

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	52
Program Memory Size	144KB (48K x 24)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6015t-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram

3.1.2 DATA ACCESS FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word program space page. This provides transparent access of stored constant data from X data space, without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions).

Program space access through the data space occurs if the MSb of the data space EA is set and program space visibility is enabled, by setting the PSV bit in the Core Control register (CORCON). The functions of CORCON are discussed in **Section 2.4** "**DSP Engine**".

Data accesses to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Note that the upper half of addressable data space is always part of the X data space. Therefore, when a DSP operation uses program space mapping to access this memory region, Y data space should typically contain state (variable) data for DSP operations, whereas X data space should typically contain coefficient (constant) data.

Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 3-5), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits should be programmed to force an illegal instruction to maintain machine robustness. Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for details on instruction encoding. Note that by incrementing the PC by 2 for each program memory word, the Least Significant 15 bits of data space addresses directly map to the Least Significant 15 bits in the corresponding program space addresses. The remaining bits are provided by the Program Space Visibility Page register, PSVPAG<7:0>, as shown in Figure 3-5.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For instructions that use PSV which are executed outside a REPEAT loop:

- The following instructions will require one instruction cycle in addition to the specified execution time:
 - MAC class of instructions with data operand prefetch
 - MOV instructions
 - MOV.D instructions
- All other instructions will require two instruction cycles in addition to the specified execution time of the instruction.

For instructions that use PSV which are executed inside a REPEAT loop:

- The following instances will require two instruction cycles in addition to the specified execution time of the instruction:
 - Execution in the first iteration
 - Execution in the last iteration
 - Execution prior to exiting the loop due to an interrupt
 - Execution upon re-entering the loop after an interrupt is serviced
- Any other iteration of the REPEAT loop will allow the instruction, accessing data using PSV, to execute in a single cycle.

TABLE 3	-3: C	ORE R	EGISTE	R MAP	(1)													
SFR Name	Address (Home)	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
W0	0000							-	W0 / W	REG	•				-			0000 0000 0000 0000
W1	0002								W1									0000 0000 0000 0000
W2	0004								W2	2								0000 0000 0000 0000
W3	0006								Wa	3								0000 0000 0000 0000
W4	0008								W4	Ļ								0000 0000 0000 0000
W5	000A								W5	5								0000 0000 0000 0000
W6	000C								We	6								0000 0000 0000 0000
W7	000E								W7	,								0000 0000 0000 0000
W8	0010								W8	3								0000 0000 0000 0000
W9	0012								WS)								0000 0000 0000 0000
W10	0014								W1	0								0000 0000 0000 0000
W11	0016								W1	1								0000 0000 0000 0000
W12	0018								W1	2								0000 0000 0000 0000
W13	001A		W13									0000 0000 0000 0000						
W14	001C		W14								0000 0000 0000 0000							
W15	001E		W15								0000 1000 0000 0000							
SPLIM	0020								SPL	М								0000 0000 0000 0000
ACCAL	0022								ACC	AL								0000 0000 0000 0000
ACCAH	0024								ACC	٩H								0000 0000 0000 0000
ACCAU	0026			Sign E	xtension	(ACCA<3	9>)						AC	CAU				0000 0000 0000 0000
ACCBL	0028								ACC	BL								0000 0000 0000 0000
ACCBH	002A								ACCI	ЗН								0000 0000 0000 0000
ACCBU	002C			Sign E	xtension	(ACCB<3	9>)						AC	CBU				0000 0000 0000 0000
PCL	002E								PC	Ĺ								0000 0000 0000 0000
PCH	0030	—	—	_	—	_		_	_	_				PCH				0000 0000 0000 0000
TBLPAG	0032	—	—	_	—	_	—	_	_				TBL	PAG				0000 0000 0000 0000
PSVPAG	0034	—	—	_	—	_	—	_	_				PS\	/PAG				0000 0000 0000 0000
RCOUNT	0036								RCOL	JNT								uuuu uuuu uuuu uuuu
DCOUNT	0038								DCOL	JNT								uuuu uuuu uuuu uuuu
DOSTARTL	003A							D	OSTARTL								0	uuuu uuuu uuuu uuu0
DOSTARTH	003C	—	—	—	—	_		_		—			[DOSTART	Ή			0000 0000 0uuu uuuu
DOENDL	003E							0	OENDL								0	uuuu uuuu uuuu uuu0
DOENDH	0040	—		—	—	—	—	—	—	—				DOEND	1			0000 0000 0uuu uuuu

