
Microchip Technology - DSPIC30F6015-20E/PT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor dsPIC

Core Size 16-Bit

Speed 20 MIPS

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT

Number of I/O 52

Program Memory Size 144KB (48K x 24)

Program Memory Type FLASH

EEPROM Size 4K x 8

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 2.5V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-TQFP

Supplier Device Package 64-TQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6015-20e-pt

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic30f6015-20e-pt-4394956
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


dsPIC30F6010A/6015
1.0 DEVICE OVERVIEW

This document contains device-specific information for
the dsPIC30F6010A and dsPIC30F6015 devices. The
dsPIC30F devices contain extensive Digital Signal
Processor (DSP) functionality within a high-perfor-
mance 16-bit microcontroller (MCU) architecture.
Figure 1-1 shows a device block diagram for the
dsPIC30F6010A device. Figure 1-2 shows a device
block diagram for the dsPIC30F6015 device.

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”
(DS70157).
© 2011 Microchip Technology Inc. DS70150E-page 9



dsPIC30F6010A/6015

5.1 Interrupt Priority
The user-assignable Interrupt Priority bits (IP<2:0>)
for each individual interrupt source are located in the
Least Significant 3 bits of each nibble within the IPCx
register(s). Bit 3 of each nibble is not used and is read
as a ‘0’. These bits define the priority level assigned
to a particular interrupt by the user. 

Since more than one interrupt request source may be
assigned to a specific user-assigned priority level, a
means is provided to assign priority within a given level.
This method is called “Natural Order Priority”. 

Natural Order Priority is determined by the position of
an interrupt in the vector table, and only affects
interrupt operation when multiple interrupts with the
same user-assigned priority become pending at the
same time.

Table 5-1 lists the interrupt numbers and interrupt
sources for the dsPIC DSC devices and their associated
vector numbers. 

The ability for the user to assign every interrupt to one
of seven priority levels means that the user can assign
a very high overall priority level to an interrupt with a
low natural order priority. 

TABLE 5-1: INTERRUPT VECTOR TABLE

Note: The user-assignable priority levels start at
0, as the lowest priority and level 7, as the
highest priority.

Note 1: The Natural Order Priority scheme has 0
as the highest priority and 53 as the
lowest priority. 

2: The Natural Order Priority number is the
same as the INT number.

INT 
Number

Vector 
Number Interrupt Source

Highest Natural Order Priority
0 8 INT0 – External Interrupt 0
1 9 IC1 – Input Capture 1
2 10 OC1 – Output Compare 1
3 11 T1 – Timer1
4 12 IC2 – Input Capture 2
5 13 OC2 – Output Compare 2
6 14 T2 – Timer2
7 15 T3 – Timer3
8 16 SPI1 
9 17 U1RX – UART1 Receiver
10 18 U1TX – UART1 Transmitter
11 19 ADC – ADC Convert Done
12 20 NVM - NVM Write Complete
13 21 SI2C – I2C™ Slave Interrupt
14 22 MI2C – I2C Master Interrupt
15 23 Input Change Interrupt
16 24 INT1 – External Interrupt 1
17 25 IC7 – Input Capture 7
18 26 IC8 – Input Capture 8
19 27 OC3 – Output Compare 3
20 28 OC4 – Output Compare 4
21 29 T4 – Timer4
22 30 T5 – Timer5
23 31 INT2 – External Interrupt 2
24 32 U2RX – UART2 Receiver
25 33 U2TX – UART2 Transmitter
26 34 SPI2 
27 35 C1 – Combined IRQ for CAN1
28 36 IC3 – Input Capture 3
29 37 IC4 – Input Capture 4
30 38 IC5 – Input Capture 5
31 39 IC6 – Input Capture 6
32 40 OC5 – Output Compare 5
33 41 OC6 – Output Compare 6
34 42 OC7 – Output Compare 7
35 43 OC8 – Output Compare 8
36 44 INT3 – External Interrupt 3
37 45 INT4 - External Interrupt 4
38 46 C2 – Combined IRQ for CAN2
39 47 PWM – PWM Period Match
40 48 QEI – QEI Interrupt
41 49 Reserved
42 50 Reserved
43 51 FLTA – PWM Fault A
44 52 FLTB – PWM Fault B

45-53 53-61 Reserved
Lowest Natural Order Priority
DS70150E-page 42 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

5.2 Reset Sequence
A Reset is not a true exception because the interrupt
controller is not involved in the Reset process. The pro-
cessor initializes its registers in response to a Reset
which forces the PC to zero. The processor then begins
program execution at location 0x000000. A GOTO
instruction is stored in the first program memory loca-
tion, immediately followed by the address target for the
GOTO instruction. The processor executes the GOTO to
the specified address and then begins operation at the
specified target (start) address.

5.2.1 RESET SOURCES
There are 6 sources of error which will cause a device
Reset. 

• Watchdog Time-out:
The watchdog has timed out, indicating that the 
processor is no longer executing the correct flow 
of code.

• Uninitialized W Register Trap:
An attempt to use an uninitialized W register as 
an Address Pointer will cause a Reset.

• Illegal Instruction Trap:
Attempted execution of any unused opcodes will 
result in an illegal instruction trap. Note that a 
fetch of an illegal instruction does not result in an 
illegal instruction trap if that instruction is flushed 
prior to execution due to a flow change.

• Brown-out Reset (BOR):
A momentary dip in the power supply to the 
device has been detected which may result in 
malfunction.

• Trap Lockout:
Occurrence of multiple trap conditions 
simultaneously will cause a Reset.

5.3 Traps
Traps can be considered as non-maskable interrupts
indicating a software or hardware error, which adhere
to a predefined priority, as shown in Figure 5-1. They
are intended to provide the user a means to correct
erroneous operation during debug and when operating
within the application.

Note that many of these trap conditions can only be
detected when they occur. Consequently, the question-
able instruction is allowed to complete prior to trap
exception processing. If the user chooses to recover
from the error, the result of the erroneous action that
caused the trap may have to be corrected.

