 and Int1 . 64

13.1.2 Timer 0 and 1 overflow interrupt . 64

13.1.3 Timer 2 overflow interrupt . 64

13.1.4 UART0 and UART1 interrupt . 64

13.1.5 SPI interrupt . 64

13.1.6 I2C interrupt . 64

UPSD33xx List of tables

Doc ID 9685 Rev 7 11/272

List of tables

Table 1. Device summary . 1
Table 2. Pin definitions . 22
Table 3. Port type and voltage source combinations . 27
Table 4. Register bank select addresses . 39
Table 5. SFR memory map with direct address and reset value . 41
Table 6. Arithmetic instruction set. 50
Table 7. Logical instruction set . 51
Table 8. Data transfer instruction set . 52
Table 9. Boolean variable manipulation instruction set . 53
Table 10. Program branching instruction set . 54
Table 11. Miscellaneous instruction set . 55
Table 12. Notes on instruction set and addressing modes. 55
Table 13. DPTC: Data Pointer Control register (SFR 85h, reset value 00h) 56
Table 14. DPTC register bit definition. 56
Table 15. DPTM: Data Pointer Mode register (SFR 86h, reset value 00h). 57
Table 16. DPTM register bit definition . 57
Table 17. 8051 assembly code example . 58
Table 18. Interrupt summary. 62
Table 19. IE: Interrupt Enable register (SFR A8h, reset value 00h) . 65
Table 20. IE register bit definition . 65
Table 21. IEA: Interrupt Enable Addition register (SFR A7h, reset value 00h) 65
Table 22. IEA register bit definition. 65
Table 23. IP: Interrupt Priority register (SFR B8h, reset value 00h) . 66
Table 24. IP register bit definition . 66
Table 25. IPA: Interrupt Priority Addition register (SFR B7h, reset value 00h) 66
Table 26. IPA register bit definition. 66
Table 27. CCON0: Clock Control register (SFR F9h, reset value 10h) . 69
Table 28. CCON0 register bit definition . 69
Table 29. MCU module port and peripheral status during reduced power modes 72
Table 30. State of 8032 MCU bus Signals during Power-down and Idle modes 72
Table 31. PCON: Power Control register (SFR 87h, reset value 00h) . 72
Table 32. PCON register bit definition . 72
Table 33. P1: I/O Port 1 register (SFR 90h, reset value FFh) . 80
Table 34. P1 register bit definition . 80
Table 35. P3: I/O Port 3 register (SFR B0h, reset value FFh) . 81
Table 36. P3 register bit definition . 81
Table 37. P4: I/O Port 4 register (SFR C0h, reset value FFh) . 81
Table 38. P4 register bit definition . 81
Table 39. P3SFS: Port 3 Special Function Select register (SFR 91h, reset value 00h) 83
Table 40. P3SFS register bit definition . 83
Table 41. P1SFS0: Port 1 Special Function Select 0 register (SFR 8Eh, reset value 00h) 83
Table 42. P1SFS1: Port 1 Special Function Select 1 register (SFR 8Fh, reset value 00h) 83
Table 43. P1SFS0 and P1SFS1 details . 83
Table 44. P4SFS0: Port 4 Special Function Select 0 register (SFR 92h, reset value 00h) 84
Table 45. P4SFS1: Port 4 Special Function Select 1 register (SFR 93h, reset value 00h) 84
Table 46. P4SFS0 and P4SFS1 details . 84
Table 47. BUSCON: Bus Control register (SFR 9Dh, reset value EBh) . 87
Table 48. BUSCON register bit definition . 87

UPSD33xx 8032 MCU registers

Doc ID 9685 Rev 7 37/272

7 8032 MCU registers

The UPSD33xx has the following 8032 MCU core registers, also shown in Figure 10.

Figure 10. 8032 MCU registers

7.1 Stack Pointer (SP)
The SP is an 8-bit register which holds the current location of the top of the stack. It is
incremented before a value is pushed onto the stack, and decremented after a value is
popped off the stack. The SP is initialized to 07h after reset. This causes the stack to begin
at location 08h (top of stack). To avoid overlapping conflicts, the user must initialize the top
of the stack to 20h if all four banks of registers R0 - R7 are used, and the user must initialize
the top of stack to 30h if all of the 8032 bit memory locations are used.

7.2 Data Pointer (DPTR)
DPTR is a 16-bit register consisting of two 8-bit registers, DPL and DPH. The DPTR register
is used as a base register to create an address for indirect jumps, table look-up operations,
and for external data transfers (XDATA). When not used for addressing, the DPTR register
can be used as a general purpose 16-bit data register.

Very frequently, the DPTR register is used to access XDATA using the External Direct
addressing mode. The UPSD33xx has a special set of SFR registers (DPTC, DPTM) to
control a secondary DPTR register to speed memory-to-memory XDATA transfers. Having
dual DPTR registers allows rapid switching between source and destination addresses (see
details in Section 11: Dual data pointers on page 56).

7.3 Program Counter (PC)
The PC is a 16-bit register consisting of two 8-bit registers, PCL and PCH. This counter
indicates the address of the next instruction in program memory to be fetched and executed.
A reset forces the PC to location 0000h, which is where the reset jump vector is stored.

