E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	508
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SCI, SPI, USB
Peripherals	LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN-EP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08jm16cgt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

To provide the most up-to-date information, the version of this document on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision Number	Revision Date	Description of Changes
Rev. 1	3/2008	Initial release.
Rev. 2	5/2008	Added EMC data in appendix.

This product incorporates SuperFlash[®] technology licensed from SST.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. © Freescale Semiconductor, Inc., 2008. All rights reserved.

4.5	Flash		47
	4.5.1	Features	47
	4.5.2	Program and Erase Times	47
	4.5.3	Program and Erase Command Execution	48
	4.5.4	Burst Program Execution	49
	4.5.5	Access Errors	51
	4.5.6	Flash Block Protection	52
	4.5.7	Vector Redirection	53
4.6	Security	/	53
4.7	Flash R	egisters and Control Bits	54
	4.7.1	Flash Clock Divider Register (FCDIV)	55
	4.7.2	Flash Options Register (FOPT and NVOPT)	56
	4.7.3	Flash Configuration Register (FCNFG)	57
	4.7.4	Flash Protection Register (FPROT and NVPROT)	57
	4.7.5	Flash Status Register (FSTAT)	
	4.7.6	Flash Command Register (FCMD)	59

Chapter 5 Resets, Interrupts, and System Configuration

5.1	Introdu	ction	61
5.2	Feature	S	61
5.3	MCU R	leset	61
5.4	Compu	ter Operating Properly (COP) Watchdog	62
5.5	Interrup	ots	63
	5.5.1	Interrupt Stack Frame	64
	5.5.2	External Interrupt Request (IRQ) Pin	64
	5.5.3	Interrupt Vectors, Sources, and Local Masks	65
5.6	Low-Vo	bltage Detect (LVD) System	67
	5.6.1	Power-On Reset Operation	67
	5.6.2	LVD Reset Operation	67
	5.6.3	LVD Interrupt Operation	68
	5.6.4	Low-Voltage Warning (LVW)	68
5.7	Reset, I	nterrupt, and System Control Registers and Control Bits	68
	5.7.1	Interrupt Pin Request Status and Control Register (IRQSC)	68
	5.7.2	System Reset Status Register (SRS)	69
	5.7.3	System Background Debug Force Reset Register (SBDFR)	70
	5.7.4	System Options Register 1 (SOPT1)	71
	5.7.5	System Options Register 2 (SOPT2)	72
	5.7.6	System Device Identification Register (SDIDH, SDIDL)	73
	5.7.7	System Power Management Status and Control 1 Register (SPMSC1)	74
	5.7.8	System Power Management Status and Control 2 Register (SPMSC2)	75

Chapter 6 Parallel Input/Output

6.1	Introduction		.77	7
-----	--------------	--	-----	---

Chapter 2 Pins and Connections

NOTES:

External crystal circuity is not required if using the MCG internal clock option. For USB operation, an external crystal is required.
 XTAL and EXTAL are the same pins as PTG4 and PTG5, respectively.

- 3. RC filters on RESET and IRQ are recommended for EMC-sensitive applications.

R_{PUDP} is shown for full-speed USB only. The diagram shows a configuration where the on-chip regulator and R_{PUDP} are enabled. The voltage regulator output is used for R_{PUDP}, R_{PUDP} can optionally be disabled if using an external pullup resistor on USBDP
 V_{BUS} is a 5.0 V supply from upstream port that can be used for USB operation.
 USBDP and USBDN are powered by the 3.3 V regulator.

Figure 2-4. Basic System Connections

Pin Number			Lowe	_owest <priority> Highest</priority>			
48	44	32	Port Pin	Alt1	Alt2		
1	1	—	PTC4				
2	2	1		IRQ	TPMCLK		
3	3	2			RESET		
4	4	_	PTF0	TPM1CH2			
5	5	_	PTF1	TPM1CH3			
6	6	3	PTF4	TPM2CH0			
7	7	4	PTF5	TPM2CH1			
8	—	—	PTF6				
9	8	5	PTE0	TxD1			
10	9	6	PTE1	RxD1			
11	10	7	PTE2	TPM1CH0			
12	11	8	PTE3	TPM1CH1			
13	12	9	PTE4	MISO1			
14	13	10	PTE5	MOSI1			
15	14	11	PTE6	SPSCK1			
16	15	12	PTE7	SS1			
17	16	13			V _{DD}		
18	17	14			V _{SS}		
19	18	15			USBDN		
20	19	16			USBDP		
21	20	17			V _{USB33}		
22	21	—	PTG0	KBIP0			
23	22	—	PTG1	KBIP1			
24			PTA0				