There are 8 fixed priority levels for traps: Level 8
through Level 15, which means that IPL3 is always set
during processing of a trap.

If the user is not currently executing a trap, and he sets
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all
interrupts are disabled, but traps can still be processed.

5.3.1 TRAP SOURCES
The following traps are provided with increasing prior-
ity. However, since all traps can be nested, priority has
little effect.

Math Error Trap:
The math error trap executes under the following four
circumstances: 

1. Should an attempt be made to divide by zero,
the divide operation will be aborted on a cycle
boundary and the trap taken. 

2. If enabled, a math error trap will be taken when
an arithmetic operation on either Accumulator A
or B causes an overflow from bit 31 and the
Accumulator Guard bits are not utilized.

3. If enabled, a math error trap will be taken when
an arithmetic operation on either Accumulator A
or B causes a catastrophic overflow from bit 39
and all saturation is disabled.

4. If the shift amount specified in a shift instruction
is greater than the maximum allowed shift
amount, a trap will occur.

Note: If the user does not intend to take correc-
tive action in the event of a trap error
condition, these vectors must be loaded
with the address of a default handler that
simply contains the RESET instruction. If,
on the other hand, one of the vectors
containing an invalid address is called, an
address error trap is generated. 
© 2011 Microchip Technology Inc. DS70150E-page 43



dsPIC30F6010A/6015

Address Error Trap:
This trap is initiated when any of the following
circumstances occurs:

1. A misaligned data word access is attempted.
2. A data fetch from our unimplemented data

memory location is attempted.
3. A data access of an unimplemented program

memory location is attempted.
4. An instruction fetch from vector space is

attempted.

5. Execution of a “BRA #literal” instruction or a
“GOTO #literal” instruction, where literal
is an unimplemented program memory address.

6. Executing instructions after modifying the PC to
point to unimplemented program memory
addresses. The PC may be modified by loading
a value into the stack and executing a RETURN
instruction.

Stack Error Trap:
This trap is initiated under the following conditions:

1. The Stack Pointer is loaded with a value which
is greater than the (user programmable) limit
value written into the SPLIM register (stack
overflow).

2. The Stack Pointer is loaded with a value which
is less than 0x0800 (simple stack underflow).

Oscillator Fail Trap:
This trap is initiated if the external oscillator fails and
operation becomes reliant on an internal RC backup.

5.3.2 HARD AND SOFT TRAPS
It is possible that multiple traps can become active
within the same cycle (e.g., a misaligned word stack
write to an overflowed address). In such a case, the
fixed priority shown in Figure 5-2 is implemented,
which may require the user to check if other traps are
pending in order to completely correct the Fault.

‘Soft’ traps include exceptions of priority level 8 through
level 11, inclusive. The arithmetic error trap (level 11)
falls into this category of traps.

‘Hard’ traps include exceptions of priority level 12
through level 15, inclusive. The address error (level
12), stack error (level 13) and oscillator error (level 14)
traps fall into this category.

Each hard trap that occurs must be Acknowledged
before code execution of any type may continue. If a
lower priority hard trap occurs while a higher priority
trap is pending, Acknowledged, or is being processed,
a hard trap conflict will occur.

The device is automatically reset in a hard trap conflict
condition. The TRAPR Status bit (RCON<15>) is set
when the Reset occurs, so that the condition may be
detected in software.

FIGURE 5-1: TRAP VECTORS 

Note: In the MAC class of instructions, wherein
the data space is split into X and Y data
space, unimplemented X space includes
all of Y space, and unimplemented Y
space includes all of X space. 

Oscillator Fail Trap Vector
Stack Error Trap Vector

Reserved Vector
Math Error Trap Vector

Reserved

Oscillator Fail Trap Vector
Address Error Trap Vector

Reserved Vector
Reserved Vector
Interrupt 0 Vector
Interrupt 1 Vector

Interrupt 52 Vector
Interrupt 53 Vector

Math Error Trap Vector

D
ec

re
as

in
g

P
rio

rit
y

0x000000

0x000014

Reserved

Stack Error Trap Vector

Reserved Vector
IVT

AIVT

0x000080
0x00007E

0x0000FE

Reserved

0x000094

Reset – GOTO Instruction
Reset – GOTO Address 0x000002

Reserved
0x000082
0x000084

0x000004

Reserved Vector

Reserved Vector
Interrupt 0 Vector
Interrupt 1 Vector

Interrupt 52 Vector
Interrupt 53 Vector

Address Error Trap Vector
DS70150E-page 44 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

6.4 RTSP Operation
The dsPIC30F Flash program memory is organized
into rows and panels. Each row consists of 32 instruc-
tions, or 96 bytes. Each panel consists of 128 rows, or
4K x 24 instructions. RTSP allows the user to erase one
row (32 instructions) at a time and to program
32 instructions at one time.

Each panel of program memory contains write latches
that hold 32 instructions of programming data. Prior to
the actual programming operation, the write data must
be loaded into the panel write latches. The data to be
programmed into the panel is loaded in sequential
order into the write latches; instruction 0, instruction 1,
etc. The addresses loaded must always be from a 32
address boundary.

The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the write latches. Programming is performed by
setting the special bits in the NVMCON register. 32
TBLWTL and 32 TBLWTH instructions are required to
load the 32 instructions.

All of the table write operations are single-word writes
(2 instruction cycles), because only the table latches
are written. 

After the latches are written, a programming operation
needs to be initiated to program the data.

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD
range.

6.5 RTSP Control Registers
The four SFRs used to read and write the program
Flash memory are:

• NVMCON
• NVMADR
• NVMADRU
• NVMKEY

6.5.1 NVMCON REGISTER
The NVMCON register controls which blocks are to be
erased, which memory type is to be programmed and
start of the programming cycle.

6.5.2 NVMADR REGISTER
The NVMADR register is used to hold the lower two
bytes of the Effective Address. The NVMADR register
captures the EA<15:0> of the last table instruction that
has been executed and selects the row to write.

6.5.3 NVMADRU REGISTER
The NVMADRU register is used to hold the upper byte
of the Effective Address. The NVMADRU register cap-
tures the EA<23:16> of the last table instruction that
has been executed.