DS70150E-page 32

Legend: u = uninitialized bit; --= unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

6.4 RTSP Operation

The dsPIC30F Flash program memory is organized into rows and panels. Each row consists of 32 instructions, or 96 bytes. Each panel consists of 128 rows, or $4K \times 24$ instructions. RTSP allows the user to erase one row (32 instructions) at a time and to program 32 instructions at one time.

Each panel of program memory contains write latches that hold 32 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the panel write latches. The data to be programmed into the panel is loaded in sequential order into the write latches; instruction 0, instruction 1, etc. The addresses loaded must always be from a 32 address boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the write latches. Programming is performed by setting the special bits in the NVMCON register. 32 TBLWTL and 32 TBLWTH instructions are required to load the 32 instructions.

All of the table write operations are single-word writes (2 instruction cycles), because only the table latches are written.

After the latches are written, a programming operation needs to be initiated to program the data.

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

6.5 RTSP Control Registers

The four SFRs used to read and write the program Flash memory are:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

6.5.1 NVMCON REGISTER

The NVMCON register controls which blocks are to be erased, which memory type is to be programmed and start of the programming cycle.

6.5.2 NVMADR REGISTER

The NVMADR register is used to hold the lower two bytes of the Effective Address. The NVMADR register captures the EA<15:0> of the last table instruction that has been executed and selects the row to write.

6.5.3 NVMADRU REGISTER

The NVMADRU register is used to hold the upper byte of the Effective Address. The NVMADRU register captures the EA<23:16> of the last table instruction that has been executed.

6.5.4 NVMKEY REGISTER

NVMKEY is a write-only register that is used for write protection. To start a programming or an erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 6.6 "Programming Operations"** for further details.

Note: The user can also directly write to the NVMADR and NVMADRU registers to specify a program memory address for erasing or programming.

TABLE 6-1: NVM REGISTER MAP⁽¹⁾

												_	_					
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	-	-	TWRI	1	- PROGOP<6:0>						0000 0000 0000 0000	
NVMADR	0762		NVMADR<15:0>											սսսս սսսս սսսս սսսս				
NVMADRU	0764	_	_	—	-	_			_				NVMAD	R<23:16	>			0000 0000 uuuu uuuu
NVMKEY	0766	_	_	—	_	_	-		_	KEY<7:0>						0000 0000 0000 0000		

Legend: u = uninitialized bit; - = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 9-1: TIMER1 REGISTER MAP⁽¹⁾

SFR Nam	e Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TMR1 0100 Timer1 Register											uuuu uuuu uuuu uuuu							
PR1	0102		Period Register 1										1111 1111 1111 1111					
T1CON	0104	TON	—	TSIDL	_	_	—	-	_	_	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	-	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

FIGURE 10-3: 16-BIT TIMER2 BLOCK DIAGRAM (TYPE B TIMER) FOR dsPIC30F6010A

FIGURE 10-4: 16-BIT TIMER2 BLOCK DIAGRAM (TYPE B TIMER) FOR DSPIC30F6015

13.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 13-1.

EQUATION 13-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet TOSC \bullet$ (TMRx Prescale Value)

PWM frequency is defined as 1/[PWM period].

When the selected TMRx is equal to its respective period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared.
- The OCx pin is set.
 - Exception 1: If PWM duty cycle is 0x0000, the OCx pin will remain low.
 - Exception 2: If duty cycle is greater than PRx, the pin will remain high.
- The PWM duty cycle is latched from OCxRS into OCxR.
- The corresponding timer interrupt flag is set.

See Figure 13-2 for key PWM period comparisons. Timer3 is referred to in the figure for clarity.

15.6 Complementary PWM Operation

In the Complementary mode of operation, each pair of PWM outputs is obtained by a complementary PWM signal. A dead time may be optionally inserted during device switching, when both outputs are inactive for a short period (Refer to **Section 15.7 "Dead-Time Generators"**).