Table 2-1. Pin Availability by Package Pin-Count

Pin	Num	ber	Lowe	est <priority> Highest</priority>			
48	44	32	Port Pin	Alt1	Alt2		
25	_		PTA5				
26	23		PTB0	MISO2	ADP0		
27	24		PTB1	MOSI2	ADP1		
28	25		PTB2	SPSCK2	ADP2		
29	26		PTB3	SS2	ADP3		
30	27	18	PTB4	KBIP4	ADP4		
31	28	19	PTB5	KBIP5	ADP5		
32	29	20	PTD0	ADP8	ACMP+		
33	30	21	PTD1	ADP9	ACMP-		
24	21	22			V _{DDAD}		
34	51	22			V _{REFH}		
25	20	22			V _{REFL}		
35	52	20			V _{SSAD}		
36	33	24	PTD2	KBIP2	ACMPO		
37	_	_	PTD7				
38	34	25	PTG2	KBIP6			
39	35	26	PTG3	KBIP7			
40	36	27		BKGD	MS		
41	37	28	PTG4	XTAL			
42	38	29	PTG5	EXTAL			
43	39	30			V _{SSOSC}		
44	40	31	PTC0	SCL			
45	41	32	PTC1	SDA			
46	42	_	PTC2				
47	43	_	PTC3	TxD2			
48	44	_	PTC5	RxD2			

4.1.1 Reset and Interrupt Vector Assignments

Figure 4-1 shows address assignments for reset and interrupt vectors. The vector names shown in this table are the labels used in the Freescale-provided equate file for the MC9S08JM16 series. For more details about resets, interrupts, interrupt priority, and local interrupt mask controls, refer to Chapter 5, "Resets, Interrupts, and System Configuration."

Address (High/Low)	Vector	Vector Name
0xFFC0:FFC1 to 0xFFC2:FFC3	Unused Vector Space	
0xFFC4:FFC5	RTC	Vrtc
0xFFC6:FFC7	IIC	Viic
0xFFC8:FFC9	ACMP	Vacmp
0xFFCA:FFCB	ADC Conversion	Vadc
0xFFCC:FFCD	KBI	Vkeyboard
0xFFCE:FFCF	SCI2 Transmit	Vsci2tx
0xFFD0:FFD1	SCI2 Receive	Vsci2rx
0xFFD2:FFD3	SCI2 Error	Vsci2err
0xFFD4:FFD5	SCI1 Transmit	Vsci1tx
0xFFD6:FFD7	SCI1 Receive	Vsci1rx
0xFFD8:FFD9	SCI1 Error	Vsci1err
0xFFDA:FFDB	TPM2 Overflow	Vtpm2ovf
0xFFDC:FFDD	TPM2 Channel 1	Vtpm2ch1
0xFFDE:FFDF	TPM2 Channel 0	Vtpm2ch0
0xFFE0:FFE1	TPM1 Overflow	Vtpm1ovf
0xFFE2:FFE3	Reserved	reserved
0xFFE4:FFE5	Reserved	reserved
0xFFE6:FFE7	TPM1 Channel 3	Vtpm1ch3
0xFFE8:FFE9	TPM1 Channel 2	Vtpm1ch2
0xFFEA:FFEB	TPM1 Channel 1	Vtpm1ch1
0xFFEC:FFED	TPM1 Channel 0	Vtpm1ch0
0xFFEE:FFEF	Reserved	reserved
0xFFF0:FFF1	USB Status	Vusb
0xFFF2:FFF3	SPI2	Vspi2
0xFFF4:FFF5	SPI1	Vspi1

Table 4-1. Reset and Interrupt Vectors

Aborting a command in this way sets the FACCERR access error flag which must be cleared before starting a new command.

A strictly monitored procedure must be obeyed or the command will not be accepted. This minimizes the possibility of any unintended changes to the flash memory contents. The command complete flag (FCCF) indicates when a command is complete. The command sequence must be completed by clearing FCBEF to launch the command. Figure 4-2 is a flowchart for executing all of the commands except for burst programming. The FCDIV register must be initialized before using any flash commands. This must be done once following a reset.

² Wait at least four bus cycles before checking FCBEF or FCCF.

Figure 4-2. Flash Program and Erase Flowchart

4.5.4 Burst Program Execution

The burst program command is used to program sequential bytes of data in less time than would be required using the standard program command. This is possible because the high voltage to the flash array does not need to be disabled between program operations. Ordinarily, when a program or erase command

Chapter 7 Central Processor Unit (S08CPUV2)

7.1 Introduction

This section provides summary information about the registers, addressing modes, and instruction set of the CPU of the HCS08 Family. For a more detailed discussion, refer to the *HCS08 Family Reference Manual, volume 1,* Freescale Semiconductor document order number HCS08RMV1/D.