AI06636

Accumulator

B Register

Stack Pointer

Program Counter

Program Status Word
General Purpose
Register (Bank0-3)
Data Pointer Register

PCH

DPTR(DPH)

A

B

SP

PCL

PSW

R0-R7

DPTR(DPL)

Special function registers (SFR) UPSD33xx

40/272 Doc ID 9685 Rev 7

8 Special function registers (SFR)

A group of registers designated as Special Function register (SFR) is shown in Table 5 on
page 41. SFRs control the operating modes of the MCU core and also control the peripheral
interfaces and I/O pins on the MCU module. The SFRs can be accessed only by using the
Direct Addressing method within the address range from 80h to FFh of internal 8032 SRAM.
Sixteen addresses in SFR address space are both byte- and bit-addressable. The bit-
addressable SFRs are noted in Table 5.

86 of a possible 128 SFR addresses are occupied. The remaining unoccupied SFR
addresses (designated as “RESERVED” in Table 5) should not be written. Reading
unoccupied locations will return an undefined value.

Note: There is a separate set of control registers for the PSD module, designated as csiop, and
they are described in the Section 27: PSD module on page 164. The I/O pins, PLD, and
other functions on the PSD module are NOT controlled by SFRs.

SFRs are categorized as follows:

● MCU core registers: IP, A, B, PSW, SP, DPTL, DPTH, DPTC, DPTM

● MCU module I/O port registers: P1, P3, P4, P1SFS0, P1SFS1, P3SFS, P4SFS0,
P4SFS1

● Standard 8032 timer registers: TCON, TMOD, T2CON, TH0, TH1, TH2, TL0, TL1, TL2,
RCAP2L, RCAP2H

● Standard serial interfaces (UART): SCON0, SBUF0, SCON1, SBUF1

● Power, clock, and bus timing registers: PCON, CCON0, BUSCON

● Hardware watchdog timer registers: WDKEY, WDRST

● Interrupt system registers: IP, IPA, IE, IEA

● Program counter array (PCA) control registers: PCACL0, PCACH0, PCACON0,
PCASTA, PCACL1, PCACH1, PCACON1, CCON2, CCON3

● PCA capture/compare and PWM registers

CAPCOML0, CAPCOMH0, TCMMODE0, CAPCOML1, CAPCOMH1, TCMMODE2,
CAPCOML2, CAPCOMH2, TCMMODE2, CAPCOML3, CAPCOMH3, TCMMODE3,
CAPCOML4, CAPCOMH4, TCMMODE4, CAPCOML5, CAPCOMH5, TCMMODE5,
PWMF0, PMWF1

● SPI interface registers: SPICLKD, SPISTAT, SPITDR, SPIRDR, SPICON0, SPICON1

● I2C interface registers: S1SETUP, S1CON, S1STA, S1DAT, S1ADR

● Analog-to-digital converter registers: ACON, ADCPS, ADAT0, ADAT1

● IrDA interface register: IRDACON

8032 addressing modes UPSD33xx

48/272 Doc ID 9685 Rev 7

9.7 Indexed addressing
This mode is used for the MOVC instruction which allows the 8032 to read a constant from
program memory (not data memory). MOVC is often used to read look-up tables that are
embedded in program memory. The final address produced by this mode is the result of
adding either the 16-bit PC or DPTR value to the contents of the accumulator. The value in
the accumulator is referred to as an index. The data fetched from the final location in
program memory is stored into the accumulator, overwriting the index value that was
previously stored there. For example:

9.8 Relative addressing
This mode will add the two’s-compliment number stored in the second byte of the instruction
to the program counter for short jumps within +128 or –127 addresses relative to the
program counter. This is commonly used for looping and is very efficient since no additional
bus cycle is needed to fetch the jump destination address. For example:

9.9 Absolute addressing
This mode will append the 5 high-order bits of the address of the next instruction to the 11
low-order bits of an ACALL or AJUMP instruction to produce a 16-bit jump address. The
jump will be within the same 2 Kbyte page of program memory as the first byte of the
following instruction. For example:

MOVX @R0,A ; Move into the accumulator the

; XDATA that is pointed to by

; the address contained in R0.

MOVC A, @A+DPTR ; Move code byte relative to

; DPTR into accumulator

MOVC A, @A+PC ; Move code byte relative to PC
; into accumulator

SJMP 34h ; Jump 34h bytes ahead (in program

; memory) of the address at which
; the SJMP instruction is stored. If

; SJMP is at 1000h, program

; execution jumps to 1034h.

AJMP 0500h ; If next instruction is located at

; address 4000h, the resulting jump

; will be made to 4500h.

Interrupt system UPSD33xx

62/272 Doc ID 9685 Rev 7

interrupt flag is not cleared after servicing the interrupt, an unwanted interrupt will occur
upon exiting the ISR.

After the interrupt is serviced, the last instruction executed by the ISR is RETI. The RETI
informs the MCU that the ISR is no longer in progress and the MCU pops the top two bytes
from the stack and loads them into the PC. Execution of the interrupted program continues
where it left off.

Note: An ISR must end with a RETI instruction, not a RET. An RET will not inform the interrupt
control system that the ISR is complete, leaving the MCU to think the ISR is still in progress,
making future interrupts impossible.