6.5.4 NVMKEY REGISTER
NVMKEY is a write-only register that is used for write
protection. To start a programming or an erase
sequence, the user must consecutively write 0x55 and
0xAA to the NVMKEY register. Refer to Section 6.6
“Programming Operations” for further details.

Note: The user can also directly write to the
NVMADR and NVMADRU registers to
specify a program memory address for
erasing or programming.
DS70150E-page 50 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

7.2 Erasing Data EEPROM 

7.2.1 ERASING A BLOCK OF DATA 
EEPROM 

In order to erase a block of data EEPROM, the
NVMADRU and NVMADR registers must initially
point to the block of memory to be erased. Configure
NVMCON for erasing a block of data EEPROM and
set the WR and WREN bits in the NVMCON register.
Setting the WR bit initiates the erase, as shown in
Example 7-2.

EXAMPLE 7-2: DATA EEPROM BLOCK ERASE

7.2.2 ERASING A WORD OF DATA 
EEPROM

The NVMADRU and NVMADR registers must point to
the block. Select a block of data Flash and set the WR
and WREN bits in the NVMCON register. Setting the
WR bit initiates the erase, as shown in Example 7-3.

EXAMPLE 7-3: DATA EEPROM WORD ERASE

; Select data EEPROM block, WR, WREN bits
MOV #4045,W0
MOV W0,NVMCON ; Initialize NVMCON SFR

    
; Start erase cycle by setting WR after writing key sequence

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MOV #0x55,W0 ; 
MOV W0,NVMKEY ; Write the 0x55 key

 MOV #0xAA,W1                ;
MOV W1,NVMKEY  ; Write the 0xAA key
BSET NVMCON,#WR         ; Initiate erase sequence

    NOP
    NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete

; Select data EEPROM word, WR, WREN bits
MOV #4044,W0
MOV W0,NVMCON

    
; Start erase cycle by setting WR after writing key sequence

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MOV #0x55,W0 ; 
MOV W0,NVMKEY ; Write the 0x55 key
MOV #0xAA,W1 ;
MOV W1,NVMKEY  ; Write the 0xAA key
BSET NVMCON,#WR ; Initiate erase sequence

    NOP
    NOP    
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
DS70150E-page 56 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

7.3 Writing to the Data EEPROM 
To write an EEPROM data location, the following
sequence must be followed:

1. Erase data EEPROM word.
a) Select word, data EEPROM, erase and set

WREN bit in NVMCON register.
b) Write address of word to be erased into

NVMADRU/NVMADR.
c) Enable NVM interrupt (optional).
d) Write 0x55 to NVMKEY.
e) Write 0xAA to NVMKEY.
f) Set the WR bit. This will begin erase cycle.
g) Either poll NVMIF bit or wait for NVMIF

interrupt.
h) The WR bit is cleared when the erase cycle

ends.
2. Write data word into data EEPROM write

latches.
3. Program 1 data word into data EEPROM.

a) Select word, data EEPROM, program and
set WREN bit in NVMCON register.

b) Enable NVM write done interrupt (optional).
c) Write 0x55 to NVMKEY.
d) Write 0xAA to NVMKEY.
e) Set the WR bit. This will begin program

cycle.
f) Either poll NVMIF bit or wait for NVM

interrupt.
g) The WR bit is cleared when the write cycle

ends.

The write will not initiate if the above sequence is not
exactly followed (write 0x55 to NVMKEY, write 0xAA to
NVMCON, then set WR bit) for each word. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in NVMCON must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM, due to unexpected code exe-
cution. The WREN bit should be kept clear at all times,
except when updating the EEPROM. The WREN bit is
not cleared by hardware.

After a write sequence has been initiated, clearing the
WREN bit will not affect the current write cycle. The WR
bit will be inhibited from being set unless the WREN bit
is set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the Nonvolatile Memory Write
Complete Interrupt Flag bit (NVMIF) is set. The user
may either enable this interrupt, or poll this bit. NVMIF
must be cleared by software.

7.3.1 WRITING A WORD OF DATA 
EEPROM 

Once the user has erased the word to be programmed,
then a table write instruction is used to write one write
latch, as shown in Example 7-4. 

EXAMPLE 7-4: DATA EEPROM WORD WRITE
; Point to data memory

MOV #LOW_ADDR_WORD,W0 ; Init pointer
MOV #HIGH_ADDR_WORD,W1
MOV W1,TBLPAG
MOV #LOW(WORD),W2 ; Get data
TBLWTL W2,[ W0] ; Write data

; The NVMADR captures last table access address
; Select data EEPROM for 1 word op

MOV #0x4004,W0
MOV W0,NVMCON

    
; Operate key to allow write operation

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MOV #0x55,W0
MOV W0,NVMKEY ; Write the 0x55 key
MOV #0xAA,W1
MOV W1,NVMKEY ; Write the 0xAA key
BSET NVMCON,#WR ; Initiate program sequence

    NOP
    NOP    
; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete
© 2011 Microchip Technology Inc. DS70150E-page 57



©
 2011 M

icrochip Technology Inc.
D

S
70150E

-page 61

dsPIC
30F6010A

/6015

TA

Bit 1 Bit 0 Reset State

TR — — 1100 0110 0000 0000

PO — — 0000 0000 0000 0000

LA — — 0000 0000 0000 0000

TR TRISB1 TRISB0 1111 1111 1111 1111

PO RB1 RB0 0000 0000 0000 0000

LA LATB1 LATB0 0000 0000 0000 0000

TR TRISC1 — 1110 0000 0000 1010

PO RC1 — 0000 0000 0000 0000

LA LATC1 — 0000 0000 0000 0000

TR TRISD1 TRISD0 1111 1111 1111 1111

PO RD1 RD0 0000 0000 0000 0000

LA LATD1 LATD0 0000 0000 0000 0000

TR TRISE1 TRISE0 0000 0011 1111 1111

PO RE1 RE0 0000 0000 0000 0000

LA LATE1 LATE0 0000 0000 0000 0000

TR TRISF1 TRISF0 0000 0001 1111 1111

PO RF1 RF0 0000 0000 0000 0000

LA LATF1 LATF0 0000 0000 0000 0000

TR TRISG1 TRISG0 0000 0011 1100 1111

PO RG1 RG0 0000 0000 0000 0000

LA LATG1 LATG0 0000 0000 0000 0000

Le
No
BLE 8-1: dsPIC30F6010A PORT REGISTER MAP(1)

