Microchip Technology - DSPIC30F6015-20E/PT Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

dsPIC

16-Bit

20 MIPS

CANbus, I2C, SPI, UART/USART
Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
52

144KB (48K x 24)

FLASH

4K x 8

8K x 8

2.5V ~ 5.5V

A/D 16x10b

Internal

-40°C ~ 125°C (TA)

Surface Mount

64-TQFP

64-TQFP (10x10)

https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6015-20e-pt

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f6015-20e-pt-4394956
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC30F6010A/6015

1.0

DEVICE OVERVIEW

Note:

This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”

(DS70157).

This document contains device-specific information for
the dsPIC30F6010A and dsPIC30F6015 devices. The
dsPIC30F devices contain extensive Digital Signal
Processor (DSP) functionality within a high-perfor-
mance 16-bit microcontroller (MCU) architecture.
Figure 1-1 shows a device block diagram for the
dsPIC30F6010A device. Figure 1-2 shows a device
block diagram for the dsPIC30F6015 device.

© 2011 Microchip Technology Inc.

DS70150E-page 9

dsPIC30F6010A/6015

51 Interrupt Priority TABLE 5-1: INTERRUPT VECTOR TABLE
The user-assignable Interrupt Priority bits (IP<2:0>) INT | Vector Interrupt Source
for each individual interrupt source are located in the Number | Number
Least Significant 3 bits of each nibble within the IPCx Highest Natural Order Priority
register(s). Bit 3 of each nibble is not used and is read 0 3 INTO — External Interrupt O
as a ‘O’._Thesg bits define the priority level assigned 1 9 IC1 — Input Capture 1
to a particular interrupt by the user. 2 10 OC1 — Output Compare 1
Note: The user-assignable priority levels start at 3 11 T1 — Timerl
0, as the lowest priority and level 7, as the 4 12 IC2 — Input Capture 2
highest priority. 5 13 | 0C2 - Output Compare 2
Since more than one interrupt request source may be 6 14 T2 — Timer2
assigned to a specific user-assigned priority level, a 7 15 T3 - Timer3
means is provided to assign priority within a given level. 3 16 SPI1
This method is called “Natural Order Priority”. 9 17 ULRX — UART1 Receiver
Natural Order Priority is determined by the position of 10 18 U1TX — UART1 Transmitter
an interrupt in_ the vector te_lble, _ and only gffects 1 19 ADC — ADC Convert Done
e . e o e[| 20 W e Compie
same time. 13 21 SI2C — 12C™ Slave Interrupt
.) . 14 22 | MI2C - I2C Master Interrupt
Table 5-1 lists the interrupt _numbers a_nd mte_rrupt 15 >3 Input Change Interrupt
sources for the dsPIC DSC devices and their associated
vector numbers. 16 24 INT1 — External Interrupt 1
17 25 IC7 — Input Capture 7
Note 1: The Natural Order _Pri'ority scheme has 0 18 26 IC8 — Input Capture 8
as the h_lghest priority and 53 as the 19 57 OC3 — Output Compare 3
lowest priority.
20 28 OC4 — Output Compare 4
2: The Natural Order Priority number is the 21 29 T4 — Timera
same as the INT number. > 30 T5 —Timers
The ability for the user to assign every interrupt to one 23 31 INT2 — External Interrupt 2
of seven priority levels means that the user can assign 24 32 U2RX — UART?2 Receiver
a very high overall _pri_ority level to an interrupt with a o5 33 U2TX — UART2 Transmitter
low natural order priority. 26 34 SPI2
27 35 C1 - Combined IRQ for CAN1
28 36 IC3 — Input Capture 3
29 37 |IC4 - Input Capture 4
30 38 |IC5— Input Capture 5
31 39 IC6 — Input Capture 6
32 40 OCS5 — Output Compare 5
33 41 OC6 — Output Compare 6
34 42 OC7 — Output Compare 7
35 43 OC8 — Output Compare 8
36 44 INT3 — External Interrupt 3
37 45 INT4 - External Interrupt 4
38 46 C2 — Combined IRQ for CAN2
39 a7 PWM — PWM Period Match
40 48 QEI — QEI Interrupt
41 49 Reserved
42 50 Reserved
43 51 FLTA — PWM Fault A
44 52 FLTB — PWM Fault B
45-53 53-61 |Reserved
Lowest Natural Order Priority

DS70150E-page 42 © 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

5.2 Reset Sequence

A Reset is not a true exception because the interrupt
controller is not involved in the Reset process. The pro-
cessor initializes its registers in response to a Reset
which forces the PC to zero. The processor then begins
program execution at location 0x000000. A GOTO
instruction is stored in the first program memory loca-
tion, immediately followed by the address target for the
GOTO instruction. The processor executes the GOTO to
the specified address and then begins operation at the
specified target (start) address.

521 RESET SOURCES

There are 6 sources of error which will cause a device
Reset.

* Watchdog Time-out:
The watchdog has timed out, indicating that the
processor is no longer executing the correct flow
of code.

¢ Uninitialized W Register Trap:
An attempt to use an uninitialized W register as
an Address Pointer will cause a Reset.

« lllegal Instruction Trap:
Attempted execution of any unused opcodes will
result in an illegal instruction trap. Note that a
fetch of an illegal instruction does not result in an
illegal instruction trap if that instruction is flushed
prior to execution due to a flow change.

* Brown-out Reset (BOR):
A momentary dip in the power supply to the
device has been detected which may result in
malfunction.

» Trap Lockout:
Occurrence of multiple trap conditions
simultaneously will cause a Reset.

5.3 Traps

Traps can be considered as non-maskable interrupts
indicating a software or hardware error, which adhere
to a predefined priority, as shown in Figure 5-1. They
are intended to provide the user a means to correct
erroneous operation during debug and when operating
within the application.

Note: If the user does not intend to take correc-
tive action in the event of a trap error
condition, these vectors must be loaded
with the address of a default handler that
simply contains the RESET instruction. If,
on the other hand, one of the vectors
containing an invalid address is called, an
address error trap is generated.

Note that many of these trap conditions can only be
detected when they occur. Consequently, the question-
able instruction is allowed to complete prior to trap
exception processing. If the user chooses to recover
from the error, the result of the erroneous action that
caused the trap may have to be corrected.

There are 8 fixed priority levels for traps: Level 8
through Level 15, which means that IPL3 is always set
during processing of a trap.