Table 18. Interrupt summary

Interrupt
source

Polling
priority

Vector
addr.

Flag bit name

(SFR.bit position)

1 = Intr pending

0 = No interrupt

Flag bit auto-
cleared

by hardware

Enable bit name

(SFR.bit position)

1 = Intr enabled

0 = Intr disabled

Priority bit name

(SFR.bit position)

1= high priority

0 = low priority

Reserved 0 (high) 0063h – – – –

External
Interrupt INT0

1 0003h IE0 (TCON.1)
Edge - Yes

Level - No
EX0 (IE.0) PX0 (IP.0)

Timer 0
Overflow

2 000Bh TF0 (TCON.5) Yes ET0 (IE.1) PT0 (IP.1)

External
Interrupt INT1

3 0013h IE1 (TCON.3
Edge - Yes

Level - No
EX1 (IE.2) PX1 (IP.2)

Timer 1
Overflow

4 001Bh TF1 (TCON.7) Yes ET1 (IE.3) PT1 (IP.3)

UART0 5 0023h
RI (SCON0.0)
TI (SCON0.1)

No ES0 (IE.4) PS0 (IP.4)

Timer 2
Overflow

or TX2 Pin
6 002Bh

TF2 (T2CON.7)

EXF2 (T2CON.6)
No ET2 (IE.5) PT2 (IP.5)

SPI 7 0053h
TEISF, RORISF,

TISF, RISF

(SPISTAT[3:0])
Yes ESPI (IEA.6) PSPI (IPA.6)

Reserved 8 0033h – – – –

I2C 9 0043h INTR (S1STA.5) Yes EI2C (IEA.1) PI2C (IPA.1)

ADC 10 003Bh AINTF (ACON.7) No EADC (IEA.7) PADC (IPA.7)

PCA 11 005Bh
OFVx, INTFx

(PCASTA[0:7])
No EPCA (IEA.5) PPCA (IPA.5)

UART1 12 (low) 004Bh
RI (SCON1.0)

TI (SCON1.1)
No ES1 (IEA.4) PS1 (IPA.4)

UPSD33xx Power saving modes

Doc ID 9685 Rev 7 73/272

2 TCLK1 R,W
Transmit Clock Flag (UART1)
(See Table 58 on page 100 for flag
description)

1 PD R,W
Activate Power-down mode
0 = Not in Power-down mode

1 = Enter Power-down mode

0 IDL R,W

Activate Idle mode
0 = Not in Idle mode

1 = Enter Idle mode

Table 32. PCON register bit definition (continued)

Bit Symbol R/W Function

UPSD33xx Supervisory functions

Doc ID 9685 Rev 7 91/272

To prevent the WDT from timing out and generating a reset, firmware must repeatedly write
some value to WDRST before the count reaches FFFFFh. Whenever WDRST is written, the
upper 8 bits of the 24-bit counter are loaded with the written value, and the lower 16 bits of
the counter are cleared to 0000h.

The WDT timeout period can be adjusted by writing a value other that 00h to WDRST. For
example, if WDRST is written with 04h, then the WDT will start counting 040000h, 040001h,
040002h, and so on for each MCU machine cycle. In this example, the WDT timeout period
is shorter than if WDRST was written with 00h, because the WDT is an up-counter. A value
for WDRST should never be written that results in a WDT timeout period shorter than the
time required to complete the longest code task in the application, else unwanted WDT
overflows will occur.

Figure 20. Watchdog counter

The formula to determine WDT timeout period is:

WDTPERIOD = tMACH_CYC x NOVERFLOW

NOVERFLOW is the number of WDT up-counts required to reach FFFFFFh. This is
determined by the value written to the SFR, WDRST.

tMACH_CYC is the average duration of one MCU machine cycle. By default, an MCU machine
cycle is always 4 MCU_CLK periods for UPSD33xx, but the following factors can sometimes
add more MCU_CLK periods per machine cycle:

● The number of MCU_CLK periods assigned to MCU memory bus cycles as determined
in the SFR, BUSCON. If this setting is greater than 4, then machine cycles have
additional MCU_CLK periods during memory transfers.

● Whether or not the PFQ/BC circuitry issues a stall during a particular MCU machine
cycle. A stall adds more MCU_CLK periods to a machine cycle until the stall is
removed.

tMACH_CYC is also affected by the absolute time of a single MCU_CLK period. This number
is fixed by the following factors:

Note: Frequency of the external crystal, resonator, or oscillator: (fOSC)

Note: Bit settings in the SFR CCON0, which can divide fOSC and change MCU_CLK

As an example, assume the following:

1. fOSC is 40 MHz, thus its period is 25ns.

2. CCON0 is 10h, meaning no clock division, so the period of MCU_CLK is also 25ns.

3. BUSCON is C1h, meaning the PFQ and BC are enabled, and each MCU memory bus
cycle is 4 MCU_CLK periods, adding no additional MCU_CLK periods to MCU machine
cycles during memory transfers.

4. Assume there are no stalls from the PFQ/BC. In reality, there are occasional stalls but
their occurrence has minimal impact on WDT timeout period.