The HCS08 CPU is fully source- and object-code-compatible with the M68HC08 CPU. Several instructions and enhanced addressing modes were added to improve C compiler efficiency and to support a new background debug system which replaces the monitor mode of earlier M68HC08 microcontrollers (MCU).

7.1.1 Features

Features of the HCS08 CPU include:

- Object code fully upward-compatible with M68HC05 and M68HC08 Families
- All registers and memory are mapped to a single 64-Kbyte address space
- 16-bit stack pointer (any size stack anywhere in 64-Kbyte address space)
- 16-bit index register (H:X) with powerful indexed addressing modes
- 8-bit accumulator (A)
- Many instructions treat X as a second general-purpose 8-bit register
- Seven addressing modes:
 - Inherent Operands in internal registers
 - Relative 8-bit signed offset to branch destination
 - Immediate Operand in next object code byte(s)
 - Direct Operand in memory at 0x0000–0x00FF
 - Extended Operand anywhere in 64-Kbyte address space
 - Indexed relative to H:X Five submodes including auto increment
 - Indexed relative to SP Improves C efficiency dramatically
- Memory-to-memory data move instructions with four address mode combinations
- Overflow, half-carry, negative, zero, and carry condition codes support conditional branching on the results of signed, unsigned, and binary-coded decimal (BCD) operations
- Efficient bit manipulation instructions
- Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
- STOP and WAIT instructions to invoke low-power operating modes

Chapter 7 Central Processor Unit (S08CPUV2)

7.5 HCS08 Instruction Set Summary

Table 7-2 provides a summary of the HCS08 instruction set in all possible addressing modes. The table shows operand construction, execution time in internal bus clock cycles, and cycle-by-cycle details for each addressing mode variation of each instruction.

Source	Operation	dress lode	Object Code	/cles	Cyc-by-Cyc	Affect on CCR		
i onn		PA		б С	Details	VH	INZC	
ADC #opr8i ADC opr8a ADC opr16a ADC oprx16,X ADC oprx8,X ADC ,X ADC oprx16,SP ADC oprx8,SP	Add with Carry A \leftarrow (A) + (M) + (C)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A9 ii B9 dd C9 hh ll D9 ee ff E9 ff F9 9E D9 ee ff 9E E9 ff	2 3 4 3 3 5 4	pp rpp prpp prpp rpp rfp pprpp prpp	¢¢	- \$ \$ \$	
ADD #opr8i ADD opr8a ADD opr16a ADD oprx16,X ADD oprx8,X ADD ,X ADD oprx16,SP ADD oprx8,SP	Add without Carry A ← (A) + (M)	IMM DIR EXT IX2 IX1 IX SP2 SP1	AB ii BB dd CB hh ll DB ee ff EB ff FB 9E DB ee ff 9E EB ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp prpp	¢¢	- \$ \$ \$	
AIS # <i>opr8i</i>	Add Immediate Value (Signed) to Stack Pointer $SP \leftarrow (SP) + (M)$	ІММ	A7 ii	2	qq			
AIX #opr8i	Add Immediate Value (Signed) to Index Register (H:X) H:X \leftarrow (H:X) + (M)	IMM	AF ii	2	pp			
AND #opr8i AND opr8a AND opr16a AND oprx16,X AND oprx8,X AND ,X AND oprx16,SP AND oprx8,SP	Logical AND A ← (A) & (M)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A4 ii B4 dd C4 hh ll D4 ee ff E4 ff F4 9E D4 ee ff 9E E4 ff	2 3 4 3 3 5 4	pp rpp prpp prpp rpp rfp pprpp prpp	0 —	- ‡ ‡ -	
ASL <i>opr8a</i> ASLA ASLX ASL <i>oprx8</i> ,X ASL ,X ASL <i>oprx8</i> ,SP	Arithmetic Shift Left C	DIR INH INH IX1 IX SP1	38 dd 48 58 68 ff 78 9E 68 ff	5 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	\$-	- \$ \$ \$	
ASR <i>opr8a</i> ASRA ASRX ASR <i>oprx8</i> ,X ASR ,X ASR <i>oprx8</i> ,SP	Arithmetic Shift Right	DIR INH INH IX1 IX SP1	37 dd 47 57 67 ff 77 9E 67 ff	5 1 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	↓-	- \$ \$ \$	
BCC rel	Branch if Carry Bit Clear (if C = 0)	REL	24 rr	3	qqq			

Table 7-2. . Instruction Set Summary (Sheet 1 of 9)