In Complementary mode, the duty cycle comparison units are assigned to the PWM outputs as follows:

- PDC1 register controls PWM1H/PWM1L outputs
- PDC2 register controls PWM2H/PWM2L outputs
- PDC3 register controls PWM3H/PWM3L outputs
- PDC4 register controls PWM4H/PWM4L outputs

The Complementary mode is selected for each PWM I/O pin pair by clearing the appropriate PMODx bit in the PWMCON1 SFR. The PWM I/O pins are set to Complementary mode by default upon a device Reset.

15.7 Dead-Time Generators

Dead-time generation may be provided when any of the PWM I/O pin pairs are operating in the Complementary Output mode. The PWM outputs use Push-Pull drive circuits. Due to the inability of the power output devices to switch instantaneously, some amount of time must be provided between the turn off event of one PWM output in a complementary pair and the turn on event of the other transistor.

The PWM module allows two different dead times to be programmed. These two dead times may be used in one of two methods described below to increase user flexibility:

- The PWM output signals can be optimized for different turn off times in the high side and low side transistors in a complementary pair of transistors. The first dead time is inserted between the turn off event of the lower transistor of the complementary pair and the turn on event of the upper transistor. The second dead time is inserted between the turn off event of the upper transistor and the turn on event of the lower transistor.
- The two dead times can be assigned to individual PWM I/O pin pairs. This Operating mode allows the PWM module to drive different transistor/load combinations with each complementary PWM I/O pin pair.

15.7.1 DEAD-TIME GENERATORS

Each complementary output pair for the PWM module has a 6-bit down counter that is used to produce the dead-time insertion. As shown in Figure 15-4, each dead-time unit has a rising and falling edge detector connected to the duty cycle comparison output.

15.7.2 DEAD-TIME ASSIGNMENT

The DTCON2 SFR contains control bits that allow the dead times to be assigned to each of the complementary outputs. Table 15-1 summarizes the function of each dead-time selection control bit.

TABLE 15-1: DEAD-TIM	E SELECTION BITS
----------------------	------------------

Bit	Selects
DTS1A	PWM1L/PWM1H active edge dead time.
DTS1I	PWM1L/PWM1H inactive edge dead time.
DTS2A	PWM2L/PWM2H active edge dead time.
DTS2I	PWM2L/PWM2H inactive edge dead time.
DTS3A	PWM3L/PWM3H active edge dead time.
DTS3I	PWM3L/PWM3H inactive edge dead time.
DTS4A	PWM4L/PWM4H active edge dead time.
DTS4I	PWM4L/PWM4H inactive edge dead time.

15.7.3 DEAD-TIME RANGES

The amount of dead time provided by each dead-time unit is selected by specifying the input clock prescaler value and a 6-bit unsigned value. The amount of dead time provided by each unit may be set independently.

Four input clock prescaler selections have been provided to allow a suitable range of dead times, based on the device operating frequency. The clock prescaler option may be selected independently for each of the two dead-time values. The dead-time clock prescaler values are selected using the DTAPS<1:0> and DTBPS<1:0> control bits in the DTCON1 SFR. One of four clock prescaler options (Tcy, 2 Tcy, 4 Tcy or 8 Tcy) may be selected for each of the dead-time values.

After the prescaler values are selected, the dead time for each unit is adjusted by loading two 6-bit unsigned values into the DTCON1 SFR.

The dead-time unit prescalers are cleared on the following events:

- On a load of the down timer due to a duty cycle comparison edge event.
- On a write to the DTCON1 or DTCON2 registers.
- On any device Reset.