5. WDRST contains 00h, meaning a full 224 up-counts are required to reach FFFFFh and
generate a reset.

23 15 7 0

8-bits8-bits8-bits

SFR, WDRST
AI09604

Serial UART interfaces UPSD33xx

108/272 Doc ID 9685 Rev 7

addressed leave their SM2 bits set and go on about their business, ignoring the coming data
bytes.

SM2 has no effect in mode 0, and in mode 1, SM2 can be used to check the validity of the
stop bit. In a mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless
a valid stop bit is received.

21.2 Serial port control registers
The SFR SCON0 controls UART0, and SCON1 controls UART1, shown in Table 63 and
Table 65 on page 109. These registers contain not only the mode selection bits, but also the
9th data bit for transmit and receive (bits TB8 and RB8), and the UART Interrupt flags, TI
and RI.

Table 63. SCON0: Serial Port UART0 Control register (SFR 98h, reset value 00h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SM0 SM1 SM2 REN TB8 RB8 TI RI

Table 64. SCON0 register bit definition

Bit Symbol R/W Definition

7 SM0 R,W

Serial Mode Select, See Table 62 on page 107. Important,
notice bit order of SM0 and SM1.

[SM0:SM1] = 00b, mode 0

[SM0:SM1] = 01b, mode mode 1
[SM0:SM1] = 10b, mode 2

[SM0:SM1] = 11b, mode 3

6 SM1 R,W

5 SM2 R,W

Serial Multiprocessor Communication Enable.
Mode 0: SM2 has no effect but should remain 0.

Mode 1: If SM2 = 0 then stop bit ignored. SM2 =1 then RI
active if stop bit = 1.

Mode 2 and 3: Multiprocessor Comm Enable. If SM2=0, 9th bit
is ignored. If SM2=1, RI active when 9th bit = 1.

4 REN R,W
Receive Enable.
If REN=0, UART reception disabled. If REN=1, reception is
enabled

3 TB8 R,W
TB8 is assigned to the 9th transmission bit in mode 2 and 3.
Not used in mode 0 and 1.

2 RB8 R,W

Mode 0: RB8 is not used.
Mode 1: If SM2 = 0, the RB8 is the level of the received stop
bit.
Mode 2 and 3: RB8 is the 9th data bit that was received in
mode 2 and 3.

UPSD33xx I2C interface

Doc ID 9685 Rev 7 137/272

23.13.1 Interrupt Service Routine (ISR)

A typical I2C interrupt service routine would handle a interrupt for any of the four
combinations of Master/Slave and Transmitter/Receiver. In the example routines above, the
firmware sets global variables, I2C_master and I2C_xmitter, before enabling interrupts.
These flags tell the ISR which one of the four cases to process. Following is pseudo-code for
high-level steps in the I2C ISR:

Begin I2C ISR <I2C interrupt just occurred>

Clear I2C interrupt flag:

● S1STA.INTR = 0

Read status of SIOE, put in to variable, status

● status = S1STA

Read global variables that determine the mode

● mode <= (I2C_master, I2C_slave)

If mode is Master-Transmitter

Bus Arbitration lost? (status.BLOST=1?)

If Yes, Arbitration was lost:

● S1DAT = dummy, write to release bus

● Exit ISR, SIOE will switch to Slave Recv mode

If No, Arbitration was not lost, continue:

ACK recvd from Slave? (status.ACK_RESP=0?)

If No, an ACK was not received:

● S1CON.STO = 1, set STOP bus condition

● <STOP occurs after ISR exit>

● S1DAT = dummy, write to release bus

● Exit ISR

If Yes, ACK was received, then continue:

● S1DAT = xmit_buf[buffer_index], transmit byte

Was that the last byte of data to transmit?

If No, it was not the last byte, then:

● Exit ISR, transmit next byte on next interrupt

If Yes, it was the last byte, then:

● S1CON.STO = 1, set STOP bus condition

<STOP occurs after ISR exit>

● S1DAT = dummy, write to release bus

● Exit ISR

PSD module UPSD33xx

172/272 Doc ID 9685 Rev 7

27.2.3 Specifying the memory map with PSDsoft Express

The memory map example shown in Figure 52 is implemented using PSDsoft Express in a
point-and-click environment. PSDsoft Express will automatically generate Hardware
Definition Language (HDL) statements of the ABEL language for the DPLD, such as those
shown in Table 114 on page 172.

Specifying these equations using PSDsoft Express is very simple. For example, Figure 53
on page 173, shows how to specify the chip-select equation for the 16 Kbyte Flash memory
segment, fs4. Notice fs4 is on memory page 1. This specification process is repeated for all
other Flash memory segments, the SRAM, the csiop register block, and any external chip
select signals that may be needed.