Source	Operation	dress lode	Object Code	ycles	Cyc-by-Cyc Details	Affect on CCR		
		PA		б С	Dotano	VH	INZC	
CMP #opr8i CMP opr8a CMP opr16a CMP oprx16,X CMP oprx8,X CMP ,X CMP oprx16,SP CMP oprx8,SP	Compare Accumulator with Memory A – M (CCR Updated But Operands Not Changed)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A1 ii B1 dd C1 hh ll D1 ee ff E1 ff F1 9E D1 ee ff 9E E1 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp	\$-	- \$ \$ \$	
COM opr8a COMA COMX COM oprx8,X COM ,X COM oprx8,SP	$\begin{array}{lll} \mbox{Complement} & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \\ \mbox{(One's Complement)} & \mbox{A} \leftarrow (\overline{A}) = \$ FF - (A) \\ & \mbox{X} \leftarrow (\overline{X}) = \$ FF - (X) \\ & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \\ & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \\ & \mbox{M} \leftarrow (\overline{M}) = \$ FF - (M) \end{array}$	DIR INH INH IX1 IX SP1	33 dd 43 53 63 ff 73 9E 63 ff	5 1 1 5 4 6	rfwpp p rfwpp rfwp prfwpp	0 –	- ↓ ↓ 1	
CPHX opr16a CPHX #opr16i CPHX opr8a CPHX oprx8,SP	Compare Index Register (H:X) with Memory (H:X) – (M:M + \$0001) (CCR Updated But Operands Not Changed)	EXT IMM DIR SP1	3E hh ll 65 jj kk 75 dd 9E F3 ff	6 3 5 6	prrfpp ppp rrfpp prrfpp	\$-	$- \updownarrow \updownarrow \updownarrow$	
CPX #opr8i CPX opr8a CPX opr16a CPX oprx16,X CPX oprx8,X CPX ,X CPX oprx16,SP CPX oprx8,SP	Compare X (Index Register Low) with Memory X – M (CCR Updated But Operands Not Changed)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A3 ii B3 dd C3 hh ll D3 ee ff E3 ff F3 9E D3 ee ff 9E E3 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rfp pprpp prpp prpp	\$-	- \$ \$ \$	
DAA	Decimal Adjust Accumulator After ADD or ADC of BCD Values	INH	72	1	q	U –	$- \updownarrow \updownarrow \updownarrow$	
DBNZ opr8a,rel DBNZA rel DBNZX rel DBNZ oprx8,X,rel DBNZ ,X,rel DBNZ oprx8,SP,rel	Decrement A, X, or M and Branch if Not Zero (if (result) ≠ 0) DBNZX Affects X Not H	DIR INH INH IX1 IX SP1	3B dd rr 4B rr 5B rr 6B ff rr 7B rr 9E 6B ff rr	7 4 7 6 8	rfwpppp fppp fppp rfwpppp rfwppp prfwppp			
DEC opr8a DECA DECX DEC oprx8,X DEC ,X DEC oprx8,SP	$\begin{array}{llllllllllllllllllllllllllllllllllll$	DIR INH INH IX1 IX SP1	3A dd 4A 5A 6A ff 7A 9E 6A ff	5 1 1 5 4 6	rfwpp p p rfwpp rfwp prfwpp	↓-	- \$ \$ -	
DIV	Divide $A \leftarrow (H:A) \div (X); H \leftarrow Remainder$	INH	52	6	ffffp		↓ ↓	
EOR #opr8i EOR opr8a EOR opr16a EOR oprx16,X EOR oprx8,X EOR ,X EOR oprx16,SP EOR oprx8,SP	Exclusive OR Memory with Accumulator A \leftarrow (A \oplus M)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A8 ii B8 dd C8 hh ll D8 ee ff E8 ff F8 9E D8 ee ff 9E E8 ff	2 3 4 3 3 5 4	pp rpp prpp rpp rpp rfp pprpp prpp	0 –	- ‡ ‡ -	

Table 7-2 Instruction Set Summary	(Sheet 4 of 9)
-----------------------------------	----------------

Chapter 10 Analog-to-Digital Converter (S08ADC12V1)

10.1 Overview

The 12-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within an integrated microcontroller system-on-chip.

NOTE

MC9S08JM16 series devices operate at a higher voltage range (2.7 V to 5.5 V) and do not include stop1 mode. Therefore, please disregard references to stop1.

10.1.1 Module Configurations

This section provides information for configuring the ADC on this device.

10.1.1.1 Channel Assignments

The ADC channel assignments for the MC9S08JM16 Series devices are shown in the table below. Reserved channels convert to an unknown value.