If the user is not currently executing a trap, and he sets
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all
interrupts are disabled, but traps can still be processed.

531 TRAP SOURCES

The following traps are provided with increasing prior-
ity. However, since all traps can be nested, priority has
little effect.

Math Error Trap:

The math error trap executes under the following four
circumstances:

1. Should an attempt be made to divide by zero,
the divide operation will be aborted on a cycle
boundary and the trap taken.

2. If enabled, a math error trap will be taken when
an arithmetic operation on either Accumulator A
or B causes an overflow from bit 31 and the
Accumulator Guard bits are not utilized.

3. If enabled, a math error trap will be taken when
an arithmetic operation on either Accumulator A
or B causes a catastrophic overflow from bit 39
and all saturation is disabled.

4. If the shift amount specified in a shift instruction

is greater than the maximum allowed shift
amount, a trap will occur.

© 2011 Microchip Technology Inc.

DS70150E-page 43

dsPIC30F6010A/6015

Address Error Trap:

This trap is initiated when any of the following

circumstances occurs:

1. A misaligned data word access is attempted.

2. A data fetch from our unimplemented data
memory location is attempted.

3. A data access of an unimplemented program
memory location is attempted.

4. An instruction fetch from vector space is
attempted.

Note: In the MAC class of instructions, wherein
the data space is split into X and Y data
space, unimplemented X space includes
all of Y space, and unimplemented Y
space includes all of X space.

5. Execution of a “BRA #literal”instruction ora
“GOTO #literal” instruction, where literal
is an unimplemented program memory address.

6. Executing instructions after modifying the PC to
point to unimplemented program memory
addresses. The PC may be modified by loading
a value into the stack and executing a RETURN
instruction.

Stack Error Trap:
This trap is initiated under the following conditions:

1. The Stack Pointer is loaded with a value which
is greater than the (user programmable) limit
value written into the SPLIM register (stack
overflow).

2. The Stack Pointer is loaded with a value which
is less than 0x0800 (simple stack underflow).

Oscillator Fail Trap:

This trap is initiated if the external oscillator fails and
operation becomes reliant on an internal RC backup.

53.2 HARD AND SOFT TRAPS

It is possible that multiple traps can become active
within the same cycle (e.g., a misaligned word stack
write to an overflowed address). In such a case, the
fixed priority shown in Figure 5-2 is implemented,
which may require the user to check if other traps are
pending in order to completely correct the Fault.

‘Soft’ traps include exceptions of priority level 8 through
level 11, inclusive. The arithmetic error trap (level 11)
falls into this category of traps.

‘Hard’ traps include exceptions of priority level 12
through level 15, inclusive. The address error (level
12), stack error (level 13) and oscillator error (level 14)
traps fall into this category.

Each hard trap that occurs must be Acknowledged
before code execution of any type may continue. If a
lower priority hard trap occurs while a higher priority
trap is pending, Acknowledged, or is being processed,
a hard trap conflict will occur.

The device is automatically reset in a hard trap conflict
condition. The TRAPR Status bit (RCON<15>) is set
when the Reset occurs, so that the condition may be
detected in software.

FIGURE 5-1: TRAP VECTORS
Reset — GOTO Instruction 0x000000
o Reset — GOTO Address 0x000002
A Reserved 0x000004

Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector

VT Reserved Vector
Reserved Vector
Reserved Vector
Interrupt 0 Vector 0x000014
Interrupt 1 Vector

Decreasing
Priority

Interrupt 52 Vector

\j v Interrupt 53 Vector 0x00007E
Reserved 0x000080

Reserved 0x000082

A Reserved 0x000084

Oscillator Fail Trap Vector
Stack Error Trap Vector
Address Error Trap Vector
Math Error Trap Vector

AIVT Reserved Vector
Reserved Vector
Reserved Vector
Interrupt O Vector 0x000094
Interrupt 1 Vector

Interrupt 52 Vector
v Interrupt 53 Vector 0x0000FE

DS70150E-page 44

© 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

6.4 RTSP Operation

The dsPIC30F Flash program memory is organized
into rows and panels. Each row consists of 32 instruc-
tions, or 96 bytes. Each panel consists of 128 rows, or
4K x 24 instructions. RTSP allows the user to erase one
row (32 instructions) at a time and to program
32 instructions at one time.

Each panel of program memory contains write latches
that hold 32 instructions of programming data. Prior to
the actual programming operation, the write data must
be loaded into the panel write latches. The data to be
programmed into the panel is loaded in sequential
order into the write latches; instruction 0, instruction 1,
etc. The addresses loaded must always be from a 32
address boundary.

The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the write latches. Programming is performed by
setting the special bits in the NVMCON register. 32
TBLWTL and 32 TBLWTH instructions are required to
load the 32 instructions.

All of the table write operations are single-word writes
(2 instruction cycles), because only the table latches
are written.

After the latches are written, a programming operation
needs to be initiated to program the data.

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD
range.

6.5 RTSP Control Registers

The four SFRs used to read and write the program
Flash memory are:

* NVMCON

* NVMADR

* NVMADRU

* NVMKEY

6.5.1 NVMCON REGISTER

The NVMCON register controls which blocks are to be
erased, which memory type is to be programmed and
start of the programming cycle.

6.5.2 NVMADR REGISTER

The NVMADR register is used to hold the lower two
bytes of the Effective Address. The NVMADR register
captures the EA<15:0> of the last table instruction that
has been executed and selects the row to write.

6.5.3 NVMADRU REGISTER

The NVMADRU register is used to hold the upper byte
of the Effective Address. The NVMADRU register cap-
tures the EA<23:16> of the last table instruction that
has been executed.

6.5.4 NVMKEY REGISTER

NVMKEY is a write-only register that is used for write
protection. To start a programming or an erase
sequence, the user must consecutively write 0x55 and
OxAA to the NVMKEY register. Refer to Section 6.6
“Programming Operations” for further details.

Note: The user can also directly write to the
NVMADR and NVMADRU registers to
specify a program memory address for
erasing or programming.

DS70150E-page 50

© 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

7.2 Erasing Data EEPROM

7.2.1 ERASING A BLOCK OF DATA
EEPROM

In order to erase a block of data EEPROM, the
NVMADRU and NVMADR registers must initially
point to the block of memory to be erased. Configure
NVMCON for erasing a block of data EEPROM and
set the WR and WREN bits in the NVMCON register.
Setting the WR bit initiates the erase, as shown in
Example 7-2.

