

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f51306adfl-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Block Diagram

Figure 1.2 shows a block diagram.

Figure 1.2

Block Diagram

• Longword-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process

If multiple registers are written to and a subsequent instruction should be executed after the write operations are entirely completed, only read the I/O register that was last written to and execute the operation using the value; it is not necessary to read or execute operation for all the registers that were written to.

(3) Number of Access Cycles to I/O Registers

For numbers of clock cycles for access to I/O registers, see Table 4.1, List of I/O Registers (Address Order). The number of access cycles to I/O registers is obtained by following equation.^{*1}

Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 + Number of divided clock synchronization cycles + Number of bus cycles for internal peripheral buses 1 to 3, and 6

The number of bus cycles of internal peripheral buses 1 to 3, and 6 differs according to the register to be accessed. When the registers for peripheral functions connected to internal peripheral buses 2, 3, and 6 (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added.

The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK) or bus access timing.

In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 4.1.

When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the instruction fetching to the external memory or bus access from the different bus master (DTC).

(4) Restrictions in Relation to RMPA and String-Manipulation Instructions

The allocation of data to be handled by RMPA or string-manipulation instructions to I/O registers is prohibited, and operation is not guaranteed if this restriction is not observed.

(5) Notes on Sleep Mode and Mode Transitions

During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 4.1, List of I/O Registers (Address Order)).

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles
0008 838Dh	RSPI0	RSPI Slave Select Negation Delay Register	SSLND	8	8	2 or 3 PCLKB
0008 838Eh	RSPI0	RSPI Next-Access Delay Register	SPND	8	8	2 or 3 PCLKB
0008 838Fh	RSPI0	RSPI Control Register 2	SPCR2	8	8	2 or 3 PCLKB
0008 8390h	RSPI0	RSPI Command Register 0	SPCMD0	16	16	2 or 3 PCLKB
0008 8392h	RSPI0	RSPI Command Register 1	SPCMD1	16	16	2 or 3 PCLKB
0008 8394h	RSPI0	RSPI Command Register 2	SPCMD2	16	16	2 or 3 PCLKB
0008 8396h	RSPI0	RSPI Command Register 3	SPCMD3	16	16	2 or 3 PCLKB
0008 8398h	RSPI0	RSPI Command Register 4	SPCMD4	16	16	2 or 3 PCLKB
0008 839Ah	RSPI0	RSPI Command Register 5	SPCMD5	16	16	2 or 3 PCLKB
0008 839Ch	RSPI0	RSPI Command Register 6	SPCMD6	16	16	2 or 3 PCLKB
0008 839Eh	RSPI0	RSPI Command Register 7	SPCMD7	16	16	2 or 3 PCLKB
0008 8600h	MTU3	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8601h	MTU4	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8602h	MTU3	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8603h	MTU4	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8604h	MTU3	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB
0008 8605h	MTU3	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB
0008 8606h	MTU4	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB
0008 8607h	MTU4	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB
0008 8608h	MTU3	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8609h	MTU4	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 860Ah	MTU	Timer Output Master Enable Registers	TOER	8	8	2 or 3 PCLKB
0008 860Dh	MTU	Timer Gate Control Registers	TGCR	8	8	2 or 3 PCLKB
0008 860Eh	MTU	Timer Output Control Register 1	TOCR1	8	8	2 or 3 PCLKB
0008 860Fh	MTU	Timer Output Control Register 2	TOCR2	8	8	2 or 3 PCLKB
0008 8610h	MTU3	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8612h	MTU4	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8614h	MTU	Timer Cycle Data Register	TCDR	16	16	2 or 3 PCLKB
0008 8616h	MTU	Timer Dead Time Data Register	TDDR	16	16	2 or 3 PCLKB
0008 8618h	MTU3	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 861Ah	MTU3	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 861Ch	MTU4	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 861Eh	MTU4	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 8620h	MTU	Timer Subcounter	TCNTS	16	16	2 or 3 PCLKB
0008 8622h	MTU	Timer Cycle Buffer Register	TCBR	16	16	2 or 3 PCLKB
0008 8624h	MTU3	Timer General Register C	TGRC	16	16	2 or 3 PCLKB
0008 8626h	MTU3	Timer General Register D	TGRD	16	16	2 or 3 PCLKB
0008 8628h	MTU4	Timer General Register C	TGRC	16	16	2 or 3 PCLKB
0008 862Ah	MTU4	Timer General Register D	TGRD	16	16	2 or 3 PCLKB
0008 862Ch	MTU3	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 862Dh	MTU4	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8630h	MTU	Timer Interrupt Skipping Set Register	TITCR	8	8	2 or 3 PCLKB
0008 8631h	MTU	Timer Interrupt Skipping Counter	TITCNT	8	8	2 or 3 PCLKB
0008 8632h	MTU	Timer Buffer Transfer Set Register	TBTER	8	8	2 or 3 PCLKB
0008 8634h	MTU	Timer Dead Time Enable Register	TDER	8	8	2 or 3 PCLKB
0008 8636h	MTU	Timer Output Level Buffer Register	TOLBR	8	8	2 or 3 PCLKB
0008 8638h	MTU3	Timer Buffer Operation Transfer Mode Register	ТВТМ	8	8	2 or 3 PCLKB
0008 8639h	MTU4	Timer Buffer Operation Transfer Mode Register	ТВТМ	8	8	2 or 3 PCLKB
0008 8640h	MTU4	Timer A/D Converter Start Request Control Register	TADCR	16	16	2 or 3 PCLKB
0008 8644h	MTU4	Timer A/D Converter Start Request Cvcle Set Register A	TADCORA	16	16	2 or 3 PCLKB
0008 8646h	MTU4	Timer A/D Converter Start Request Cvcle Set Register R	TADCORB	16	16	2 or 3 PCLKB
0008 8648h	MTU4	Timer A/D Converter Start Request Cycle Set Ruffer Register A	TADCOBRA	16	16	2 or 3 PCI KB