Note: The user should not modify the DTCON1 or DTCON2 values while the PWM module is operating (PTEN = 1). Unexpected results may occur.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
C2RXF0SID	03C0	—	—	—			ſ	Receive Ac	ceptance	Filter 0 Stand	dard Ident	ifier<10:0>	>			—	EXIDE	000u uuuu uuuu uu0u
C2RXF0EIDH	03C2		—	_	—				Receive	e Acceptance	Filter 0 E	xtended Id	entifier<	17:6>				0000 uuuu uuuu uuuu
C2RXF0EIDL	03C4	Recei	ve Acceptanc	ce Filter 0 E	xtended I	dentifier<5	5:0>	_	—	—	—	—	—	—	_	—	—	uuuu uu00 0000 0000
C2RXF1SID	03C8	_	—	_			I	Receive Ac	ceptance	Filter 1 Stand	dard Ident	ifier<10:0>	>	•		_	EXIDE	000u uuuu uuuu uu0u
C2RXF1EIDH	03CA	-	_	_	—				Receive	e Acceptance	Filter 1 E	xtended Id	entifier<	17:6>				0000 uuuu uuuu uuuu
C2RXF1EIDL	03CC	Recei	ve Acceptanc	ce Filter 1 E	xtended I	dentifier<5	5:0>	_	—	—	—	—		—	—	—		uuuu uu00 0000 0000
C2RXF2SID	03D0	_	_	—			I	Receive Ac	cceptance	Filter 2 Stand	dard Ident	ifier<10:0>	•			—	EXIDE	000u uuuu uuuu uu0u
C2RXF2EIDH	03D2		—	—	—				Receive	e Acceptance	Filter 2 E	xtended Id	entifier<	17:6>		•		0000 uuuu uuuu uuuu
C2RXF2EIDL	03D4	Recei	ve Acceptanc	ce Filter 2 E	Extended I	dentifier<5	5:0>	—	—	_	—	—		—	—	_		uuuu uu00 0000 0000
C2RXF3SID	03D8	_	_	—			I	Receive Ac	cceptance	Filter 3 Stand	dard Ident	ifier<10:0>	•			—	EXIDE	000u uuuu uuuu uu0u
C2RXF3EIDH	03DA		-	—	—				Receive	e Acceptance	Filter 3 E	xtended Id	entifier<	17:6>				0000 uuuu uuuu uuuu
C2RXF3EIDL	03DC	Recei	ve Acceptanc	ce Filter 3 E	xtended I	dentifier<5	5:0>	_	—	—	—	—		—	—	—		uuuu uu00 0000 0000
C2RXF4SID	03E0	—	—	—			I	Receive Ac	cceptance	Filter 4 Stand	dard Ident	ifier<10:0>	>			—	EXIDE	000u uuuu uuuu uu0u
C2RXF4EIDH	03E2	-	—	_	—				Receive	e Acceptance	Filter 4 E	xtended Id	entifier<	17:6>		•		0000 uuuu uuuu uuuu
C2RXF4EIDL	03E4	Recei	ve Acceptanc	ce Filter 4 E	Extended I	dentifier<5	5:0>	—	—	—	—	—		—	—	—		uuuu uu00 0000 0000
C2RXF5SID	03E8	_	_	—			F	Receive Ac	ceptance	Filter 5 Stand	dard Identi	fier <10:0:	>			—	EXIDE	000u uuuu uuuu uu0u
C2RXF5EIDH	03EA	_	—	—	—				Receive	e Acceptance	Filter 5 E	xtended Id	entifier<	17:6>		•		0000 uuuu uuuu uuuu