EXAMPLE 7-2: DATA EEPROM BLOCK ERASE

; Select data EEPROM block, WR, WREN bits
MOV #4045 ,WO0

MoV WO NVMCON ; Initialize NVMCON SFR
; Start erase cycle by setting WR after writing key sequence

DISI #5 ; Block all interrupts with priority <7
; For next 5 instructions

MoV #0x55,W0 ;

MOV WO NVMKEY ; Write the 0x55 key

MoV #OxAA, W1 ;

MoV W1 NVMKEY ; Write the OxAA key

BSET NVMCON , #WR ; Initiate erase sequence

NOP

NOP

; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete

7.2.2 ERASING A WORD OF DATA
EEPROM

The NVMADRU and NVMADR registers must point to
the block. Select a block of data Flash and set the WR
and WREN bits in the NVMCON register. Setting the
WR bit initiates the erase, as shown in Example 7-3.

EXAMPLE 7-3: DATA EEPROM WORD ERASE

; Select data EEPROM word, WR, WREN bits
MoV #4044 ,W0
MOV WO NVMCON

; Start erase cycle by setting WR after writing key sequence
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MoV #0x55,W0 ;

MoV WO NVMKEY ; Write the 0x55 key

MoV #OxAA, W1 ;

MoV W1 NVMKEY ; Write the OxAA key

BSET NVMCON , #WR ; Initiate erase sequence
NOP

NOP

; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete

DS70150E-page 56 © 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

7.3 Writing to the Data EEPROM

To write an EEPROM data location, the following
sequence must be followed:
1. Erase data EEPROM word.

a) Select word, data EEPROM, erase and set
WREN bit in NVMCON register.

b) Write address of word to be erased into
NVMADRU/NVMADR.

c) Enable NVM interrupt (optional).

d) Write 0x55 to NVMKEY.

e) Write OXAA to NVMKEY.

f) Setthe WR bit. This will begin erase cycle.

g) Either poll NVMIF bit or wait for NVMIF
interrupt.

h) The WR bit is cleared when the erase cycle
ends.

2. Write data word into data EEPROM write
latches.

3. Program 1 data word into data EEPROM.

a) Select word, data EEPROM, program and
set WREN bit in NVMCON register.

b) Enable NVM write done interrupt (optional).
c) Write 0x55 to NVMKEY.
d) Write OXAA to NVMKEY.
e) Set the WR bit. This will begin program

The write will not initiate if the above sequence is not
exactly followed (write 0x55 to NVMKEY, write OXAA to
NVMCON, then set WR bit) for each word. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in NVMCON must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM, due to unexpected code exe-
cution. The WREN bit should be kept clear at all times,
except when updating the EEPROM. The WREN bit is
not cleared by hardware.

After a write sequence has been initiated, clearing the
WREN bit will not affect the current write cycle. The WR
bit will be inhibited from being set unless the WREN bit
is set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the Nonvolatile Memory Write
Complete Interrupt Flag bit (NVMIF) is set. The user
may either enable this interrupt, or poll this bit. NVMIF
must be cleared by software.

7.3.1 WRITING A WORD OF DATA
EEPROM

Once the user has erased the word to be programmed,
then a table write instruction is used to write one write
latch, as shown in Example 7-4.

cycle.
f) Either poll NVMIF bit or wait for NVM
interrupt.
g) The WR bit is cleared when the write cycle
ends.
EXAMPLE 7-4: DATA EEPROM WORD WRITE
; Point to data memory
MOV #LOW_ADDR_WORD , WO
MoV #HIGH_ADDR_WORD, W1
MOV W1 TBLPAG
MOV #LOW(WORD) ,W2
TBLWTL w2_[wo]

; Select data EEPROM for 1 word op
MoV #0x4004 ,WO0
MoV WO NVMCON

; Operate key to allow write operation

DISI #5

MoV #0x55,W0
MoV WO NVMKEY
MoV #OXAA, W1
MoV W1 NVMKEY
BSET NVMCON, #WR
NOP

NOP

; The NVMADR captures last table access address

; Block all interrupts with priority <7
; for next 5 instructions

; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete

Init pointer

; Get data
; Write data

; Write the 0Ox55 key

; Write the OxAA key
; Initiate program sequence

© 2011 Microchip Technology Inc.

DS70150E-page 57

‘ou| ABojouyda] diydooiN TT0Z ©®

T9 abed-30510.50

TABLE 8-1: dsPIC30F6010A PORT REGISTER MAP()

Nsa':?e Addr. | Bit15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
TRISA 02C0 | TRISA15 | TRISA14 — — — TRISA10 | TRISA9 — — — — — — — — — 1100 0110 0000 0000
PORTA 02C2 | RA15 RA14 = = = RA10 RA9 = = = — — — — — — 0000 0000 0000 0000
LATA 02C4 | LATAL15 | LATA14 — — — LATA10 | LATA9 — — — — — — — — — 0000 0000 0000 0000
TRISB 02C6 | TRISB15 | TRISB14 | TRISB13 | TRISB12 | TRISB11 | TRISB10 | TRISB9 | TRISB8 | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO| 1111 1111 1111 1111
PORTB 02C8 | RBI15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RBO 0000 0000 0000 0000
LATB 02CB | LATB15 | LATB14 | LATB13 | LATB12 | LATB11 | LATB10 | LATB9 | LATB8 | LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATBO 0000 0000 0000 0000
TRISC 02CC [TRISC15| TRISC14 | TRISC13 — — — — — — — — — TRISC3 — TRISC1 — 1110 0000 0000 1010
PORTC 02CE| RC15 RC14 RC13 — — — — — — — — — RC3 — RC1 — 0000 0000 0000 0000
LATC 02D0 | LATC15 | LATC14 | LATC13 — — — — — — — — — LATC3 — LATC1 — 0000 0000 0000 0000
TRISD 02D2 | TRISD15| TRISD14 | TRISD13 | TRISD12 | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO | 1111 1111 1111 1111
PORTD 02D4 | RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RDO 0000 0000 0000 0000
LATD 02D6 | LATD15 | LATD14 | LATD13 | LATD12 | LATD11 | LATD10 | LATD9 | LATD8 | LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATDO | 0000 0000 0000 0000
TRISE 02D8 — — — — — — TRISE9 | TRISE8 | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISEO| 0000 0011 1111 1111
PORTE 02DA — — — — — — RE9 RE8 RE7 RE6 RES5 RE4 RE3 RE2 RE1 REO 0000 0000 0000 0000
LATE 02DC — — — — — — LATE9 | LATE8 | LATE7 | LATE6 | LATES | LATE4 | LATE3 | LATE2 | LATE1 | LATEO | 0000 0000 0000 0000
TRISF 02EE — — — — — — — TRISF8 | TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISFO | 0000 0001 1111 1111
PORTF 02EO0 — — — — — — — RF8 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RFO 0000 0000 0000 0000
LATF 02E2 — — — — — — — LATF8 | LATF7 | LATF6 | LATF5 | LATF4 | LATF3 | LATF2 | LATF1 | LATFO 0000 0000 0000 0000
TRISG 02E4 = = = = = = TRISG9 | TRISG8 | TRISG7 | TRISG6 = = TRISG3 | TRISG2 | TRISG1 | TRISGO| 0000 0011 1100 1111
PORTG 02E6 — — — — — — RG9 RG8 RG7 RG6 — — RG3 RG2 RG1 RGO 0000 0000 0000 0000
LATG 02E8 — — — — — — LATGY | LATG8 | LATG7 | LATG6 — — LATG3 | LATG2 | LATG1 | LATGO 0000 0000 0000 0000
Legend: u = uninitialized bit; — = unimplemented bit, read as ‘0’