SFR 
Name

Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

ISA 02C0 TRISA15 TRISA14 — — — TRISA10 TRISA9 — — — — — — —

RTA 02C2 RA15 RA14 — — — RA10 RA9 — — — — — — —

TA 02C4 LATA15 LATA14 — — — LATA10 LATA9 — — — — — — —

ISB 02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2

RTB 02C8 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2

TB 02CB LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2

ISC 02CC TRISC15 TRISC14 TRISC13 — — — — — — — — — TRISC3 —

RTC 02CE RC15 RC14 RC13 — — — — — — — — — RC3 —

TC 02D0 LATC15 LATC14 LATC13 — — — — — — — — — LATC3 —

ISD 02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2

RTD 02D4 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2

TD 02D6 LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2

ISE 02D8 — — — — — — TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2

RTE 02DA — — — — — — RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2

TE 02DC — — — — — — LATE9 LATE8 LATE7 LATE6 LATE5 LATE4 LATE3 LATE2

ISF 02EE — — — — — — — TRISF8 TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2

RTF 02E0 — — — — — — — RF8 RF7 RF6 RF5 RF4 RF3 RF2

TF 02E2 — — — — — — — LATF8 LATF7 LATF6 LATF5 LATF4 LATF3 LATF2
ISG 02E4 — — — — — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2
RTG 02E6 — — — — — — RG9 RG8 RG7 RG6 — — RG3 RG2

TG 02E8 — — — — — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2
gend: u = uninitialized bit; — = unimplemented bit, read as ‘0’
te 1: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.



dsPIC30F6010A/6015

NOTES:
DS70150E-page 80 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

13.1 Timer2 and Timer3 Selection Mode
Each output compare channel can select between one
of two 16-bit timers; Timer2 or Timer3.

The selection of the timers is controlled by the OCTSEL
bit (OCxCON<3>). Timer2 is the default timer resource
for the Output Compare module.

13.2 Simple Output Compare Match 
Mode

When control bits OCM<2:0> (OCxCON<2:0>) = 001,
010 or 011, the selected output compare channel is
configured for one of three simple output compare
match modes:

• Compare forces I/O pin low
• Compare forces I/O pin high
• Compare toggles I/O pin

The OCxR register is used in these modes. The OCxR
register is loaded with a value and is compared to the
selected incrementing timer count. When a compare
occurs, one of these compare match modes occurs. If
the counter resets to zero before reaching the value in
OCxR, the state of the OCx pin remains unchanged.

13.3 Dual Output Compare Match Mode
When control bits OCM<2:0> (OCxCON<2:0>) = 100
or 101, the selected output compare channel is config-
ured for one of two Dual Output Compare modes,
which are:

• Single Output Pulse mode
• Continuous Output Pulse mode

13.3.1 SINGLE PULSE MODE
For the user to configure the module for the generation
of a single output pulse, the following steps are
required (assuming timer is off):

• Determine instruction cycle time TCY.
• Calculate desired pulse-width value based on 

TCY.
• Calculate time to start pulse from timer start value 

of 0x0000.
• Write pulse-width start and stop times into OCxR 

and OCxRS Compare registers (x denotes 
channel 1, 2, ...,N).

• Set Timer Period register to value equal to, or 
greater than, value in OCxRS Compare register.

• Set OCM<2:0> = 100.
• Enable timer, TON (TxCON<15>) = 1.

To initiate another single pulse, issue another write to
set OCM<2:0> = 100.

13.3.2 CONTINUOUS PULSE MODE
For the user to configure the module for the generation
of a continuous stream of output pulses, the following
steps are required: 

• Determine instruction cycle time TCY.
• Calculate desired pulse value based on TCY.
• Calculate timer to start pulse width from timer start 

value of 0x0000.
• Write pulse-width start and stop times into OCxR 

and OCxRS (x denotes channel 1, 2, ...,N) 
Compare registers, respectively.

• Set Timer Period register to value equal to, or 
greater than, value in OCxRS Compare register.

• Set OCM<2:0> = 101.
• Enable timer, TON (TxCON<15>) = 1.

13.4 Simple PWM Mode
When control bits OCM<2:0> (OCxCON<2:0>) = 110
or 111, the selected output compare channel is config-
ured for the PWM mode of operation. When configured
for the PWM mode of operation, OCxR is the main latch
(read-only) and OCxRS is the secondary latch. This
enables glitchless PWM transitions.

The user must perform the following steps in order to
configure the output compare module for PWM
operation:

1. Set the PWM period by writing to the appropriate
period register.

2. Set the PWM duty cycle by writing to the OCxRS
register.

3. Configure the output compare module for PWM
operation.

4. Set the TMRx prescale value and enable the
Timer, TON (TxCON<15>) = 1.

13.4.1 INPUT PIN FAULT PROTECTION 
FOR PWM

When control bits OCM<2:0> (OCxCON<2:0>) = 111,
the selected output compare channel is again
configured for the PWM mode of operation, with the
additional feature of input Fault protection. While in this
mode, if a logic ‘0’ is detected on the OCFA/B pin, the
respective PWM output pin is placed in the high-
impedance input state. The OCFLT bit (OCxCON<4>)
indicates whether a Fault condition has occurred. This
state will be maintained until both of the following
events have occurred:

• The external Fault condition has been removed. 
• The PWM mode has been re-enabled by writing 

to the appropriate control bits.
DS70150E-page 86 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

14.7.2 TIMER OPERATION DURING CPU 

IDLE MODE
When the CPU is placed in the Idle mode and the QEI
module is configured in the 16-bit Timer mode, the
16-bit timer will operate if the QEISIDL bit (QEI-
CON<13>) = 0. This bit defaults to a logic ‘0’ upon
executing POR and BOR. For halting the timer module
during the CPU Idle mode, QEISIDL should be set
to ‘1’.