ADCH	Channel	Input	Pin Control	ADCH	Channel	Input	Pin Control
00000	AD0	PTB0/MISO2/ADP0	ADPC0	10000	AD16	V _{REFL}	N/A
00001	AD1	PTB1/MOSI2/ADP1	ADPC1	10001	AD17	V _{REFL}	N/A
00010	AD2	PTB2/SPSCK2/ADP2	ADPC2	10010	AD18	V _{REFL}	N/A
00011	AD3	PTB3/SS2/ADP3	ADPC3	10011	AD19	V _{REFL}	N/A
00100	AD4	PTB4/KBIP4/ADP4	ADPC4	10100	AD20	V _{REFL}	N/A
00101	AD5	PTB5/KBIP5/ADP5	ADPC5	10101	AD21	V _{REFL}	N/A
00110	AD6	V _{REFL}	ADPC6	10110	AD22	Reserved	N/A
00111	AD7	V _{REFL}	ADPC7	10111	AD23	Reserved	N/A
01000	AD8	PTD0/ADP8/ACMP+	ADPC8	11000	AD24	Reserved	N/A
01001	AD9	PTD1/ADP9/ACMP-	ADPC9	11001	AD25	Reserved	N/A
01010	AD10	V _{REFL}	ADPC10	11010	AD26	Temperature Sensor ¹	N/A
01011	AD11	V _{REFL}	ADPC11	11011	AD27	Internal Bandgap	N/A
01100	AD12	V _{REFL}	ADPC12	11100		Reserved	N/A
01101	AD13	V _{REFL}	ADPC13	11101	V _{REFH}	V _{REFH}	N/A
01110	AD14	V _{REFL}	ADPC14	11110	V _{REFL}	V _{REFL}	N/A

Table	10-1.	ADC	Channel	Assignment
-------	-------	-----	---------	------------

If continuous conversions are enabled, a new conversion is automatically initiated after the completion of the current conversion. In software triggered operation, continuous conversions begin after ADCSC1 is written and continue until aborted. In hardware triggered operation, continuous conversions begin after a hardware trigger event and continue until aborted.

10.4.4.2 Completing Conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, ADCRH and ADCRL. This is indicated by the setting of COCO. An interrupt is generated if AIEN is high at the time that COCO is set.

A blocking mechanism prevents a new result from overwriting previous data in ADCRH and ADCRL if the previous data is in the process of being read while in 12-bit or 10-bit MODE (the ADCRH register has been read but the ADCRL register has not). When blocking is active, the data transfer is blocked, COCO is not set, and the new result is lost. In the case of single conversions with the compare function enabled and the compare condition false, blocking has no effect and ADC operation is terminated. In all other cases of operation, when a data transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous conversions enabled).

If single conversions are enabled, the blocking mechanism could result in several discarded conversions and excess power consumption. To avoid this issue, the data registers must not be read after initiating a single conversion until the conversion completes.

10.4.4.3 Aborting Conversions

Any conversion in progress is aborted when:

- A write to ADCSC1 occurs (the current conversion will be aborted and a new conversion will be initiated, if ADCH are not all 1s).
- A write to ADCSC2, ADCCFG, ADCCVH, or ADCCVL occurs. This indicates a mode of operation change has occurred and the current conversion is therefore invalid.
- The MCU is reset.
- The MCU enters stop mode with ADACK not enabled.

When a conversion is aborted, the contents of the data registers, ADCRH and ADCRL, are not altered. However, they continue to be the values transferred after the completion of the last successful conversion. If the conversion was aborted by a reset, ADCRH and ADCRL return to their reset states.

10.4.4.4 Power Control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the conversion clock source, the ADACK clock generator is also enabled.

Power consumption when active can be reduced by setting ADLPC. This results in a lower maximum value for f_{ADCK} (see the electrical specifications).

Inter-Integrated Circuit (S08IICV2)

11.3.3 IIC Control Register (IICC1)

Figure 11-5. IIC Control Register (IICC1)

Table 11-5. IICC1 Field Descriptions

Field	Description				
7 IICEN	 IIC Enable. The IICEN bit determines whether the IIC module is enabled. 0 IIC is not enabled 1 IIC is enabled 				
6 IICIE	 IIC Interrupt Enable. The IICIE bit determines whether an IIC interrupt is requested. IIC interrupt request not enabled IIC interrupt request enabled 				
5 MST	 Master Mode Select. The MST bit changes from a 0 to a 1 when a start signal is generated on the bus and master mode is selected. When this bit changes from a 1 to a 0 a stop signal is generated and the mode of operation changes from master to slave. 0 Slave mode 1 Master mode 				
4 TX	 Transmit Mode Select. The TX bit selects the direction of master and slave transfers. In master mode, this bit must be set according to the type of transfer required. Therefore, for address cycles, this bit is always high. When addressed as a slave, this bit must be set by software according to the SRW bit in the status register. 0 Receive 1 Transmit 				
3 ТХАК	 Transmit Acknowledge Enable. This bit specifies the value driven onto the SDA during data acknowledge cycles for master and slave receivers. 0 An acknowledge signal is sent out to the bus after receiving one data byte 1 No acknowledge signal response is sent 				
2 RSTA	Repeat start. Writing a 1 to this bit generates a repeated start condition provided it is the current master. This bit is always read as cleared. Attempting a repeat at the wrong time results in loss of arbitration.				