Table 4.1 List of I/O Registers (Address Order) (4 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Number Access of Bits Size Number of Access Cyc	
0008 864Ah	MTU4	Timer A/D Converter Start Request Cycle Set Buffer Register B	TADCOBRB	16	16	2 or 3 PCLKB
0008 8660h	MTU	Timer Waveform Control Register	TWCR	8	8, 16	2 or 3 PCLKB
0008 8680h	MTU	Timer Start Register	TSTR	8	8, 16	2 or 3 PCLKB
0008 8681h	MTU	Timer Synchronous Register	TSYR	8	8, 16	2 or 3 PCLKB
0008 8684h	MTU	Timer Read/Write Enable Register	TRWER	8	8, 16	2 or 3 PCLKB
0008 8690h	MTU0	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8691h	MTU1	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8692h	MTU2	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8693h	MTU3	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8694h	MTU4	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8695h	MTU5	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB
0008 8700h	MTU0	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8701h	MTU0	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8702h	MTU0	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB
0008 8703h	MTU0	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB
0008 8704h	MTU0	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8705h	MTU0	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8706h	MTU0	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8708h	MTU0	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 870Ah	MTU0	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 870Ch	MTU0	Timer General Register C	TGRC	16	16	2 or 3 PCLKB
0008 870Eh	MTU0	Timer General Register D	TGRD	16	16	2 or 3 PCLKB
0008 8720h	MTU0	Timer General Register E	TGRE	16	16	2 or 3 PCLKB
0008 8722h	MTU0	Timer General Register F	TGRF	16	16	2 or 3 PCLKB
0008 8724h	MTU0	Timer Interrupt Enable Register 2	TIER2	8	8	2 or 3 PCLKB
0008 8726h	MTU0	Timer Buffer Operation Transfer Mode Register	TBTM	8	8	2 or 3 PCLKB
0008 8780h	MTU1	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8781h	MTU1	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8782h	MTU1	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB
0008 8784h	MTU1	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8785h	MTU1	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8786h	MTU1	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8788h	MTU1	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 878Ah	MTU1	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 8790h	MTU1	Timer Input Capture Control Register	TICCR	8	8	2 or 3 PCLKB
0008 8800h	MTU2	Timer Control Register	TCR	8	8	2 or 3 PCLKB
0008 8801h	MTU2	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB
0008 8802h	MTU2	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB
0008 8804h	MTU2	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB
0008 8805h	MTU2	Timer Status Register	TSR	8	8	2 or 3 PCLKB
0008 8806h	MTU2	Timer Counter	TCNT	16	16	2 or 3 PCLKB
0008 8808h	MTU2	Timer General Register A	TGRA	16	16	2 or 3 PCLKB
0008 880Ah	MTU2	Timer General Register B	TGRB	16	16	2 or 3 PCLKB
0008 8880h	MTU5	Timer Counter U	TCNTU	16	16	2 or 3 PCLKB
0008 8882h	MTU5	Timer General Register U	TGRU	16	16	2 or 3 PCLKB
0008 8884h	MTU5	Timer Control Register U	TCRU	8	8	2 or 3 PCLKB
0008 8886h	MTU5	Timer I/O Control Register U	TIORU	8	8	2 or 3 PCLKB
0008 8890h	MTU5	Timer Counter V	TCNTV	16	16	2 or 3 PCLKB
0008 8892h	MTU5	Timer General Register V	TGRV	16	16	2 or 3 PCI KB
0008 8894h	MTU5	Timer Control Register V	TCRV	8	8	2 or 3 PCLKB