If the QEISIDL bit is cleared, the timer will function
normally, as if the CPU Idle mode had not been
entered.

14.8 Quadrature Encoder Interface 
Interrupts

The Quadrature Encoder Interface has the ability to
generate an interrupt on occurrence of the following
events:

• Interrupt on 16-bit up/down position counter 
rollover/underflow

• Detection of qualified index pulse, or if CNTERR 
bit is set

• Timer period match event (overflow/underflow)
• Gate accumulation event

The QEI Interrupt Flag bit, QEIIF, is asserted upon
occurrence of any of the above events. The QEIIF bit
must be cleared in software. QEIIF is located in the
IFS2 STATUS register.

Enabling an interrupt is accomplished via the respec-
tive enable bit, QEIIE. The QEIIE bit is located in the
IEC2 Control register.
DS70150E-page 94 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

19.4 Message Reception

19.4.1 RECEIVE BUFFERS
The CAN bus module has 3 receive buffers. However,
one of the receive buffers is always committed to mon-
itoring the bus for incoming messages. This buffer is
called the Message Assembly Buffer (MAB). So there
are 2 receive buffers visible, RXB0 and RXB1, that can
essentially instantaneously receive a complete
message from the protocol engine. 

All messages are assembled by the MAB, and are trans-
ferred to the RXBn buffers only if the acceptance filter
criterion is met. When a message is received, the RXnIF
flag (CiINTF<0> or CiINTF<1>) will be set. This bit can
only be set by the module when a message is received.
The bit is cleared by the CPU when it has completed
processing the message in the buffer. If the RXnIE bit
(CiINTE<0> or CiINTE<1>) is set, an interrupt will be
generated when a message is received.

RXF0 and RXF1 filters with RXM0 mask are associated
with RXB0. The filters RXF2, RXF3, RXF4, and RXF5
and the mask RXM1 are associated with RXB1. 

19.4.2 MESSAGE ACCEPTANCE FILTERS
The message acceptance filters and masks are used to
determine if a message in the message assembly buf-
fer should be loaded into either of the receive buffers.
Once a valid message has been received into the mes-
sage assembly buffer, the identifier fields of the mes-
sage are compared to the filter values. If there is a
match, that message will be loaded into the appropriate
receive buffer. 

The acceptance filter looks at incoming messages for
the RXIDE bit (CiRXnSID<0>) to determine how to
compare the identifiers. If the RXIDE bit is clear, the
message is a standard frame, and only filters with the
EXIDE bit (CiRXFnSID<0>) clear are compared. If the
RXIDE bit is set, the message is an extended frame,
and only filters with the EXIDE bit set are compared.
Configuring the RXM<1:0> bits to ‘01’ or ‘10’ can
override the EXIDE bit.

19.4.3 MESSAGE ACCEPTANCE FILTER 
MASKS

The mask bits essentially determine which bits to apply
the filter to. If any mask bit is set to a zero, then that bit
will automatically be accepted regardless of the filter
bit. There are 2 programmable acceptance filter masks
associated with the receive buffers, one for each buffer.

19.4.4 RECEIVE OVERRUN
An overrun condition occurs when the message
assembly buffer has assembled a valid received
message and the message is accepted through the
acceptance filters, but the receive buffer associated
with the filter still contains unread data. 

The overrun error flag, RXnOVR (CiINTF<15> or
CiINTF<14>) and the ERRIF bit (CiINTF<5>) will be set
and the message in the MAB will be discarded. 

If the DBEN bit is clear, RXB1 and RXB0 operate inde-
pendently. When this is the case, a message intended
for RXB0 will not be diverted into RXB1 if RXB0
contains an unread message and the RX0OVR bit will
be set. 

If the DBEN bit is set, the overrun for RXB0 is handled
differently. If a valid message is received for RXB0 and
RXFUL = 1 indicates that RXB0 is full and RXFUL = 0
indicates that RXB1 is empty, the message for RXB0
will be loaded into RXB1. An overrun error will not be
generated for RXB0. If a valid message is received for
RXB0 and RXFUL = 1, and RXFUL = 1 indicating that
both RXB0 and RXB1 are full, the message will be lost
and an overrun will be indicated for RXB1.

19.4.5 RECEIVE ERRORS
The CAN module will detect the following receive
errors:

• Cyclic Redundancy Check (CRC) error
• Bit Stuffing error
• Invalid message receive error

The receive error counter is incremented by one in
case one of these errors occur. The RXWAR bit
(CiINTF<9>) indicates that the Receive Error Counter
has reached the CPU warning limit of 96 and an
interrupt is generated.

19.4.6 RECEIVE INTERRUPTS
Receive interrupts can be divided into 3 major groups,
each including various conditions that generate
interrupts:

• Receive Interrupt

A message has been successfully received and loaded
into one of the receive buffers. This interrupt is acti-
vated immediately after receiving the End-of-Frame
(EOF) field. Reading the RXnIF flag will indicate which
receive buffer caused the interrupt. 

• Wake-up Interrupt

The CAN module has woken up from Disable mode or
the device has woken up from Sleep mode.
DS70150E-page 130 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015

• Receive Error Interrupts

A receive error interrupt will be indicated by the ERRIF
bit. This bit shows that an error condition occurred. The
source of the error can be determined by checking the
bits in the CAN Interrupt STATUS register, CiINTF. 

• Invalid message received

If any type of error occurred during reception of the last
message, an error will be indicated by the IVRIF bit.

• Receiver overrun

The RXnOVR bit indicates that an overrun condition
occurred.

• Receiver warning 

The RXWAR bit indicates that the Receive Error Coun-
ter (RERRCNT<7:0>) has reached the Warning limit of
96.

• Receiver error passive

The RXEP bit indicates that the Receive Error Counter
has exceeded the Error Passive limit of 127 and the
module has gone into Error Passive state.