Note 1: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.

ST09/VOT0940€21dSP

dsPIC30F6010A/6015

NOTES:

DS70150E-page 80 © 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

13.1 Timer2 and Timer3 Selection Mode

Each output compare channel can select between one
of two 16-bit timers; Timer2 or Timer3.

The selection of the timers is controlled by the OCTSEL
bit (OCxCON<3>). Timer2 is the default timer resource
for the Output Compare module.

13.2 Simple Output Compare Match
Mode

When control bits OCM<2:0> (OCxCON<2:0>) = 001,
010 or 011, the selected output compare channel is
configured for one of three simple output compare
match modes:

» Compare forces 1/O pin low

« Compare forces 1/O pin high

« Compare toggles I/O pin

The OCXxR register is used in these modes. The OCxR
register is loaded with a value and is compared to the
selected incrementing timer count. When a compare
occurs, one of these compare match modes occurs. If
the counter resets to zero before reaching the value in
OCXR, the state of the OCx pin remains unchanged.

13.3 Dual Output Compare Match Mode

When control bits OCM<2:0> (OCxCON<2:0>) = 100
or 101, the selected output compare channel is config-
ured for one of two Dual Output Compare modes,
which are:

 Single Output Pulse mode

e Continuous Output Pulse mode

13.3.1 SINGLE PULSE MODE

For the user to configure the module for the generation
of a single output pulse, the following steps are
required (assuming timer is off):
» Determine instruction cycle time Tcy.
» Calculate desired pulse-width value based on

Tey.
« Calculate time to start pulse from timer start value

of 0x0000.

» Write pulse-width start and stop times into OCxR
and OCxRS Compare registers (x denotes
channel 1, 2, ...,N).

» Set Timer Period register to value equal to, or
greater than, value in OCxRS Compare register.

* Set OCM<2:0> = 100.
« Enable timer, TON (TXCON<15>) = 1.

To initiate another single pulse, issue another write to
set OCM<2:0> = 100.

13.3.2 CONTINUOUS PULSE MODE

For the user to configure the module for the generation
of a continuous stream of output pulses, the following
steps are required:

» Determine instruction cycle time Tcy.
» Calculate desired pulse value based on Tcy.

« Calculate timer to start pulse width from timer start
value of 0x0000.

» Write pulse-width start and stop times into OCxR
and OCxRS (x denotes channel 1, 2, ...,N)
Compare registers, respectively.

« Set Timer Period register to value equal to, or
greater than, value in OCXRS Compare register.

* Set OCM<2:0> =101.
» Enable timer, TON (TXCON<15>) = 1.

13.4 Simple PWM Mode

When control bits OCM<2:0> (OCxCON<2:0>) = 110
or 111, the selected output compare channel is config-
ured for the PWM mode of operation. When configured
for the PWM mode of operation, OCxR is the main latch
(read-only) and OCxRS is the secondary latch. This
enables glitchless PWM transitions.

The user must perform the following steps in order to
configure the output compare module for PWM
operation:

1. Setthe PWM period by writing to the appropriate
period register.

2. Setthe PWM duty cycle by writing to the OCxRS
register.

3. Configure the output compare module for PWM
operation.

4. Set the TMRx prescale value and enable the
Timer, TON (TXCON<15>) = 1.

1341 INPUT PIN FAULT PROTECTION
FOR PWM

When control bits OCM<2:0> (OCxCON<2:0>) = 111,
the selected output compare channel is again
configured for the PWM mode of operation, with the
additional feature of input Fault protection. While in this
mode, if a logic ‘0’ is detected on the OCFA/B pin, the
respective PWM output pin is placed in the high-
impedance input state. The OCFLT bit (OCxCON<4>)
indicates whether a Fault condition has occurred. This
state will be maintained until both of the following
events have occurred:

* The external Fault condition has been removed.

* The PWM mode has been re-enabled by writing
to the appropriate control bits.

DS70150E-page 86

© 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

14.7.2 TIMER OPERATION DURING CPU
IDLE MODE

When the CPU is placed in the Idle mode and the QEI
module is configured in the 16-bit Timer mode, the
16-bit timer will operate if the QEISIDL bit (QEI-
CON<13>) = 0. This bit defaults to a logic ‘O’ upon
executing POR and BOR. For halting the timer module
during the CPU Idle mode, QEISIDL should be set
to ‘1.

If the QEISIDL bit is cleared, the timer will function
normally, as if the CPU Idle mode had not been
entered.

14.8 Quadrature Encoder Interface
Interrupts

The Quadrature Encoder Interface has the ability to
generate an interrupt on occurrence of the following
events:

« Interrupt on 16-bit up/down position counter
rollover/underflow

« Detection of qualified index pulse, or if CNTERR
bit is set

< Timer period match event (overflow/underflow)

¢ Gate accumulation event

The QEI Interrupt Flag bit, QEIIF, is asserted upon

occurrence of any of the above events. The QEIIF bit

must be cleared in software. QEIIF is located in the
IFS2 STATUS register.

Enabling an interrupt is accomplished via the respec-
tive enable bit, QEIIE. The QEIIE bit is located in the
IEC2 Control register.