Table 114. HDL statement example generated from PSDsoft for memory map
rs0 = ((address ≥

^h0000)
& (address ≤

^h1FFF));

csiop = ((address ≥
^h2000)

& (address ≤
^h20FF));

fs0 = ((address ≥
^h0000)

& (address ≤
^h3FFF));

fs1 = ((address ≥
^h4000)

& (address ≤
^h7FFF));

fs2 = ((page == 0) & (address ≥
^h8000)

& (address ≤
^hBFFF));

fs3 = ((page == 0) & (address ≥
^hC000)

& (address ≤
^hFFFF));

fs4 = ((page == 1) & (address ≥
^h8000)

& (address ≤
^hBFFF));

fs5 = ((page == 1) & (address ≥
^hC000)

& (address ≤
^hFFFF));

fs6 = ((page == 2) & (address ≥
^h8000)

& (address ≤
^hBFFF));

fs7 = ((page == 2) & (address ≥
^hC000)

& (address ≤
^hFFFF));

csboot0 = ((address ≥
^h8000)

& (address ≤
^h9FFF));

csboot1 = ((address ≥
^hA000)

& (address ≤
^hBFFF));

csboot2 = ((address ≥
^hC000)

& (address ≤
^hDFFF));

csboot3 = ((address ≥
^hE000)

& (address ≤
^hFFFF));

UPSD33xx PSD module

Doc ID 9685 Rev 7 175/272

Figure 55. Mapping: all Flash in code space

● Figure 56 on page 175 Place the larger main Flash memory into XDATA space and
the smaller secondary Flash into program space for systems that need a large amount
of Flash for data recording or large look-up tables, and not so much Flash for 8032
firmware.

Figure 56. Mapping: small code / big data

It is also possible to “reclassify” the Flash memories during runtime, moving the memories
between XDATA memory space and program memory space on-the-fly. This essentially
means that the user can override the initial setting during run-time by writing to a csiop
register (the VM register). This is useful for IAP, because standard 8051 architecture does
not allow writing to program space. For example, if the user wants to update firmware in
main Flash memory that is residing in program space, the user can temporarily “reclassify”
the main Flash memory into XDATA space to erase and rewrite it while executing IAP code

0000h

8000h

4000h

6000h

FFFFh

8032 XDATA SPACE
(RD and WR)

8032 PROGRAM
SPACE (PSEN)

csboot1, 8KB
Common Memory to All Pages

csboot0, 8KB
Common Memory to All Pages

csboot2, 8KB
Common Memory to All Pages

csboot3, 8KB
Common Memory to All Pages

Page X

rs0, 8KB

csiop, 256B

fs7
16KB

fs3
16KB

fs1
16KB

Page
0

Page
1

Page
2

Page
3

2000h

0000h

FFFFh

fs6
16KB

fs5
16KB

fs4
16KB

fs2
16KB

fs0
16KB System I/O

C000h

2100h

2000h

AI09175

0000h

8000h

4000h

6000h

FFFFh

8032 XDATA SPACE
(RD and WR)

8032 PROGRAM
SPACE (PSEN)

csboot0
8KB

csboot1
8KB

csboot2
8KB

csboot3
8KB

Page X

rs0, 8KB
Common Memory to All Pages

csiop, 256 bytes,
Common to All Pages

fs7
16KB

fs3
16KB

fs1
16KB

Page
0

Page
1

Page
2

Page
3

2000h

0000h

8000h

FFFFh

Nothing
Mapped

fs6
16KB

fs5
16KB

fs4
16KB

fs2
16KB

fs0
16KB

System I/O

C000h

2100h

2000h

AI09176

PSD module UPSD33xx

186/272 Doc ID 9685 Rev 7

accessible for a new READ or WRITE operation. The operation is finished when two
successive READs yield the same value for DQ6.

DQ6 may also be used to indicate when an erase operation has completed. During an erase
operation, DQ6 will toggle from '0' to '1' and '1' to ’0’ until the erase operation is complete,
then DQ6 stops toggling. The erase is finished when two successive READs yield the same
value of DQ6. The correct sector select signal, FSx or CSBOOTx, must be active during the
entire procedure.

DQ6 is valid after the fourth instruction byte WRITE operation (for program instruction
sequence) or after the sixth instruction byte WRITE operation (for erase instruction
sequence).

If all the Flash memory sectors selected for erasure are protected, DQ6 toggles to ’0’ for
about 100µs, then returns value of D6 of the previously addressed byte.

Error Flag (DQ5)

During a normal program or erase operation, the Error Flag Bit (DQ5) is to ’0’. This bit is set
to ’1’ when there is a failure during Flash memory byte program, sector erase, or bulk erase
operations.

In the case of Flash memory programming, DQ5 Bit indicates an attempt to program a Flash
memory bit from the programmed state of 0, to the erased state of 1, which is not valid. DQ5
may also indicate a particular Flash cell is damaged and cannot be programmed.

In case of an error in a Flash memory sector erase or byte program operation, the Flash
memory sector in which the error occurred or to which the programmed byte belongs must
no longer be used. Other Flash memory sectors may still be used. DQ5 is reset after a
Reset Flash instruction sequence.

27.4.8 Erase timeout flag (DQ3)

The Erase Timeout Flag Bit (DQ3) reflects the timeout period allowed between two
consecutive sector erase instruction sequence bytes. If multiple sector erase commands are
desired, the additional sector erase commands (30h) must be sent by the 8032 within 80us
after the previous sector erase command. DQ3 is 0 before this time period has expired,
indicating it is OK to issue additional sector erase commands. DQ3 will go to logic ’1’ if the
time has been longer than 80µs since the previous sector erase command (time has
expired), indication that is not OK to send another sector erase command. In this case, the
8032 must start a new sector erase instruction sequence (unlock and command) beginning
again after the current sector erase operation has completed.