0008 8896h	MTU5	Timer I/O Control Register V	TIORV	8	8	2 or 3 PCLKB
0008 88A0h	MTU5	Timer Counter W	TCNTW	16	16	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (5 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles
0008 90E4h	S12AD	A/D Sampling State Register 4	ADSSTR4	8	8	2 or 3 PCLKB
0008 90E5h	S12AD	A/D Sampling State Register 5	ADSSTR5	8	8	2 or 3 PCLKB
0008 90E6h	S12AD	A/D Sampling State Register 6	ADSSTR6	8	8	2 or 3 PCLKB
0008 90E7h	S12AD	A/D Sampling State Register 7	ADSSTR7	8	8	2 or 3 PCLKB
0008 A000h	SCI0	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 A001h	SCI0	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 A002h	SCI0	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 A003h	SCI0	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 A004h	SCI0	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 A005h	SCI0	Receive Data Register	RDR	8	8	2 or 3 PCLKB
0008 A006h	SMCI0	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB
0008 A007h	SCI0	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 A008h	SCI0	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB
0008 A009h	SCI0	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 A00Ah	SCI0	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB
0008 A00Bh	SCI0	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB
0008 A00Ch	SCI0	I ² C Status Register	SISR	8	8	2 or 3 PCLKB
0008 A00Dh	SCI0	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB
0008 A00Eh	SCI0	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB
0008 A00Eh	SCI0	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB
0008 A00Fh	SCI0	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB
0008 A010h	SCI0	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB
0008 A010h	SCI0	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB
0008 A011h	SCI0	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB
0008 A012h	SCI0	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB
0008 A020h	SCI1	Serial Mode Register	SMR	8	8	2 or 3 PCLKB
0008 A021h	SCI1	Bit Rate Register	BRR	8	8	2 or 3 PCLKB
0008 A022h	SCI1	Serial Control Register	SCR	8	8	2 or 3 PCI KB
0008 A023h	SCI1	Transmit Data Register	TDR	8	8	2 or 3 PCLKB
0008 A024h	SCI1	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 A025h	SCI1	Receive Data Register	BDR	8	8	2 or 3 PCI KB
0008 A026h	SMCI1	Smart Card Mode Register	SCMR	8	8	2 or 3 PCI KB
0008 A027h	SCI1	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB
0008 A028h	SCI1	Noise Filter Setting Register	SNER	8	8	2 or 3 PCI KB
0008 40295	SCI1	I2C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB
0008 40281	SCI1	I ² C Mode Register 2	SIMP2	8	8	2 or 3 PCLKB
0008 40286	SCI1	I2C Mode Register 3	SIMR2	8	8	2 or 3 PCLKB
0008 4020h	SCI1	12C Status Register	SISP	8	8	2 or 3 PCLKB
	SCI1	SDI Mode Degister	SDMD	8	8	2 or 3 PCLKB
0008 4025h	SCI1			16	16	2 or 3 PCLKB
0008 A02Eh	8011			0	0	2 or 3 PCLKB
0008 A02Eh	8011			0	0	2 or 3 PCLKB
0000 A02FI	8011			0	0	2 OF 3 POLKB
0008 40300	8011			0	0	2 OF 3 PCLKB
0006 A0300	3011		RDRH	0	8	2 OF 3 POLKB
0000 A031h	5011			ŏ	ŏ	
0008 A032h	SCI1	Modulation Duty Register		8	8	2 or 3 PCLKB
UUU8 AUA0h	SCI5	Serial Mode Register	SMK	8	8	2 or 3 PCLKB
0008 A0A1h	SCI5	Bit Kate Register	вкк	8	8	2 or 3 PCLKB
0008 A0A2h	SCI5	Serial Control Register	SCR	8	8	2 or 3 PCLKB
0008 A0A3h	SCI5	Iransmit Data Register	IDR	8	8	2 or 3 PCLKB
0008 A0A4h	SCI5	Serial Status Register	SSR	8	8	2 or 3 PCLKB
0008 A0A5h	SCI5	Receive Data Register	RDR	8	8	2 or 3 PCLKB