DS70150E-page 94

© 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

19.4 Message Reception

194.1 RECEIVE BUFFERS

The CAN bus module has 3 receive buffers. However,
one of the receive buffers is always committed to mon-
itoring the bus for incoming messages. This buffer is
called the Message Assembly Buffer (MAB). So there
are 2 receive buffers visible, RXB0 and RXB1, that can
essentially instantaneously receive a complete
message from the protocol engine.

All messages are assembled by the MAB, and are trans-
ferred to the RXBn buffers only if the acceptance filter
criterion is met. When a message is received, the RXnIF
flag (CIINTF<0> or CiINTF<1>) will be set. This bit can
only be set by the module when a message is received.
The bit is cleared by the CPU when it has completed
processing the message in the buffer. If the RXnIE bit
(CIINTE<O> or CIiINTE<1>) is set, an interrupt will be
generated when a message is received.

RXFO0 and RXF1 filters with RXMO mask are associated
with RXBO. The filters RXF2, RXF3, RXF4, and RXF5
and the mask RXM1 are associated with RXB1.

19.4.2 MESSAGE ACCEPTANCE FILTERS

The message acceptance filters and masks are used to
determine if a message in the message assembly buf-
fer should be loaded into either of the receive buffers.
Once a valid message has been received into the mes-
sage assembly buffer, the identifier fields of the mes-
sage are compared to the filter values. If there is a
match, that message will be loaded into the appropriate
receive buffer.

The acceptance filter looks at incoming messages for
the RXIDE bit (CIRXnSID<0>) to determine how to
compare the identifiers. If the RXIDE bit is clear, the
message is a standard frame, and only filters with the
EXIDE bit (CIRXFnSID<0>) clear are compared. If the
RXIDE bit is set, the message is an extended frame,
and only filters with the EXIDE bit set are compared.
Configuring the RXM<1:0> bits to ‘01’ or ‘10’ can
override the EXIDE bit.

19.4.3 MESSAGE ACCEPTANCE FILTER
MASKS

The mask bits essentially determine which bits to apply
the filter to. If any mask bit is set to a zero, then that bit
will automatically be accepted regardless of the filter
bit. There are 2 programmable acceptance filter masks
associated with the receive buffers, one for each buffer.

19.4.4 RECEIVE OVERRUN

An overrun condition occurs when the message
assembly buffer has assembled a valid received
message and the message is accepted through the
acceptance filters, but the receive buffer associated
with the filter still contains unread data.

The overrun error flag, RXnOVR (CiINTF<15> or
CiINTF<14>) and the ERRIF bit (CIINTF<5>) will be set
and the message in the MAB will be discarded.

If the DBEN bit is clear, RXB1 and RXBO operate inde-
pendently. When this is the case, a message intended
for RXBO will not be diverted into RXB1 if RXBO
contains an unread message and the RXOOVR bit will
be set.

If the DBEN bit is set, the overrun for RXBO is handled
differently. If a valid message is received for RXB0 and
RXFUL = 1 indicates that RXBO is full and RXFUL =0
indicates that RXB1 is empty, the message for RXB0O
will be loaded into RXB1. An overrun error will not be
generated for RXBO. If a valid message is received for
RXBO0 and RXFUL =1, and RXFUL = 1 indicating that
both RXB0 and RXB1 are full, the message will be lost
and an overrun will be indicated for RXB1.

19.4.5 RECEIVE ERRORS

The CAN module will detect the following receive
errors:

e Cyclic Redundancy Check (CRC) error

« Bit Stuffing error

« Invalid message receive error

The receive error counter is incremented by one in
case one of these errors occur. The RXWAR bit
(CiIINTF<9>) indicates that the Receive Error Counter

has reached the CPU warning limit of 96 and an
interrupt is generated.

19.4.6 RECEIVE INTERRUPTS

Receive interrupts can be divided into 3 major groups,
each including various conditions that generate
interrupts:

* Receive Interrupt

A message has been successfully received and loaded
into one of the receive buffers. This interrupt is acti-
vated immediately after receiving the End-of-Frame
(EOF) field. Reading the RXnlIF flag will indicate which
receive buffer caused the interrupt.

* Wake-up Interrupt

The CAN module has woken up from Disable mode or
the device has woken up from Sleep mode.

DS70150E-page 130

© 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

* Receive Error Interrupts

A receive error interrupt will be indicated by the ERRIF
bit. This bit shows that an error condition occurred. The
source of the error can be determined by checking the
bits in the CAN Interrupt STATUS register, CiINTF.

« Invalid message received

If any type of error occurred during reception of the last
message, an error will be indicated by the IVRIF bit.

* Receiver overrun

The RXnOVR bit indicates that an overrun condition
occurred.

* Receiver warning

The RXWAR bit indicates that the Receive Error Coun-
ter RERRCNT<7:0>) has reached the Warning limit of
96.

* Receiver error passive

The RXEP bit indicates that the Receive Error Counter
has exceeded the Error Passive limit of 127 and the
module has gone into Error Passive state.

19.5 Message Transmission

1951 TRANSMIT BUFFERS

The CAN module has three transmit buffers. Each of
the three buffers occupies 14 bytes of data. Eight of the
bytes are the maximum 8 bytes of the transmitted mes-
sage. Five bytes hold the standard and extended
identifiers and other message arbitration information.

19.5.2 TRANSMIT MESSAGE PRIORITY

Transmit priority is a prioritization within each node of the
pending transmittable messages. There are 4 levels of
transmit priority. If TXPRI<1:0> (CiTXnCON<1:0>, where
n =0, 1 or 2 represents a particular transmit buffer) for a
particular message buffer is set to ‘11’, that buffer has the
highest priority. If TXPRI<1:0> for a particular message
buffer is set to ‘10’ or ‘01, that buffer has an intermediate
priority. If TXPRI<1:0> for a particular message buffer is
‘00, that buffer has the lowest priority.

19.5.3 TRANSMISSION SEQUENCE

To initiate transmission of the message, the TXREQ bit
(CITXNCON<3>) must be set. The CAN bus module
resolves any timing conflicts between setting of the
TXREQ bit and the Start of Frame (SOF), ensuring
that if the priority was changed, it is resolved correctly
before the SOF occurs. When TXREQ is set, the
TXABT (CiTXnCON<6>), TXLARB (CiTXNnCON<5>)
and TXERR (CiTXnCON<4>) flag bits are
automatically cleared.