27.4.9 Programming Flash memory

When a byte of Flash memory is programmed, individual bits are programmed to logic '0.'
The user cannot program a bit in Flash memory to a logic ’1’ once it has been programmed
to a logic '0.' A bit must be erased to logic ’1’, and programmed to logic '0.' That means
Flash memory must be erased prior to being programmed. A byte of Flash memory is
erased to all 1s (FFh). The 8032 may erase the entire Flash memory array all at once, or
erase individual sector-by-sector, but not erase byte-by-byte. However, even though the
Flash memories cannot be erased byte-by-byte, the 8032 may program Flash memory byte-
by-byte. This means the 8032 does not need to program group of bytes (64, 128, etc.) at
one time, like some Flash memories.

PSD module UPSD33xx

188/272 Doc ID 9685 Rev 7

When using the Data Polling method during an erase operation, Figure 60 on page 188 still
applies. However, the Data Polling Flag Bit (DQ7) is '0' until the erase operation is complete.
A ’1’ on the Error Flag Bit (DQ5) indicates a timeout condition on the Erase cycle, a ’0’
indicates no error. The 8032 can read any location within the sector being erased to get the
Data Polling Flag Bit (DQ7) and the Error Flag Bit (DQ5).

PSDsoft Express generates ANSI C code functions for implementation of these Data Polling
algorithms.

Figure 60. Data Polling flowchart

27.4.11 Data toggle

Checking the Toggle Flag Bit (DQ6) is another method of determining whether a program or
erase operation is in progress or has completed. Figure 61 on page 189 shows the Data
Toggle algorithm.

When the 8032 issues a program instruction sequence, the embedded algorithm within the
Flash memory array begins. The 8032 then reads the location of the byte to be programmed
in Flash memory to check status. The Toggle Flag Bit (DQ6) of this location toggles each
time the 8032 reads this location until the embedded algorithm is complete. The 8032
continues to read this location, checking the Toggle Flag Bit (DQ6) and monitoring the Error
Flag Bit (DQ5). When the Toggle Flag Bit (DQ6) stops toggling (two consecutive reads yield
the same value), then the embedded algorithm is complete. If the Error Flag Bit (DQ5) is '1,'
the 8032 should test the Toggle Flag Bit (DQ6) again, since the Toggle Flag Bit (DQ6) may
have changed simultaneously with the Error Flag Bit (DQ5) (see Figure 61 on page 189).

READ DQ5 & DQ7
at VALID ADDRESS

START

READ DQ7

FAIL PASS

AI01369B

DQ7
=

DATA

YES

NO

YES

NO

DQ5
= 1

DQ7
=

DATA

YES

NO

PSD module UPSD33xx

196/272 Doc ID 9685 Rev 7

27.4.26 Decode PLD (DPLD)

The DPLD (Figure 63 on page 197) generates the following memory decode signals:

● Eight main Flash memory sector select signals (FS0-FS7) with three product terms
each

● Four secondary Flash memory sector select signals (CSBOOT0-CSBOOT3) with three
product terms each

● One SRAM select signal (RS0) with two product terms

● One select signal for the base address of 256 PSD module device control and status
registers (CSIOP) with one product term

● Two external chip-select output signals for Port D pins, each with one product term (52-
pin devices only have one pin on Port D)

● Two chip-select signals (PSEL0, PSEL1) used to enable the 8032 data bus repeater
function (Peripheral I/O mode) for Port A on 80-pin devices. Each has one product
term.

A product term indicates the logical OR of two or more inputs. For example, three product
terms in a DPLD output means the final output signal is capable of representing the logical
OR of three different input signals, each input signal representing the logical AND of a
combination of the 69 PLD inputs.

Using the signal FS0 for example, the user may create a 3-product term chip select signal
that is logic true when any one of three different address ranges are true... FS0 = address
range 1 OR address range 2 OR address range 3.

The phrase “one product term” is a bit misleading, but commonly used in this context. One
product term is the logical AND of two or more inputs, with no OR logic involved at all, such
as the CSIOP signal in Figure 63 on page 197.

UPSD33xx PSD module

Doc ID 9685 Rev 7 203/272

Table 122. OMC port and data bit assignments

27.4.31 Loading and reading OMCs

Each of the two OMC groups (eight OMCs each) occupies a byte in csiop space, named
MCELLAB and MCELLBC (see Table 123 and Table 124 on page 204). When the 8032
writes or reads these two OMC registers in csiop it is accessing each of the OMCs through
it’s 8-bit data bus, with the bit assignment shown in Table 122 on page 203. Sometimes it is
important to know the bit assignment when the user builds GPLD logic that is accessed by
the 8032. For example, the user may create a 4-bit counter that must be loaded and read by
the 8032, so the user must know which nibble in the corresponding csiop OMC register the
firmware must access. The fitter report generated by PSDsoft Express will indicate how it
assigned the OMCs and data bus bits to the logic. The user can optionally force PSDsoft
Express to assign logic to specific OMCs and data bus bits if desired by using the
‘PROPERTY’ statement in PSDsoft Express. Please see the PSDsoft Express User’s
Manual for more information on OMC assignments.

Loading the OMC flip-flops with data from the 8032 takes priority over the PLD logic
functions. As such, the preset, clear, and clock inputs to the flip-flop can be asynchronously
overridden when the 8032 writes to the csiop registers to load the individual OMCs.