Table 4.1 List of I/O Registers (Address Order) (8 / 18)

[Products with at least 256 Kbytes of flash memory or 100-pin packages] Table 5.8 DC Characteristics (5)

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

	Item						Max.	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 32MHz	I _{CC}	3.5	_	mA	
current*1	operating	operating	operation*2	ICLK = 16MHz		2.4	—		
	modo	mode		ICLK = 8MHz		1.8	_		
			All peripheral	ICLK = 32MHz		12.4	_		
			operation: Normal* ³	ICLK = 16MHz		7.0	_		
				ICLK = 8MHz		4.3	_		
			All peripheral operation: Max.* ³	ICLK = 32MHz		— 25.4			
		Sleep mode	No peripheral	ICLK = 32MHz		1.8	_		
			operation* ²	ICLK = 16MHz		1.4	_		
				ICLK = 8MHz		1.2	_		
			All peripheral	ICLK = 32MHz		6.5	_		
			operation: Normal*3	ICLK = 16MHz		3.8	_		
				ICLK = 8MHz		2.5	_		
	Deep sleep	No peripheral	ICLK = 32MHz		1.1	_			
		mode	operation*2	ICLK = 16MHz		0.9	_		
				ICLK = 8MHz		0.8	_		
			All peripheral	ICLK = 32MHz		5.2	_		
			operation: Normal* ³	ICLK = 16MHz		3.0	_		
				ICLK = 8MHz		1.9	_		
		Increase duri	ng flash rewrite*5		2.5	_			
	Middle-speed	Normal	No peripheral	ICLK = 12MHz	I _{CC}	2.1	_	mA	
	operating modes	operating	operation* ⁶	ICLK = 8MHz		1.4	_		
	modoo	mode		ICLK = 4MHz		0.7	_		
				ICLK = 1MHz		0.3	—		
			All peripheral	ICLK = 12MHz		5.5	—		
			operation: Normal*7	ICLK = 8MHz		3.9	—		
				ICLK = 4MHz		2.4	—		
				ICLK = 1MHz		1.1	_		
			All peripheral operation: Max.* ⁷	ICLK = 12MHz		_	11.6		
		Sleep mode	No peripheral	ICLK = 12MHz	I _{CC}	1.4		mA	
			operation*6	ICLK = 8MHz		0.8	—		
				ICLK = 4MHz		0.3			
				ICLK = 1MHz		0.2			
			All peripheral	ICLK = 12MHz		3.2	—		
			operation: Normal*/	ICLK = 8MHz		2.2	—		
				ICLK = 4MHz]	1.4	—		
				ICLK = 1MHz		0.8	_		

Figure 5.8 Temperature Dependency in Software Standby Mode (Reference Data)

5.2.3 Normal I/O Pin Output Characteristics (3)

Figure 5.22 to Figure 5.25 show the characteristics of the RIIC output pin.

Figure 5.22 V_{OL} and I_{OL} Voltage Characteristics of RIIC Output Pin at T_a = 25°C (Reference Data)

Figure 5.23 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)

5.3 AC Characteristics

5.3.1 Clock Timing

Table 5.22 Operating Frequency Value (High-Speed Operating Mode)

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

			VCC					
Item		Symbol	1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 5.5 V	Unit		
Maximum operating frequency* ⁴	System clock (ICLK)	f _{max}	8	16	32	MHz		
	FlashIF clock (FCLK)* ^{1, *2}		8	16	32			
	Peripheral module clock (PCLKB)		8	16	32			
	Peripheral module clock (PCLKD)*3		8	16	32			

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be $\pm 3.5\%$.

Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use.

Note 4. The maximum operating frequency does not include HOCO error or PLL jitter. See Table 5.25, Clock Timing.