Setting TXREQ bit simply flags a message buffer as
enqueued for transmission. When the module detects
an available bus, it begins transmitting the message
which has been determined to have the highest priority.

If the transmission completes successfully on the first
attempt, the TXREQ bit is cleared automatically and an
interrupt is generated if TXIE was set.

If the message transmission fails, one of the error
condition flags will be set and the TXREQ bit will
remain set indicating that the message is still pending
for transmission. If the message encountered an error
condition during the transmission attempt, the TXERR
bit will be set and the error condition may cause an
interrupt. If the message loses arbitration during the
transmission attempt, the TXLARB bit is set. No
interrupt is generated to signal the loss of arbitration.

1954 ABORTING MESSAGE
TRANSMISSION

The system can also abort a message by clearing the
TXREQ bit associated with each message buffer.
Setting the ABAT bit (CICTRL<12>) will request an
abort of all pending messages. If the message has not
yet started transmission, or if the message started but
is interrupted by loss of arbitration or an error, the abort
will be processed. The abort is indicated when the
module sets the TXABT bit, and the TXnlIF flag is not
automatically set.

19.5.5 TRANSMISSION ERRORS

The CAN module will detect the following transmission
errors:

» Acknowledge error
¢ Form error
e Bit error

These transmission errors will not necessarily generate
an interrupt, but are indicated by the transmission error
counter. However, each of these errors will cause the
transmission error counter to be incremented by one.
Once the value of the error counter exceeds the value
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit
(CiINTF<10>) are set. Once the value of the error
counter exceeds the value of 96, an interrupt is
generated and the TXWAR bit in the Error Flag register
is set.

© 2011 Microchip Technology Inc.

DS70150E-page 131

dsPIC30F6010A/6015

21.2 Oscillator Configurations

21.2.1 INITIAL CLOCK SOURCE
SELECTION

While coming out of Power-on Reset or Brown-out
Reset, the device selects its clock source based on:

a) FOS<2:0> Configuration bits that select one of
four oscillator groups,

b) and FPR<4:0> Configuration bits that select one
of 16 oscillator choices within the primary group.

The selection is as shown in Table 21-2.

TABLE 21-2: .CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode O;((;Lllract;)r FOS<2:0> FPR<4:0> OSC2 Function
ECIO w/PLL 4x PLL 1 1 1 0 1 1 0] 1 l[e}
ECIO w/PLL 8x PLL 1 1 1 0 1 1 1 0 lfe}
ECIO w/PLL 16x PLL 1 1 1 0 1 1 1 1 I/0
FRC w/PLL 4x PLL 1 1 1 0 0] 0 0] 1 l[e}
FRC w/PLL 8x PLL 1 1 1 0 1 0 1 0 l[e}
FRC w/PLL 16x PLL 1 1 1 (0] 0 0 1 1 I/0
XT w/PLL 4x PLL 1 1 1 0 0] 1 0] 1 0scC2
XT w/PLL 8x PLL 1 1 1 0 0 1 1 0 0scC2
XT w/PLL 16x PLL 1 1 1 0 0 1 1 1 0sC2
HS/2 w/PLL 4x PLL 1 1 1 1 0] 0 0] 1 0scC2
HS/2 w/PLL 8x PLL 1 1 1 1 0 0 1 0 0sC2
HS/2 w/PLL 16x PLL 1 1 1 1 0 0 1 1 0sCc2
HS/3 w/PLL 4x PLL 1 1 1 1 0] 1 0] 1 0scC2
HS/3 w/PLL 8x PLL 1 1 1 1 0] 1 1 0 0sC2
HS/3 w/PLL 16x PLL 1 1 1 1 0 1 1 1 0sC2
ECIO External 0 1 1 0 1 1 0] 0 lfe}

XT External 0] 1 1 0 0 1 0 0 0SsC2
HS External 0 1 1 0 0 0 1 0 0sC2
EC External 0] 1 1 0 1 0 1 1 CLKO
ERC External 0] 1 1 0 1 0 0 1 CLKO
ERCIO External 0 1 1 0 1 (0] 0 0 I/10
XTL External 0] 1 1 0 0] 0 0] 0 0scC2
LP Secondary 0 0 0 X X X X X (Note 1, 2)
FRC Internal FRC 0 0 1 X X X X X (Note 1, 2)
LPRC Internal LPRC 0 1 0 X X X X X (Note 1, 2)

Note 1: OSC2 pin function is determined by FPR<4:0>.

2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is
selected at all times.

DS70150E-page 154 © 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”
(DS70157).

The dsPIC30F instruction set adds many enhance-
ments to the previous PIC® Microcontroller (MCUL)
instruction sets, while maintaining an easy migration
from PIC MCU instruction sets.

Most instructions are a single program memory word
(24-bits). Only three instructions require two program
memory locations.

Each single-word instruction is a 24-bit word divided
into an 8-bit opcode which specifies the instruction
type, and one or more operands which further specify
the operation of the instruction.

The instruction set is highly orthogonal and is grouped
into five basic categories:

« Word or byte-oriented operations

« Bit-oriented operations

« Literal operations

* DSP operations

« Control operations

Table 22-1 shows the general symbols used in
describing the instructions.

The dsPIC30F instruction set summary in Table 22-2
lists all the instructions along with the Status flags
affected by each instruction.

Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands:

» The first source operand, which is typically a
register ‘Wb’ without any address modifier

» The second source operand, which is typically a
register ‘Ws’ with or without an address modifier

* The destination of the result, which is typically a
register ‘Wd’ with or without an address modifier

However, word or byte-oriented file register instructions
have two operands:

« The file register specified by the value ‘f’

» The destination, which could either be the file
register ‘f’ or the WO register, which is denoted as
‘WREG’

Most bit oriented instructions (including simple rotate/
shift instructions) have two operands:

e The W register (with or without an address modi-
fier) or file register (specified by the value of ‘Ws’
or ‘f")

« The bit in the W register or file register
(specified by a literal value, or indirectly by the
contents of register ‘Wb’)

The literal instructions that involve data movement may
use some of the following operands:

« Aliteral value to be loaded into a W register or file
register (specified by the value of ‘k’)

« The W register or file register where the literal
value is to be loaded (specified by ‘Wb’ or ‘")

However, literal instructions that involve arithmetic or
logical operations use some of the following operands:

» The first source operand, which is a register ‘Wb’
without any address modifier

« The second source operand, which is a literal
value

» The destination of the result (only if not the same
as the first source operand), which is typically a
register ‘Wd’ with or without an address modifier

The MAC class of DSP instructions may use some of the
following operands:

e The accumulator (A or B) to be used (required
operand)

* The W registers to be used as the two operands

e The X and Y address space prefetch operations

e The X and Y address space prefetch destinations

* The accumulator write-back destination

The other DSP instructions do not involve any

multiplication, and may include:

« The accumulator to be used (required)

« The source or destination operand (designated as
Wso or Wdo, respectively) with or without an
address modifier

« The amount of shift, specified by a W register ‘Wn’
or a literal value

The control instructions may use some of the following
operands:

¢ A program memory address

* The mode of the table read and table write
instructions

All instructions are a single word, except for certain
double word instructions, which were made double
word instructions so that all the required information is
available in these 48 bits. In the second word, the
8 MSbs are ‘O’s. If this second word is executed as an
instruction (by itself), it will execute as a NOP.