OMC
Port

assignment
(1)(2)

1. MCELLAB0-MCELLAB7 can be output to Port A pins only on 80-pin devices. Port A is not available on 52-
pin devices

2. Port pins PC0, PC1, PC5, and PC6 are dedicated JTAG pins and are not available as outputs for
MCELLBC 0, 1, 5, or 6

Native Product
terms from AND-

OR array

Maximum
borrowed product

terms

Data bit on 8032
data bus for

loading or reading
OMC

MCELLAB0 Port A0 or B0 3 6 D0

MCELLAB1 Port A1 or B1 3 6 D1

MCELLAB2 Port A2 or B2 3 6 D2

MCELLAB3 Port A3 or B3 3 6 D3

MCELLAB4 Port A4 or B4 3 6 D4

MCELLAB5 Port A5 or B5 3 6 D5

MCELLAB6 Port A6 or B6 3 6 D6

MCELLAB7 Port A7 or B7 3 6 D7

MCELLBC0 Port B0 4 5 D0

MCELLBC1 Port B1 4 5 D1

MCELLBC2 Port B or C2 4 5 D2

MCELLBC3 Port B3 or C3 4 5 D3

MCELLBC4 Port B4 or C4 4 6 D4

MCELLBC5 Port B5 4 6 D5

MCELLBC6 Port B6 4 6 D6

MCELLBC7 Port B7 orC7 4 6 D7

PSD module UPSD33xx

224/272 Doc ID 9685 Rev 7

27.4.51 Power management

The PSD module offers configurable power saving options. These options may be used
individually or in combinations. A top level description for these functions is given here, then
more detailed descriptions will follow.

Zero-Power memory

All memory arrays (Flash and SRAM) in the PSD module are built with zero-power
technology, which puts the memories into standby mode (~ zero DC current) when 8032
address signals are not changing. As soon as a transition occurs on any address input, the
affected memory “wakes up”, changes and latches its outputs, then goes back to standby.
The designer does not have to do anything special to achieve this memory standby mode
when no inputs are changing—it happens automatically. Thus, the slower the 8032 clock,
the lower the current consumption.

Both PLDs (DPLD and GPLD) are also zero-power, but this is not the default condition. The
8032 must set a bit in one of the csiop PMMR registers at run-time to achieve zero-power.

Automatic Power-down (APD)

The APD feature allows the PSD module to reach it’s lowest current consumption levels. If
enabled, the APD counter will timeout when there is a lack of 8032 bus activity for an
extended amount of time (8032 asleep). After timeout occurs, all 8032 address and data
buffers on the PSD module are shut down, preventing the PSD module memories and
potentially the PLDs from waking up from standby, even if address inputs are changing state
because of noise or any external components driving the address lines. Since the actual
address and data buffers are turned off, current consumption is even further reduced.

The APD counter requires a relatively slow external clock input on pin PD1 that does stop
when the 8032 goes to sleep mode.

Note: Non-address signals are still available to PLD inputs and will wake up the PLDs if these
signals are changing state, but will not wake up the memories.

Forced Power-down (FPD)

The MCU can put the PSD module into Power-down mode with the same results as using
APD described above, but FPD does not rely on the APD counter. Instead, FPD will force
the PSD module into Power-down mode when the MCU firmware sets a bit in one of the
csiop PMMR registers. This is a good alternative to APD because no external clock is
needed for the APD counter.

PSD module Chip Select Input (CSI)

This input on pin PD2 (80-pin devices only) can be used to disable the internal memories,
placing them in standby mode even if address inputs are changing. This feature does not
block any internal signals (the address and data buffers are still on but signals are ignored)
and CSI does not disable the PLDs. This is a good alternative to using the APD counter,
which requires an external clock on pin PD1.

Non-Turbo mode

The PLDs can operate in Turbo or non-Turbo modes. Turbo mode has the shortest signal
propagation delay, but consumes more current than non-Turbo mode. A csiop register can
be written by the 8032 to select modes, the default mode is with Turbo mode enabled. In
non-Turbo mode, the PLDs can achieve very low standby current (~ zero DC current) while

UPSD33xx PSD module

Doc ID 9685 Rev 7 225/272

no PLD inputs are changing, and the PLDs will even use less AC current when inputs do
change compared to Turbo mode.

When the Turbo mode is enabled, there is a significant DC current component AND the
AC current component is higher than non-Turbo mode, as shown in Figure 84 on
page 242 (5 V) and Figure 85 on page 243 (3.3 V).

Blocking bits

Significant power savings can be achieved by blocking 8032 bus control signals (RD, WR,
PSEN, ALE) from reaching PLD inputs, if these signals are not used in any PLD equations.
Blocking is achieved by the 8032 writing to the “blocking bits” in csiop PMMR registers.
Current consumption of the PLDs is directly related to the composite frequency of all
transitions on PLD inputs, so blocking certain PLD inputs can significantly lower PLD
operating frequency and power consumption (resulting in a lower frequency on the graphs of
Figure 84 on page 242 and Figure 85 on page 243).