Table 5.23 Operating Frequency Value (Middle-Speed Operating Mode)

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

			VCC					
Item		Symbol	1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 5.5 V	Unit		
Maximum operating frequency* ⁴	System clock (ICLK)	f _{max}	8	12	12	MHz		
	FlashIF clock (FCLK)*1, *2		8	12	12			
	Peripheral module clock (PCLKB)		8	12	12			
	Peripheral module clock (PCLKD)* ³		8	12	12			

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be $\pm 3.5\%$.

Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use.

Note 4. The maximum operating frequency does not include HOCO error or PLL jitter. See Table 5.25, Clock Timing

Table 5.24 Operating Frequency Value (Low-Speed Operating Mode)

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

			VCC					
Item			1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 5.5 V	Unit		
Maximum operating frequency	System clock (ICLK)	f _{max}	32.768					
	FlashIF clock (FCLK)*1		32.768					
	Peripheral module clock (PCLKB)		32.768					
	Peripheral module clock (PCLKD)*2		32.768					

Note 1. Programming and erasing the flash memory is impossible.

Note 2. The A/D converter cannot be used.

5.3.2 Reset Timing

Table 5.26 Reset Timing

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RES# pulse width	At power-on	t _{RESWP}	3		_	ms	Figure 5.34
	Other than above	t _{RESW}	30	_	—	μs	Figure 5.35
Wait time after RES#	At normal startup* ¹	t _{RESWT}	_	8.5	—	ms	Figure 5.34
cancellation (at power-on)	During fast startup time* ²	t _{RESWT}		560	—	μs	
Wait time after RES# c (during powered-on sta	t _{RESWT}		120	—	μs	Figure 5.35	
Independent watchdog	timer reset period	t _{RESWIW}	_	1	—	IWDT clock cycle	Figure 5.36
Software reset period	t _{RESWSW}	_	1	—	ICLK cycle		
Wait time after indepen	t _{RESWT2}	_	300	—	μs		
Wait time after software	e reset cancellation	t _{RESWT2}	_	170	_	μs	

Note 1. When OFS1.(LVDAS, FASTSTUP) = 11b.

Note 2. When OFS1.(LVDAS, FASTSTUP) = a value other than 11b.

Note 3. When IWDTCR.CKS[3:0] = 0000b.

Figure 5.34 Reset Input Timing at Power-On

Figure 5.36 Reset Input Timing (2)

5.3.3 Timing of Recovery from Low Power Consumption Modes

Table 5.27 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating ^{*2}	t _{SBYMC}	_	2	3	ms	Figure 5.37
			Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}	_	2	3	ms	
		External clock input to main clock oscillator	Main clock oscillator operating* ⁴	t _{SBYEX}		35	50	μs	-
			Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}		70	95	μs	
		Sub-clock oscillator o	Sub-clock oscillator operating		_	650	800	μs	-
		HOCO clock oscillator operating		t _{SBYHO}		40	55	μs	
		LOCO clock oscillator operating		t _{SBYLO}		40	55	μs	

Note: Note Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.

Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.

Note 2. When the frequency of the crystal is 20 MHz.

- When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 3. When the frequency of PLL is 32 MHz.
- When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 4. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 32 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Table 5.28Timing of Recovery from Low Power Consumption Modes (2)

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

	Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Middle- speed	Crystal connected to main clock oscillator	Main clock oscillator operating* ²	t _{SBYMC}	_	2	3	ms	Figure 5.37
	mode		Main clock oscillator and PLL circuit operating* ³	t _{SBYPC}	_	2	3	ms	
		External clock input to main clock oscillator	Main clock oscillator operating* ⁴	t _{SBYEX}	_	3	4	μs	-
			Main clock oscillator and PLL circuit operating* ⁵	t _{SBYPE}	_	65	85	μs	
		Sub-clock oscillator operating		t _{SBYSC}	_	600	750	μs	-
		HOCO clock oscillator operating		t _{SBYHO}		40	50	μs	
		LOCO clock oscillator operating		t _{SBYLO}	_	5	7	μs	

Note: Note Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.

 Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.
 Note 2. When the frequency of the crystal is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 3. When the frequency of PLL is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h. Note 4. When the frequency of the external clock is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h. Note 5. When the frequency of PLL is 12 MHz.