© 2011 Microchip Technology Inc.

DS70150E-page 165

dsPIC30F6010A/6015

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Ilgnisjt? sz?nn;?]l% Assembly Syntax Description w#; :)(Is cjccl);s Stitfl#:;;gs
52 NEG NEG Acc Negate Accumulator 1 1 OA,0B,0AB,
SA,SB,SAB
NEG i f=f+1 1 1 C,DC,N,0V,Z2
NEG T,WREG WREG =f+1 1 1 C,DC,N,0V,Z
NEG Ws,Wd Wd=Ws +1 1 1 C,DC,N,0V,Z
53 NOP NOP No Operation 1 1 None
NOPR No Operation 1 1 None
54 POP POP f Pop f from Top-of-Stack (TOS) 1 1 None
POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None
POP.D wnd Pop from Top-of-Stack (TOS) to 1 2 None
W(nd):W(nd+1)
POP.S Pop Shadow Registers 1 1 All
55 PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None
PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None
PUSH.D Wns Push W(ns):W(ns +1) to Top-of-Stack (TOS) 1 2 None
PUSH.S Push Shadow Registers 1 1 None
56 PWRSAV PWRSAV #litl Go into Sleep or Idle mode 1 1 WDTO,Sleep
57 RCALL RCALL Expr Relative Call 1 2 None
RCALL wn Computed Call 1 2 None
58 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None
REPEAT wn Repeat Next Instruction (Wn) + 1 times 1 1 None
59 RESET RESET Software device Reset 1 1 None
60 RETFIE RETFIE Return from interrupt 1 3(2) |None
61 RETLW RETLW #1it10,Wn Return with literal in Wn 1 3(2) None
62 RETURN RETURN Return from Subroutine 1 3(2) |None
63 RLC RLC f f = Rotate Left through Carry f 1 1 C\N,Z
RLC f,WREG WREG = Rotate Left through Carry f 1 1 CN,Z
RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 CN,Z
64 RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N,Z
RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z
RLNC Ws,Wwd Wd = Rotate Left (No Carry) Ws 1 1 N,Z
65 RRC RRC f f = Rotate Right through Carry f 1 1 CN,Zz
RRC f,WREG WREG = Rotate Right through Carry f 1 1 CN,Z
RRC Ws,Wwd Wd = Rotate Right through Carry Ws 1 1 CN,Z
66 RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N,Z
RRNC £,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z
RRNC Ws,Wwd Wd = Rotate Right (No Carry) Ws 1 1 N,Z
67 SAC SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None
SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None
68 SE SE Ws,Wnd Whnd = sign extended Ws 1 1 CN,Z
69 SETM SETM f f = OXFFFF 1 1 None
SETM WREG WREG = OxFFFF 1 1 None
SETM Ws Ws = OXxFFFF 1 1 None
70 SFTAC SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,0B,0AB,
SA,SB,SAB
SFTAC Acc,#S1it6 Arithmetic Shift Accumulator by Slit6 1 1 OA,0B,0AB,
SA,SB,SAB
71 SL SL i f = Left Shift f 1 1 C,N,0V,Z
SL f,WREG WREG = Left Shift f 1 1 C,N,0Vv,Z2
SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,0V,Z2
SL Wb, Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z
SL Wb, #1it5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z

© 2011 Microchip Technology Inc.

DS70150E-page 171

dsPIC30F6010A/6015

10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS

(CHPS = 01, SIMSAM = 0, ASAM =0, SSRC = 000)

FIGURE 24-25:

ADCLK

L
0
.......................... B-------
<
IS N N A N NN
A R "W
1
0
.......................... B-------
<
h o b ot NN NN
..... PSR SR - SR - N0 - SR - S A - N
o o
2 z
%) 3 £
a4 [a)
5 <4
Wt -] - - - -) R D A .
® L L
- e ot [
o
z
% b
[(a)]
% <<
c - o 2 o =4 o I3) w L
8§ = £ £ £ £ g Z &
°E < a © a © o
5 R2] » R » <
Wm %) T (R | [a]
0 x e - b=
cuw m G 5 S

Iqd

ADRES(0)

ADRES(1)

® 6 ® @

® ®

0 ® 6

® ©

@ - Software sets ADCON. SAMP to start sampling.

TsAMP is described in Section 17. “10-bit A/D Converter” (DS70046) of the “dsPIC30F Family Reference Manual”.

@ - Software clears ADCON. SAMP to start conversion.

@ - Sampling starts after discharge period.

@ - Sampling ends, conversion sequence starts.

® - Convert hit 9.

®) - Convert hit 8.

- Convert bit 0.

(@ - One TaD for end of conversion.

© 2011 Microchip Technology Inc.