Note: It is recommended to prevent unused inputs from floating on Ports A, B, C, and D by pulling
them up to VDD with a weak external resistor (100 KΩ), or by setting the csiop Direction
register to “output” at run-time for all unused inputs. This will prevent the CMOS input buffers
of unused input pins from drawing excessive current.

The csiop PMMR register definitions are shown in Table 154 through Table 156 on
page 226.

Table 154. Power Management Mode register PMMR0 (address = csiop + offset B0h)(1)

Bit
num.

Bit name Value Description

Bit 0 X 0 Not used, and should be set to zero.

Bit 1 APD Enable
0 Automatic Power-down (APD) counter is disabled.

1 APD counter is enabled

Bit 2 X 0 Not used, and should be set to zero.

Bit 3
PLD Turbo

Disable

0 = on PLD Turbo mode is on

1 = off PLD Turbo mode is off, saving power.

Bit 4
Blocking bit,

CLKIN to
PLDs(2)

0 = on
CLKIN (pin PD1) to the PLD Input Bus is not blocked. Every transition of CLKIN
powers-up the PLDs.

1 = off
CLKIN input to PLD Input Bus is blocked, saving power. But CLKIN still goes to
APD counter.

Bit 5
Blocking bit,

CLKIN to
OMCs only(2)

0 = on CLKIN input is not blocked from reaching all OMC’s common clock inputs.

1 = off
CLKIN input to common clock of all OMCs is blocked, saving power. But CLKIN
still goes to APD counter and all PLD logic besides the common clock input on
OMCs.

Bit 6 X 0 Not used, and should be set to zero.

Bit 7 X 0 Not used, and should be set to zero.

1. All the bits of this register are cleared to zero following Power-up. Subsequent Reset (RST) pulses do not clear the
registers.

2. Blocking bits should be set to logic ’1’ only if the signal is not needed in a DPLD or GPLD logic equation.

PSD module UPSD33xx

228/272 Doc ID 9685 Rev 7

27.4.53 Forced Power-down (FDP)

An alternative to APD is FPD. The resulting power-savings is the same, but the PDN signal
in Figure 77 on page 229 is set and Power-down mode is entered immediately when
firmware sets the FORCE_PD Bit to logic '1' in the csiop register PMMR3 (Bit 1). FPD will
override APD counter activity when FORCE_PD is set. No external clock source for the APD
counter is needed. The FORCE_PD Bit is cleared only by a reset condition.

Caution must be used when implementing FPD because code memory goes off-line as
soon as PSD module Power-down mode is entered, leaving the MCU with no instruction
stream to execute.

The MCU module must put itself into Power-down mode after it puts the PSD module into
Power-down mode. How can it do this if code memory goes off-line? The answer is the Pre-
Fetch Queue (PFQ) in the MCU module. By using the instruction scheme shown in the 8051
assembly code example in Table 157 on page 228, the PFQ will be loaded with the final
instructions to command the MCU module to Power-down mode after the PDS module goes
to Power-down mode. In this case, even though the code memory goes off-line in the PSD
module, the last few MCU instruction are sourced from the PFQ.

Table 157. Forced Power-down example
PDOWN: ANL A8h, #7Fh ; disable all interrupts

ORL 9Dh, #C0h ; ensure PFQ and BC are enabled

MOV DPTR, #xxC7 ; load XDATA pointer to select PMMR3 register (xx
= base

; address of csiop registers)

CLR A ; clear A

JMP LOOP ; first loop - fill PFQ/BQ with Power-down
instructions

NOP ; second loop - fetch code from PFQ/BC and set
Power-
; Down bits for PSD module and then MCU
module

LOOP: MOVX @DPTR, A ; set FORCE_PD Bit in PMMR3 in PSD module in
second
; loop

MOV 87h, A ; set PD Bit in PCON register in MCU module in
second

; loop

MOV A, #02h ; set power-down bit in the A register, but not in
PMMR3 or

; PCON yet in first loop

JMP LOOP ; UPSD enters into Power-down mode in second
loop

UPSD33xx DC and AC parameters

Doc ID 9685 Rev 7 259/272

Figure 93. Input macrocell timing (product term clock)

Table 180. Input macrocell timing (5 V PSD module)

Table 181. Input macrocell timing (3V PSD module)

Symbol Parameter Conditions Min Max PT Aloc
Turbo

Off
Unit

tIS Input setup time (1)

1. Inputs from Port A, B, and C relative to register/ latch clock from the PLD. ALE/AS latch timings refer to
tAVLX and tLXAX.

0 ns

tIH Input hold time (1) 15 + 10 ns

tINH NIB input high time (1) 9 ns

tINL NIB input low time (1) 9 ns

tINO
NIB input to combinatorial
delay

(1) 34 + 2 + 10 ns

Symbol Parameter Conditions Min Max PT Aloc
Turbo

Off
Unit

tIS Input setup time (1)

1. Inputs from Port A, B, and C relative to register/ latch clock from the PLD. ALE/AS latch timings refer to
tAVLX and tLXAX.

0 ns

tIH Input hold time (1) 25 + 15 ns

tINH NIB input high time (1) 12 ns

tINL NIB input low time (1) 12 ns

tINO
NIB input to combinatorial
delay

(1) 43 + 4 + 15 ns

tINH tINL

tINO

tIHtIS

PT CLOCK

INPUT

OUTPUT

AI03101