11.3.4 IIC Status Register (IICS)

Field	Description
1 OSCINIT	OSC Initialization — If the external reference clock is selected by ERCLKEN or by the MCG being in FEE, FBE, PEE, PBE, or BLPE mode, and if EREFS is set, then this bit is set after the initialization cycles of the external oscillator clock have completed. This bit is only cleared when either EREFS is cleared or when the MCG is in either FEI, FBI, or BLPI mode and ERCLKEN is cleared.
0 FTRIM	MCG Fine Trim — Controls the smallest adjustment of the internal reference clock frequency. Setting FTRIM will increase the period and clearing FTRIM will decrease the period by the smallest amount possible.
	If an FTRIM value stored in nonvolatile memory is to be used, it's the user's responsibility to copy that value from the nonvolatile memory location to this register's FTRIM bit.

Table 12-4. MCG Status and Control Register Field Descriptions (continued)

12.3.5 MCG Control Register 3 (MCGC3)

Figure 12-7. MCG PLL Register (MCGPLL)

Table 12-5. MCG PLL Register Field Descriptions

Field	Description
7 LOLIE	 Loss of Lock Interrupt Enable — Determines if an interrupt request is made following a loss of lock indication. The LOLIE bit only has an effect when LOLS is set. 0 No request on loss of lock. 1 Generate an interrupt request on loss of lock.
6 PLLS	 PLL Select — Controls whether the PLL or FLL is selected. If the PLLS bit is clear, the PLL is disabled in all modes. If the PLLS is set, the FLL is disabled in all modes. 1 PLL is selected 0 FLL is selected

Field	Description
7 TDRE	Transmit Data Register Empty Flag — TDRE is set out of reset and when a transmit data value transfers from the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, read SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD). 0 Transmit data register (buffer) full. 1 Transmit data register (buffer) empty.
6 TC	 Transmission Complete Flag — TC is set out of reset and when TDRE = 1 and no data, preamble, or break character is being transmitted. 0 Transmitter active (sending data, a preamble, or a break). 1 Transmitter idle (transmission activity complete). TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things: Write to the SCI data register (SCIxD) to transmit new data Queue a preamble by changing TE from 0 to 1 Queue a break character by writing 1 to SBK in SCIxC2
5 RDRF	 Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter into the receive data register (SCIxD). To clear RDRF, read SCIxS1 with RDRF = 1 and then read the SCI data register (SCIxD). 0 Receive data register empty. 1 Receive data register full.
4 IDLE	Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a period of activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive character is all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit times depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver doesn't start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of the previous character do not count toward the full character time of logic high needed for the receiver to detect an idle line. To clear IDLE, read SCIxS1 with IDLE = 1 and then read the SCI data register (SCIxD). After IDLE has been cleared, it cannot become set again until after a new character has been received and RDRF has been set. IDLE will get set only once even if the receive line remains idle for an extended period.
3 OR	 Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive data register (buffer), but the previously received character has not been read from SCIxD yet. In this case, the new character (and all associated error information) is lost because there is no room to move it into SCIxD. To clear OR, read SCIxS1 with OR = 1 and then read the SCI data register (SCIxD). 0 No overrun. 1 Receive overrun (new SCI data lost).
2 NF	 Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start bit and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the samples within any bit time in the frame, the flag NF will be set at the same time as the flag RDRF gets set for the character. To clear NF, read SCIxS1 and then read the SCI data register (SCIxD). 0 No noise detected. 1 Noise detected in the received character in SCIxD.

Table 14-5. SCIxS1 Field Descriptions

Serial Peripheral Interface (S08SPI16V1)

15.1.2 Features

The SPI includes these distinctive features:

- Master mode or slave mode operation
- Full-duplex or single-wire bidirectional mode
- Programmable transmit bit rate
- Double-buffered transmit and receive data register
- Serial clock phase and polarity options
- Slave select output
- Mode fault error flag with CPU interrupt capability
- Control of SPI operation during wait mode
- Selectable MSB-first or LSB-first shifting
- Programmable 8- or 16-bit data transmission length
- Receive data buffer hardware match feature

15.1.3 Modes of Operation

The SPI functions in three modes, run, wait, and stop.