C2RXF5EIDL	03EC	Recei	ve Acceptanc	ce Filter 5 E	Extended I	dentifier<5	5:0>	_	—	—	—	_		—	—	—	—	uuuu uu00 0000 0000
C2RXM0SID	03F0	_	-	-			F	Receive Ac	ceptance	Mask 0 Stan	dard Ident	ifier<10:0>	>			—	MIDE	000u uuuu uuuu uu0u
C2RXM0EIDH	03F2	—	—	—	—				Receive	Acceptance	Mask 0 E	xtended Ic	lentifier<	17:6>				0000 uuuu uuuu uuuu
C2RXM0EIDL	03F4	Recei	ve Acceptanc	e Mask 0 E	Extended	dentifier<	5:0>		_	_	_		—	_	—	_	—	uuuu uu00 0000 0000
C2RXM1SID	03F8		-	—			F	Receive Ac	ceptance	Mask 1 Stan	dard Ident	ifier<10:0>	>				MIDE	000u uuuu uuuu uu0u
C2RXM1EIDH	03FA	—	-	_	—				Receive	Acceptance	Mask 1 E	xtended Ic	lentifier<	17:6>				0000 uuuu uuuu uuuu
C2RXM1EIDL	03FC	Recei	ve Acceptanc	e Mask 1 E	Extended	dentifier<	5:0>		_	_	_		—	_	—	_	—	uuuu uu00 0000 0000
C2TX2SID	0400	Trans	mit Buffer 2 S	Standard Id	entifier<1):6>			_	Tra	ansmit Buf	fer 2 Stand	dard Ider	ntifier<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C2TX2EID	0402	Transmit Bu	uffer 2 Extend	led Identifie	er<17:14>	—	—		—		Trans	smit Buffer	2 Exten	ded Identifier	r<13:6>			uuuu 0000 uuuu uuuu
C2TX2DLC	0404	-	Transmit Buff	er 2 Extend	ded Identif	ier<5:0>		TXRTR	TXRB1	TXRB0		DLC	<3:0>		—	—	—	uuuu uuuu uuuu u000
C2TX2B1	0406			Trans	smit Buffe	r 2 Byte 1						Trans	mit Buffe	er 2 Byte 0				uuuu uuuu uuuu uuuu
C2TX2B2	0408			Trans	smit Buffe	r 2 Byte 3						Trans	mit Buffe	er 2 Byte 2				uuuu uuuu uuuu uuuu
C2TX2B3	040A			Trans	smit Buffe	r 2 Byte 5						Trans	smit Buffe	er 2 Byte 4				uuuu uuuu uuuu uuuu
C2TX2B4	040C		1	Trans	smit Buffe	r 2 Byte 7						Trans	mit Buffe	er 2 Byte 6				uuuu uuuu uuuu
C2TX2CON	040E	—	—	—	—	—	—		—	—	TXABT	TXLARB	TXERR	TXREQ	—	TXPF	RI<1:0>	0000 0000 0000 0000
C2TX1SID	0410	Trans	mit Buffer 1 S	Standard Id	entifier<1	ntifier<10:6> — — —					- Transmit Buffer 1 Standard Identifier<5:0> SRR					TXIDE	uuuu u000 uuuu uuuu	
C2TX1EID	0412	Transmit Bu	uffer 1 Extend	led Identifie	er<17:14>	—	—	—	—		Trans	smit Buffer	1 Exten	ded Identifier	r<13:6>			uuuu 0000 uuuu uuuu
C2TX1DLC	0414		Transmit Buff	er 1 Extend	ded Identif	ier<5:0>		TXRTR	TXRB1	TXRB0		DLC	<3:0>		—	—	_	uuuu uuuu uuuu u000