19.5 Message Transmission

19.5.1 TRANSMIT BUFFERS
The CAN module has three transmit buffers. Each of
the three buffers occupies 14 bytes of data. Eight of the
bytes are the maximum 8 bytes of the transmitted mes-
sage. Five bytes hold the standard and extended
identifiers and other message arbitration information. 

19.5.2 TRANSMIT MESSAGE PRIORITY
Transmit priority is a prioritization within each node of the
pending transmittable messages. There are 4 levels of
transmit priority. If TXPRI<1:0> (CiTXnCON<1:0>, where
n = 0, 1 or 2 represents a particular transmit buffer) for a
particular message buffer is set to ‘11’, that buffer has the
highest priority. If TXPRI<1:0> for a particular message
buffer is set to ‘10’ or ‘01’, that buffer has an intermediate
priority. If TXPRI<1:0> for a particular message buffer is
‘00’, that buffer has the lowest priority.

19.5.3 TRANSMISSION SEQUENCE
To initiate transmission of the message, the TXREQ bit
(CiTXnCON<3>) must be set. The CAN bus module
resolves any timing conflicts between setting of the
TXREQ bit and the Start of Frame (SOF), ensuring
that if the priority was changed, it is resolved correctly
before the SOF occurs. When TXREQ is set, the
TXABT (CiTXnCON<6>), TXLARB (CiTXnCON<5>)
and TXERR (CiTXnCON<4>) flag bits are
automatically cleared.

Setting TXREQ bit simply flags a message buffer as
enqueued for transmission. When the module detects
an available bus, it begins transmitting the message
which has been determined to have the highest priority.

If the transmission completes successfully on the first
attempt, the TXREQ bit is cleared automatically and an
interrupt is generated if TXIE was set.

If the message transmission fails, one of the error
condition flags will be set and the TXREQ bit will
remain set indicating that the message is still pending
for transmission. If the message encountered an error
condition during the transmission attempt, the TXERR
bit will be set and the error condition may cause an
interrupt. If the message loses arbitration during the
transmission attempt, the TXLARB bit is set. No
interrupt is generated to signal the loss of arbitration.

19.5.4 ABORTING MESSAGE 
TRANSMISSION

The system can also abort a message by clearing the
TXREQ bit associated with each message buffer.
Setting the ABAT bit (CiCTRL<12>) will request an
abort of all pending messages. If the message has not
yet started transmission, or if the message started but
is interrupted by loss of arbitration or an error, the abort
will be processed. The abort is indicated when the
module sets the TXABT bit, and the TXnIF flag is not
automatically set.

19.5.5 TRANSMISSION ERRORS
The CAN module will detect the following transmission
errors:

• Acknowledge error
• Form error
• Bit error

These transmission errors will not necessarily generate
an interrupt, but are indicated by the transmission error
counter. However, each of these errors will cause the
transmission error counter to be incremented by one.
Once the value of the error counter exceeds the value
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit
(CiINTF<10>) are set. Once the value of the error
counter exceeds the value of 96, an interrupt is
generated and the TXWAR bit in the Error Flag register
is set.
© 2011 Microchip Technology Inc. DS70150E-page 131



dsPIC30F6010A/6015

21.2 Oscillator Configurations

21.2.1 INITIAL CLOCK SOURCE 
SELECTION

While coming out of Power-on Reset or Brown-out
Reset, the device selects its clock source based on:

a) FOS<2:0> Configuration bits that select one of
four oscillator groups,

b) and FPR<4:0> Configuration bits that select one
of 16 oscillator choices within the primary group.

The selection is as shown in Table 21-2.

TABLE 21-2: .CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode Oscillator 
Source FOS<2:0> FPR<4:0> OSC2 Function

ECIO w/PLL 4x PLL 1 1 1 0 1 1 0 1 I/O
ECIO w/PLL 8x PLL 1 1 1 0 1 1 1 0 I/O
ECIO w/PLL 16x PLL 1 1 1 0 1 1 1 1 I/O
FRC w/PLL 4x PLL 1 1 1 0 0 0 0 1 I/O
FRC w/PLL 8x PLL 1 1 1 0 1 0 1 0 I/O
FRC w/PLL 16x PLL 1 1 1 0 0 0 1 1 I/O
XT w/PLL 4x PLL 1 1 1 0 0 1 0 1 OSC2
XT w/PLL 8x PLL 1 1 1 0 0 1 1 0 OSC2
XT w/PLL 16x PLL 1 1 1 0 0 1 1 1 OSC2
HS/2 w/PLL 4x PLL 1 1 1 1 0 0 0 1 OSC2
HS/2 w/PLL 8x PLL 1 1 1 1 0 0 1 0 OSC2
HS/2 w/PLL 16x PLL 1 1 1 1 0 0 1 1 OSC2
HS/3 w/PLL 4x PLL 1 1 1 1 0 1 0 1 OSC2
HS/3 w/PLL 8x PLL 1 1 1 1 0 1 1 0 OSC2
HS/3 w/PLL 16x PLL 1 1 1 1 0 1 1 1 OSC2
ECIO External 0 1 1 0 1 1 0 0 I/O
XT External 0 1 1 0 0 1 0 0 OSC2
HS External 0 1 1 0 0 0 1 0 OSC2
EC External 0 1 1 0 1 0 1 1 CLKO
ERC External 0 1 1 0 1 0 0 1 CLKO
ERCIO External 0 1 1 0 1 0 0 0 I/O
XTL External 0 1 1 0 0 0 0 0 OSC2
LP Secondary 0 0 0 x x x x x (Note 1, 2)
FRC Internal FRC 0 0 1 x x x x x (Note 1, 2)
LPRC Internal LPRC 0 1 0 x x x x x (Note 1, 2)
Note 1: OSC2 pin function is determined by FPR<4:0>.

2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is 
selected at all times.
DS70150E-page 154 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015
22.0 INSTRUCTION SET SUMMARY

The dsPIC30F instruction set adds many enhance-
ments to the previous PIC® Microcontroller (MCU)
instruction sets, while maintaining an easy migration
from PIC MCU instruction sets. 