• Run Mode

This is the basic mode of operation.

• Wait Mode

SPI operation in wait mode is a configurable low power mode, controlled by the SPISWAI bit located in the SPIxC2 register. In wait mode, if the SPISWAI bit is clear, the SPI operates like in Run Mode. If the SPISWAI bit is set, the SPI goes into a power conservative state, with the SPI clock generation turned off. If the SPI is configured as a master, any transmission in progress stops, but is resumed after CPU goes into Run Mode. If the SPI is configured as a slave, reception and transmission of a byte continues, so that the slave stays synchronized to the master.

• Stop Mode

The SPI is inactive in stop3 mode for reduced power consumption. If the SPI is configured as a master, any transmission in progress stops, but is resumed after the CPU goes into Run Mode. If the SPI is configured as a slave, reception and transmission of a data continues, so that the slave stays synchronized to the master.

The SPI is completely disabled in all other stop modes. When the CPU wakes from these stop modes, all SPI register content will be reset.

This is a high level description only, detailed descriptions of operating modes are contained in section Section 15.4.9, "Low Power Mode Options."

15.1.4 Block Diagrams

This section includes block diagrams showing SPI system connections, the internal organization of the SPI module, and the SPI clock dividers that control the master mode bit rate.

NOTE

Care must be taken when expecting data from a master while the slave is in wait or stop3 mode. Even though the shift register will continue to operate, the rest of the SPI is shut down (i.e. a SPRF interrupt will not be generated until exiting stop or wait mode). Also, the data from the shift register will not be copied into the SPIxDH:SPIxDL registers until after the slave SPI has exited wait or stop mode. A SPRF flag and SPIxDH:SPIxDL copy is only generated if wait mode is entered or exited during a tranmission. If the slave enters wait mode in idle mode and exits wait mode in idle mode, neither a SPRF nor a SPIxDH:SPIxDL copy will occur.

15.4.9.3 SPI in Stop Mode

Stop3 mode is dependent on the SPI system. Upon entry to stop3 mode, the SPI module clock is disabled (held high or low). If the SPI is in master mode and exchanging data when the CPU enters stop mode, the transmission is frozen until the CPU exits stop mode. After stop, data to and from the external SPI is exchanged correctly. In slave mode, the SPI will stay synchronized with the master.

The stop mode is not dependent on the SPISWAI bit.

In all other stop modes, the SPI module is completely disabled. After stop, all registers are reset to their default values, and the SPI module must be re-initialized.

15.4.9.4 Reset

The reset values of registers and signals are described in Section 15.3, "Register Definition." which details the registers and their bit-fields.

- If a data transmission occurs in slave mode after reset without a write to SPIxDH:SPIxDL, it will transmit garbage, or the data last received from the master before the reset.
- Reading from the SPIxDH:SPIxDL after reset will always read zeros.

15.4.9.5 Interrupts

The SPI only originates interrupt requests when the SPI is enabled (SPE bit in SPIxC1 set). The following is a description of how the SPI makes a request and how the MCU must acknowledge that request. The interrupt vector offset and interrupt priority are chip dependent.

15.4.10 SPI Interrupts

There are four flag bits, three interrupt mask bits, and one interrupt vector associated with the SPI system. The SPI interrupt enable mask (SPIE) enables interrupts from the SPI receiver full flag (SPRF) and mode fault flag (MODF). The SPI transmit interrupt enable mask (SPTIE) enables interrupts from the SPI transmit buffer empty flag (SPTEF). The SPI match interrupt enable mask bit (SPIMIE) enables interrupts from the SPI match flag (SPMF). When one of the flag bits is set, and the associated interrupt mask bit is set, a hardware interrupt request is sent to the CPU. If the interrupt mask bits are cleared, software can poll the associated flag bits instead of using interrupts. The SPI interrupt service routine (ISR) must check the

16.2.1.1 EXTCLK — External Clock Source

Control bits in the timer status and control register allow the user to select nothing (timer disable), the bus-rate clock (the normal default source), a crystal-related clock, or an external clock as the clock which drives the TPM prescaler and subsequently the 16-bit TPM counter. The external clock source is synchronized in the TPM. The bus clock clocks the synchronizer; the frequency of the external source must be no more than one-fourth the frequency of the bus-rate clock, to meet Nyquist criteria and allowing for jitter.

The external clock signal shares the same pin as a channel I/O pin, so the channel pin will not be usable for channel I/O function when selected as the external clock source. It is the user's responsibility to avoid such settings. If this pin is used as an external clock source (CLKSB:CLKSA = 1:1), the channel can still be used in output compare mode as a software timer (ELSnB:ELSnA = 0:0).