TABLE 19-2: CAN2 REGISTER MAP FOR dsPIC30F6010A⁽¹⁾

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

20.13 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.

When reading the PORT register, all pins configured as analog input channels will read as cleared.

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

20.14 Connection Considerations

The analog inputs have diodes to VDD and VSS as ESD protection. This requires that the analog input be between VDD and VSS. If the input voltage exceeds this range by greater than 0.3V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high-impedance) to an analog input pin (capacitor, Zener diode, etc.) should have very little leakage current at the pin.

TABLE 21-1: OSCILLATOR OPERATING MODES

Oscillator Mode	Description
XTL	200 kHz-4 MHz crystal on OSC1:OSC2
ХТ	4 MHz-10 MHz crystal on OSC1:OSC2
XT w/PLL 4x	4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled
XT w/PLL 8x	4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled
XT w/PLL 16x	4 MHz-7.5 MHz crystal on OSC1:OSC2, 16x PLL enabled ⁽¹⁾
LP	32 kHz crystal on SOSCO:SOSCI ⁽²⁾
HS	10 MHz-25 MHz crystal.
HS/2 w/PLL 4x	10 MHz-20 MHz crystal, divide by 2, 4x PLL enabled ⁽³⁾
HS/2 w/PLL 8x	10 MHz-20 MHz crystal, divide by 2, 8x PLL enabled ⁽³⁾
HS/2 w/PLL 16x	10 MHz-15 MHz crystal, divide by 2, 16x PLL enabled ⁽¹⁾
HS/3 w/PLL 4x	12 MHz-25 MHz crystal, divide by 3, 4x PLL enabled ⁽⁴⁾
HS/3 w/PLL 8x	12 MHz-25 MHz crystal, divide by 3, 8x PLL enabled ⁽⁴⁾
HS/3 w/PLL 16x	12 MHz-22.5 MHz crystal, divide by 3, 16x PLL enabled ⁽¹⁾⁽⁴⁾
EC	External clock input (0-40 MHz)
ECIO	External clock input (0-40 MHz), OSC2 pin is I/O
EC w/PLL 4x	External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled
EC w/PLL 8x	External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled
EC w/PLL 16x	External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled ⁽¹⁾
ERC	External RC oscillator, OSC2 pin is Fosc/4 output ⁽⁵⁾
ERCIO	External RC oscillator, OSC2 pin is I/O ⁽⁵⁾
FRC	7.37 MHz internal RC oscillator
FRC w/PLL 4x	7.37 MHz internal RC oscillator, 4x PLL enabled
FRC w/PLL 8x	7.37 MHz internal RC oscillator, 8x PLL enabled
FRC w/PLL 16x	7.37 MHz internal RC oscillator, 16x PLL enabled
LPRC	512 kHz internal RC oscillator

Note 1: Any higher will violate device operating frequency range.

2: LP oscillator can be conveniently shared as system clock, as well as Real-Time Clock for Timer1.

- **3:** Any higher will violate PLL input range.
- 4: Any lower will violate PLL input range.

5: Requires external R and C. Frequency operation up to 4 MHz.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of words	# of cycles	Status Flags Affected
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 - Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	ACTERIST	ICS	Standard Opera (unless otherw Operating temp	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Character	istic	Min	Typ ⁽¹⁾	Max	Units	Conditions				
BO10	VBOR	BOR Voltage ⁽²⁾ on VDD transition	R Voltage ⁽²⁾ on BORV = 11 ⁽³⁾		_		V	Not in operating range				
		high-to-low	BORV = 10	2.6	_	2.71	V	—				
			BORV = 01	4.1	—	4.4	V	—				
			BORV = 00	4.58		4.73	V	_				
BO15	VBHYS	BOR Hysteresis			5		mV					

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: '11' values not in usable operating range.

TABLE 24-12: DC CHARACTERISTICS: PROGRAM AND EEPROM

DC CHA	ARACTER	Standa (unless	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C < TA < 85^{\circ}C$ for Industrial									
			Operati	ing temp	erature	-40°C s	STA ≤+85°C for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions					
		Data EEPROM Memory ⁽²⁾										
D120	ED	Byte Endurance	100K	1M	—	E/W	-40° C ≤TA ≤+85°C					
D121	Vdrw	VDD for Read/Write	Vmin	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage					
D122	TDEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP					
D123	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated					
D124	IDEW	IDD During Programming	—	10	30	mA	Row Erase					
		Program FLASH Memory ⁽²⁾										
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40° C ≤TA ≤+85°C					
D131	Vpr	VDD for Read	VMIN	—	5.5	V	VMIN = Minimum operating voltage					
D132	VEB	VDD for Bulk Erase	4.5		5.5	V						
D133	VPEW	VDD for Erase/Write	3.0		5.5	V						
D134	TPEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP					
D135	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifica- tions are violated					
D137	IPEW	IDD During Programming	—	10	30	mA	Row Erase					
D138	IEB	IDD During Programming	—	10	30	mA	Bulk Erase					

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

2: These parameters are characterized but not tested in manufacturing.

24.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC30F AC characteristics and timing parameters.

TABLE 24-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial				
	-40°C ≤TA ≤+125°C for Extended				
	Operating voltage VDD range as described in Table 24-1 and Table 24-2.				

FIGURE 24-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 24-3: EXTERNAL CLOCK TIMING

FIGURE 24-11: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 24-29: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	_		50	ns	_	
OC20	TFLT	Fault Input Pulse Width	50	—	—	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensio	Dimension Limits		NOM	MAX		
Number of Leads	Ν	64				
Lead Pitch	е	0.50 BSC				
Overall Height	А	—	—	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	—	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	φ	0°	3.5°	7°		
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	—	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11° 12° 13°				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com