Most instructions are a single program memory word
(24-bits). Only three instructions require two program
memory locations. 

Each single-word instruction is a 24-bit word divided
into an 8-bit opcode which specifies the instruction
type, and one or more operands which further specify
the operation of the instruction. 

The instruction set is highly orthogonal and is grouped
into five basic categories:

• Word or byte-oriented operations
• Bit-oriented operations
• Literal operations
• DSP operations
• Control operations

Table 22-1 shows the general symbols used in
describing the instructions. 

The dsPIC30F instruction set summary in Table 22-2
lists all the instructions along with the Status flags
affected by each instruction. 

Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands: 

• The first source operand, which is typically a 
register ‘Wb’ without any address modifier

• The second source operand, which is typically a 
register ‘Ws’ with or without an address modifier

• The destination of the result, which is typically a 
register ‘Wd’ with or without an address modifier 

However, word or byte-oriented file register instructions
have two operands:

• The file register specified by the value ‘f’
• The destination, which could either be the file 

register ‘f’ or the W0 register, which is denoted as 
‘WREG’

Most bit oriented instructions (including simple rotate/
shift instructions) have two operands:

• The W register (with or without an address modi-
fier) or file register (specified by the value of ‘Ws’ 
or ‘f’) 

• The bit in the W register or file register 
(specified by a literal value, or indirectly by the 
contents of register ‘Wb’) 

The literal instructions that involve data movement may
use some of the following operands:

• A literal value to be loaded into a W register or file 
register (specified by the value of ‘k’) 

• The W register or file register where the literal 
value is to be loaded (specified by ‘Wb’ or ‘f’)

However, literal instructions that involve arithmetic or
logical operations use some of the following operands:

• The first source operand, which is a register ‘Wb’ 
without any address modifier

• The second source operand, which is a literal 
value

• The destination of the result (only if not the same 
as the first source operand), which is typically a 
register ‘Wd’ with or without an address modifier

The MAC class of DSP instructions may use some of the
following operands:

• The accumulator (A or B) to be used (required 
operand)

• The W registers to be used as the two operands
• The X and Y address space prefetch operations
• The X and Y address space prefetch destinations
• The accumulator write-back destination

The other DSP instructions do not involve any
multiplication, and may include:

• The accumulator to be used (required)
• The source or destination operand (designated as 

Wso or Wdo, respectively) with or without an 
address modifier 

• The amount of shift, specified by a W register ‘Wn’ 
or a literal value

The control instructions may use some of the following
operands:

• A program memory address 
• The mode of the table read and table write 

instructions 

All instructions are a single word, except for certain
double word instructions, which were made double
word instructions so that all the required information is
available in these 48 bits. In the second word, the
8 MSbs are ‘0’s. If this second word is executed as an
instruction (by itself), it will execute as a NOP. 

Note: This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046). For more information on the
device instruction set and programming,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”
(DS70157).
© 2011 Microchip Technology Inc. DS70150E-page 165



dsPIC30F6010A/6015
52 NEG NEG Acc Negate Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB

NEG f f = f + 1 1 1 C,DC,N,OV,Z
NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z
NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z

53 NOP NOP No Operation 1 1 None
NOPR No Operation 1 1 None

54 POP POP f Pop f from Top-of-Stack (TOS) 1 1 None
POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None
POP.D Wnd Pop from Top-of-Stack (TOS) to 

W(nd):W(nd+1) 
1 2 None

POP.S Pop Shadow Registers 1 1 All
55 PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None

PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None
PUSH.D Wns Push W(ns):W(ns +1) to Top-of-Stack (TOS) 1 2 None
PUSH.S Push Shadow Registers 1 1 None

56 PWRSAV PWRSAV   #lit1 Go into Sleep or Idle mode 1 1 WDTO,Sleep
57 RCALL RCALL Expr Relative Call 1 2 None

RCALL Wn Computed Call 1 2 None
58 REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None

REPEAT Wn Repeat Next Instruction (Wn) + 1 times 1 1 None
59 RESET RESET Software device Reset 1 1 None
60 RETFIE RETFIE Return from interrupt 1 3 (2) None
61 RETLW RETLW #lit10,Wn Return with literal in Wn 1 3 (2) None
62 RETURN RETURN Return from Subroutine 1 3 (2) None
63 RLC RLC f f = Rotate Left through Carry f 1 1 C,N,Z

RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z
RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z

64 RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N,Z
RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z
RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z

65 RRC RRC f f = Rotate Right through Carry f 1 1 C,N,Z
RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z
RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z

66 RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N,Z
RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z
RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z

67 SAC SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None
SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None

68 SE SE Ws,Wnd Wnd = sign extended Ws 1 1 C,N,Z
69 SETM SETM f f = 0xFFFF 1 1 None

SETM WREG WREG = 0xFFFF 1 1 None
SETM Ws Ws = 0xFFFF 1 1 None

70 SFTAC SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB,
SA,SB,SAB

SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB,
SA,SB,SAB

71 SL SL f f = Left Shift f 1 1 C,N,OV,Z
SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z
SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z
SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z
SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr

#
Assembly
Mnemonic Assembly Syntax Description # of 

words
# of 

cycles
Status Flags 

Affected
© 2011 Microchip Technology Inc. DS70150E-page 171



dsPIC30F6010A/6015

FIGURE 24-25: 10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS

(CHPS = 01, SIMSAM = 0, ASAM = 0, SSRC = 000)    

AD55TSAMP

CLEAR SAMPSET SAMP

AD61

ADCLK
Instruction

SAMP

ch0_dischrg

ch1_samp

AD60

DONE

ADIF

ADRES(0)

ADRES(1)

1 2 3 4 5 6 9 5 6 8

1 - Software sets ADCON. SAMP to start sampling.

2 - Sampling starts after discharge period. 

3 - Software clears ADCON. SAMP to start conversion.

4 - Sampling ends, conversion sequence starts.

5 - Convert bit 9.

9 - One TAD for end of conversion.

AD50

ch0_samp

ch1_dischrg

eoc

8

AD55

9

6 - Convert bit 8.