Table 5.33 **Timing of On-Chip Peripheral Modules (1)**

Conditions: 1.8 V ≤ VCC = AVCC0 < 2.0 V, 2.0 V ≤ VCC ≤ 5.5 V, 2.0 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V, Ta = -40 to +105°C

	Item	Symbol	Min.	Max.	Unit *1	Test Conditions	
CLKOUT	CLKOUT pin output cycle*4	VCC = 2.7 V or above	t _{Ccyc}	62.5	—	ns	Figure 5.49
		VCC = 1.8 V or above		125			
	CLKOUT pin high pulse width*3	VCC = 2.7 V or above	t _{CH}	15	—	ns	
		VCC = 1.8 V or above		30			
	CLKOUT pin low pulse width*3	VCC = 2.7 V or above	t _{CL}	15	—	ns	
		VCC = 1.8 V or above		30			
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	—	12	ns	
		VCC = 1.8 V or above			25		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	—	12	ns	
		VCC = 1.8 V or above			25		

Note 1. t_{Pcyc}: PCLK cycle Note 2. t_{cac}: CAC count clock source cycle

Note 3. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[3:0] bits = 0000b), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits = 001b).

Note 4. When the XTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[3:0] bits = 010b and CKOCR.CKODIV[2:0] bits = 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Table 5.36 Timing of On-Chip Peripheral Modules (4)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_{a} = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	Min.*1, *2	Max.	Unit	Test Conditions	
RIIC (Standard mode, SMBus)	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	—	ns	ns Figure 5.55	
	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	— ns		s	
	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	-	
	SCL, SDA rise time	t _{Sr}	—	1000	ns		
	SCL, SDA fall time	t _{Sf}	—	300 n		7	
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns		
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	ns ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns		
	Repeated START condition setup time	t _{STAS}	1000	_	ns		
	STOP condition setup time	t _{STOS}	1000	_	ns	ns ns ns	
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns		
	Data hold time	t _{SDAH}	0	_	ns		
	SCL, SDA capacitive load	Cb	—	400	pF		
RIIC (Fast mode)	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	—	ns	s Figure 5.55 s	
	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	—	ns		
	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	—	ns		
	SCL, SDA rise time	t _{Sr}	—	300 ns 300 ns 1 (4) × t _{IICcyc} ns			
	SCL, SDA fall time	t _{Sf}	—				
	SCL, SDA spike pulse removal time	t _{SP}	0				
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	—	ns	ns ns ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300		ns		
	Repeated START condition setup time	t _{STAS}	300	—	ns		
	STOP condition setup time	t _{stos}	300	—	ns		
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	0 <u> </u>			
	Data hold time	t _{SDAH}	0		ns		
	SCL, SDA capacitive load	Cb		400	pF		

Note: t_{IICcyc} : RIIC internal reference count clock (IIC ϕ) cycle Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE bit = 1.

Note 2. C_b is the total capacitance of the bus lines.

Table 5.41 A/D Conversion Characteristics (3)

Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, 2.7 V ≤ VREFH0 ≤ AVCC0, Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = -40 to +105°C

Item		Min.	Тур.	Max.	Unit	Test Conditions	
Frequency		1	—	27	MHz		
Resolution		—	—	12	Bit		
Conversion time*1 (Operation at PCLKD = 27 MHz)	Permissible signal source impedance (Max.) = 1.1 kΩ	2	—	—	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 0Dh	
		3	_	_		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 28h	
Analog input capacitance	Cs	—	—	15	pF	Pin capacitance included	
Analog input resistance	Rs	—	—	2.5	kΩ		
Analog input effective range		0	—	VREFH0	V		
Offset error		—	±0.5	±4.5	LSB		
Full-scale error		—	±0.75	±4.5	LSB		
Quantization error		—	±0.5	—	LSB		
Absolute accuracy		—	±1.25	±5.0	LSB	High-precision channel	
				±8.0	LSB	Other than above	
DNL differential nonlinearity error		—	±1.0	—	LSB		
INL integral nonlinearity error		—	±1.0	±3.0	LSB		

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

5.13 Usage Notes

5.13.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU to adjust automatically to the optimum level. A 4.7- μ F capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and VSS pin. Figure 5.67 to Figure 5.70 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor to the MCU power supply pins as close as possible. Use a recommended value of 0.1 μ F as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 33, 12-Bit A/D Converter (S12ADE) in the User's Manual: Hardware.

For notes on designing the printed circuit board, see the descriptions of the application note "Hardware Design Guide" (R01AN1411EJ). The latest version can be downloaded from Renesas Electronics Website.

Figure F 48-Pin LFQFP (PLQP0048KB-B)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄4 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.