DS70150E-page 214

dsPIC30F6010A/6015

80-Lead Plastic Thin Quad Flatpack (PT) — 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

C1

i e =
i =
% / SILK SCREEN %

v 0a000B000DoaoooE—-

RECOMMENDED LAND PATTERN

Units MILLIMETERS

Dimension Limits| MIN [NOM | MAX
Contact Pitch E 0.50 BSC
Contact Pad Spacing C1 13.40
Contact Pad Spacing C2 13.40
Contact Pad Width (X80) X1 0.30
Contact Pad Length (X80) Y1 1.50
Distance Between Pads G 0.20

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

© 2011 Microchip Technology Inc. DS70150E-page 221

dsPIC30F6010A/6015

NOTES:

DS70150E-page 224 © 2011 Microchip Technology Inc.

dsPIC30F6010A/6015

INDEX

A

A/D
Aborting @ CONVErSIONcccccvvveeiiieeeiieeeeieee e
Acquisition Requirements .
ADCHScoocveeevvien.
ADCONL .ot
ADCON2Z ..o
ADCONS ..ot
ADCSSL it
ADPCFG ...
Configuring Analog Port Pinsccccceeviieeiniienenns 149
Connection Considerationsccccevveereenieeeninenns 149
Conversion OPEerationccccoveeeeeiiieesniieneniieeennes 142
Conversion Rate Parameterscccceevveeeniineeenns 144
COoNVersion SPEEAScceeveuieeeiiiieesiieeeseeeeenieee s 144
Effects of @ RESELccuveiiiiiieiiiieeie e 148
Operation During CPU Idle Modeccccoveerineene 148
Operation During CPU Sleep Modecccccecvverennes 148
Output Formatsccoceeveivieeennen.
Power-Down Modes
Programming the Start of Conversion Trigger 143
RegISter Mapcccoovviiiiiiiiiiiceit e 150
ReSUlt BUFfErccoiiiieiiiieeee e 142
Selecting the Conversion CloCKcccccovvvveviierenns 143
Selecting the Conversion Sequencecccccueee 142
Voltage Reference Schematiccccocvvviveenineenn. 145
1 Msps Configuration Guidelinecccceevvvrennnnen. 145

10-bit High-Speed Analog-to-Digital
Converter Module
600 ksps Configuration Guideline

750 ksps Configuration Guidelineccccceeevieeennns
AC CharacteristiCSuuviieeeiiiiiiiieee s esrreee e
Internal FRC Jitter, Accuracy and Drift 192
Internal LPRC ACCUIACYccocuieriiiniieniieirieniieeee 192
Load ConditioNScccvveveeeiiiiiiiieice et 188
Temperature and Voltage Specifications 188
Address Generator UNitScccccevvevieiiiieenieieesieee e 35
Alternate Vector Tablecccoovvveeiiiiiiiiiiice e 45
Alternate 16-bit TIMer/COUNLErccccevvvveeviireeiieee e 93
Assembler
MPASM ASSEMDBIETovviiiiiieiiiiieee e 176
Automatic Clock StretChccccveeviiveeiieecee e, 115
During 10-bit Addressing (STREN = 1)ccceeveenee. 115
During 7-bit Addressing (STREN = 1)ccccocveeennen. 115

ReCEIVE MOUEoeieiiiiiieiiieieee e 115
Transmit MOGecoovveeiiiiiiieiiiee e 115
B
Barrel Shifter ...
Bit-Reversed Addressing
Examplecccee... .
Implementation ...
Modifier Values (table)cccviveiniiiiiieieiieeeeen, 39
Sequence Table (16-ENtry)ccocvveeiieeeesiireeiieee e 39
Block Diagrams
CAN Buffers and Protocol Enginec.cccceevveeene 129
Dedicated Port Structure59
DSP Engine 19
ASPIC30FB60L0Aooiiiiiiiiiieeiie e s 10
ASPIC30FB0L5c.eeeiiiieiiiiieeiieeree e 11
External Power-on Reset CirCuitccceeviiieennnes 160
Input Capture Modecccceeviieeeeiiiiieeee e 81
o OO 113

OSCillator SYSEMccovcviveiiiiee e e 154
Output Compare Mode 85
PWM Modulecccccevveenne ... 98
Quadrature Encoder Interface .. 91
Reset SYStemcccooiiiiiiiiii 158
Shared Port StrUCLUIeccceeevviiiiiiieeeeeciiiieee e 60
S e 109
SPI Master/Slave Connectioncccceevvveeeiiveennns 109
UART RECEIVEN ..ot 121
UART TranSmMitterccceevvuveeieireesiieeesieeeesieeeenenens 120
10-bit High-Speed A/D Functional 141

16-bit Timerl Module (Type A Timer)
16-bit Timer2 (Type B Timer) for dsPIC30F6010A 72

16-bit Timer2 (Type B Timer) for dsPIC30F6015 72
16-bit Timer3 (Type C Timer)ccocceveeiiereeeee e 73
16-bit Timer4 (Type B TIMer) ...ccccccccvvevveveeeiiee e 78
16-bit Timer5 (Type C Timer)cccccevvvivieniieniennen. 78
32-bit Timer2/3 for dsPIC30F6010A 70
32-bit Timer2/3 for dsPIC30F6015 e 71
32-Dit TIMEIA/S oo 77
BOR. See Brown-out Reset.
Brown-out Reset (BOR)cccveeeiiieeiiiieeeiieeeeieee e sieee s 152
C
C Compilers
MPLAB C18oiiiiiiiiiieiie ettt 176
CAN
Baud Rate Settingcccccecvevevieeeiiie e 133
Bit TIMING oo 133
Phase Segmentsccccceiviieniiie e, 134
Prescaler ... 134
Propagation Segment 134
Sample Point 134
SyNchronizationcccceevvveviieecciee e 134
CANL1 Register Map for dsPIC30F6010A/6015 135
CAN2 Register Map for dsPIC30F6010A 137
Frame TYPES ..ovvviiiiiiiiiiieee it 128
Message RECEPLIONccceeieriieriiiieeiie e 131
Acceptance Filter Masks .131
Acceptance Filters .131
Receive Buffers131
ReCEIVE EITOrSooeeiiiiiiiiieeniee e 131
Receive INterruptsccceevcvveeiiieeeieeeeeiee e 131
Receive OVEITUNcoceeiiiieiiiee e 131
Message TranSMISSIONccovveeerireeenieeennneee e 132
FY o To] 1] 4 o SR 132
EITOrS e 132
Priority 132
Sequence 132
Transmit Buffers 132
Transmit INTErruPtSooovvveiiiieeiieeeeee e 133
Operation MOUEScocvveeviiieeiiieesreee e sireeeseee e 130
DiSableoooiiiieii e 130
Error Recognitionccoceevieeennieecniiee e 130
Initialization
Listen-Only
Loopback
NOIMA .o
OVEIVIEW ...ttt ettt e e
CAN MOAUIE ..

Center-Aligned PWM

Code Examples
Data EEPROM BIlocK Eraseccccoccvvvveieeeiiiinnnnnnn. 56
Data EEPROM BIock WIitec.cvvvvveeeiiiieeecieee s 58

© 2011 Microchip Technology Inc.

DS70150E-page 227