8 - Convert bit 0.

 Execution

 TSAMP is described in Section 17. “10-bit A/D Converter” (DS70046) of the “dsPIC30F Family Reference Manual”.
DS70150E-page 214 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015
)������	
���
��	����	����	���
����	�
��	�	�#��#��	��	� �!"	#$��	��	%���
&

' 
�(  
	�!���"
#!��$		��!����%����&	�'���#(�����#��#���!������	
�����)��%�����������*���!�
���
��!�&��!�
�!!�+,,'''�"��	
������
",���%�����
© 2011 Microchip Technology Inc. DS70150E-page 221



dsPIC30F6010A/6015

NOTES:
DS70150E-page 224 © 2011 Microchip Technology Inc.



dsPIC30F6010A/6015
INDEX
A
A/D

Aborting a Conversion ............................................. 143
Acquisition Requirements ........................................ 147
ADCHS .................................................................... 140
ADCON1 .................................................................. 140
ADCON2 .................................................................. 140
ADCON3 .................................................................. 140
ADCSSL ................................................................... 140
ADPCFG .................................................................. 140
Configuring Analog Port Pins ................................... 149
Connection Considerations ...................................... 149
Conversion Operation .............................................. 142
Conversion Rate Parameters ................................... 144
Conversion Speeds .................................................. 144
Effects of a Reset ..................................................... 148
Operation During CPU Idle Mode ............................ 148
Operation During CPU Sleep Mode ......................... 148
Output Formats ........................................................ 148
Power-Down Modes ................................................. 148
Programming the Start of Conversion Trigger ......... 143
Register Map ............................................................ 150
Result Buffer ............................................................ 142
Selecting the Conversion Clock ............................... 143
Selecting the Conversion Sequence ........................ 142
Voltage Reference Schematic ................................. 145
1 Msps Configuration Guideline ............................... 145
10-bit High-Speed Analog-to-Digital 

Converter Module ............................................ 140
600 ksps Configuration Guideline ............................ 146
750 ksps Configuration Guideline ............................ 146

AC Characteristics ........................................................... 188
Internal FRC Jitter, Accuracy and Drift .................... 192
Internal LPRC Accuracy ........................................... 192
Load Conditions ....................................................... 188
Temperature and Voltage Specifications ................. 188

Address Generator Units ................................................... 35
Alternate Vector Table ....................................................... 45
Alternate 16-bit Timer/Counter ........................................... 93
Assembler

MPASM Assembler .................................................. 176
Automatic Clock Stretch ................................................... 115

During 10-bit Addressing (STREN = 1) .................... 115
During 7-bit Addressing (STREN = 1) ...................... 115
Receive Mode .......................................................... 115
Transmit Mode ......................................................... 115

B
Barrel Shifter ...................................................................... 22
Bit-Reversed Addressing ................................................... 38

Example ..................................................................... 38
Implementation .......................................................... 38
Modifier Values (table) ............................................... 39
Sequence Table (16-Entry) ........................................ 39

Block Diagrams
CAN Buffers and Protocol Engine ............................ 129
Dedicated Port Structure ............................................ 59
DSP Engine ............................................................... 19
dsPIC30F6010A ......................................................... 10
dsPIC30F6015 ........................................................... 11
External Power-on Reset Circuit .............................. 160
Input Capture Mode ................................................... 81
I2C ............................................................................ 113

Oscillator System ..................................................... 154
Output Compare Mode .............................................. 85
PWM Module ............................................................. 98
Quadrature Encoder Interface ................................... 91
Reset System .......................................................... 158
Shared Port Structure ................................................ 60
SPI ........................................................................... 109
SPI Master/Slave Connection .................................. 109
UART Receiver ........................................................ 121
UART Transmitter .................................................... 120
10-bit High-Speed A/D Functional ........................... 141
16-bit Timer1 Module (Type A Timer) ........................ 65
16-bit Timer2 (Type B Timer) for dsPIC30F6010A .... 72
16-bit Timer2 (Type B Timer) for dsPIC30F6015 ...... 72
16-bit Timer3 (Type C Timer) .................................... 73
16-bit Timer4 (Type B Timer) .................................... 78
16-bit Timer5 (Type C Timer) .................................... 78
32-bit Timer2/3 for dsPIC30F6010A .......................... 70
32-bit Timer2/3 for dsPIC30F6015 ............................ 71
32-bit Timer4/5 .......................................................... 77

BOR. See Brown-out Reset.
Brown-out Reset (BOR) ................................................... 152

C
C Compilers

MPLAB C18 ............................................................. 176
CAN

Baud Rate Setting ................................................... 133
Bit Timing ......................................................... 133
Phase Segments ............................................. 134
Prescaler ......................................................... 134
Propagation Segment ...................................... 134
Sample Point ................................................... 134
Synchronization ............................................... 134

CAN1 Register Map for dsPIC30F6010A/6015 ....... 135
CAN2 Register Map for dsPIC30F6010A ................ 137
Frame Types ........................................................... 128
Message Reception ................................................. 131

Acceptance Filter Masks ................................. 131
Acceptance Filters ........................................... 131
Receive Buffers ............................................... 131
Receive Errors ................................................. 131
Receive Interrupts ........................................... 131
Receive Overrun .............................................. 131

Message Transmission ............................................ 132
Aborting ........................................................... 132
Errors ............................................................... 132
Priority ............................................................. 132
Sequence ........................................................ 132
Transmit Buffers .............................................. 132
Transmit Interrupts .......................................... 133

Operation Modes ..................................................... 130
Disable ............................................................ 130
Error Recognition ............................................. 130
Initialization ...................................................... 130
Listen-Only ...................................................... 130
Loopback ......................................................... 130
Normal ............................................................. 130

Overview .................................................................. 128
CAN Module .................................................................... 128
Center-Aligned PWM ....................................................... 101
Code Examples

Data EEPROM Block Erase ...................................... 56
Data EEPROM Block Write ....................................... 58
© 2011 Microchip Technology Inc. DS70150E-page 227