16.2.1.2 TPMxCHn — TPM Channel n I/O Pin(s)

Each TPM channel is associated with an I/O pin on the MCU. The function of this pin depends on the channel configuration. The TPM pins share with general purpose I/O pins, where each pin has a port data register bit, and a data direction control bit, and the port has optional passive pullups which may be enabled whenever a port pin is acting as an input.

The TPM channel does not control the I/O pin when (ELSnB:ELSnA = 0:0) or when (CLKSB:CLKSA = 0:0) so it normally reverts to general purpose I/O control. When CPWMS = 1 (and ELSnB:ELSnA not = 0:0), all channels within the TPM are configured for center-aligned PWM and the TPMxCHn pins are all controlled by the TPM system. When CPWMS=0, the MSnB:MSnA control bits determine whether the channel is configured for input capture, output compare, or edge-aligned PWM.

When a channel is configured for input capture (CPWMS=0, MSnB:MSnA = 0:0 and ELSnB:ELSnA not = 0:0), the TPMxCHn pin is forced to act as an edge-sensitive input to the TPM. ELSnB:ELSnA control bits determine what polarity edge or edges will trigger input-capture events. A synchronizer based on the bus clock is used to synchronize input edges to the bus clock. This implies the minimum pulse width—that can be reliably detected—on an input capture pin is four bus clock periods (with ideal clock pulses as near as two bus clocks can be detected). TPM uses this pin as an input capture input to override the port data and data direction controls for the same pin.

When a channel is configured for output compare (CPWMS=0, MSnB:MSnA = 0:1 and ELSnB:ELSnA not = 0:0), the associated data direction control is overridden, the TPMxCHn pin is considered an output controlled by the TPM, and the ELSnB:ELSnA control bits determine how the pin is controlled. The remaining three combinations of ELSnB:ELSnA determine whether the TPMxCHn pin is toggled, cleared, or set each time the 16-bit channel value register matches the timer counter.

When the output compare toggle mode is initially selected, the previous value on the pin is driven out until the next output compare event—then the pin is toggled.

Field	Description
1 CRC5	 CRC5 Interrupt Enable — Setting this bit will enable CRC5 interrupts. Interrupt disabled Interrupt enabled
0 PIDERR	 PIDERR Interrupt Enable — Setting this bit will enable PIDERR interrupts. 0 Interrupt disabled 1 Interrupt enabled

Table 17-12. ERRSTAT Field Descriptions (continued)

17.3.9 Status Register (STAT)

The STAT reports the transaction status within the USB module. When the MCU receives a TOKDNE interrupt, the STAT is read to determine the status of the previous endpoint communication. The data in the status register is valid only when the TOKDNEF interrupt flag is asserted. The STAT register is actually a read window into a status FIFO maintained by the USB module. When the USB module uses a BD, it updates the status register. If another USB transaction is performed before the TOKDNE interrupt is serviced, the USB module will store the status of the next transaction in the STAT FIFO. Thus, the STAT register is actually a four byte FIFO which allows the microcontroller to process one transaction while the serial interface engine (SIE) is processing the next. Clearing the TOKDNEF bit in the INTSTAT register causes the SIE to update the STAT register with the contents of the next STAT value. If the next data in the STAT FIFO holding register is valid, the SIE will immediately reassert the TOKDNE interrupt.

Figure 17-12. Status Register (STAT)

Table 17-13. STAT Field Descriptions

Field	Description				
7–4 ENDP[3:0]	Endpoint Number — These four bits encode the endpoint address that received or transmitted the previous token. This allows the microcontroller to determine which BDT entry was updated by the last USB transaction. 0000 Endpoint 0 0001 Endpoint 1 0010 Endpoint 2 0011 Endpoint 3 0100 Endpoint 4 0101 Endpoint 5 0110 Endpoint 6				

Development Support

18.2.3 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin of the target HCS08 MCU. All commands and data are sent MSB-first using a custom BDC communications protocol. Active background mode commands require that the target MCU is currently in the active background mode while non-intrusive commands may be issued at any time whether the target MCU is in active background mode or running a user application program.

Table 18-1 shows all HCS08 BDC commands, a shorthand description of their coding structure, and the meaning of each command.

Coding Structure Nomenclature

This nomenclature is used in Table 18-1 to describe the coding structure of the BDC commands.

Commands begin with an 8-bit hexadecimal command code in the host-to-target direction (most significant bit first)

- / = separates parts of the command
- d = delay 16 target BDC clock cycles
- AAAA = a 16-bit address in the host-to-target direction
 - RD = 8 bits of read data in the target-to-host direction
 - WD = 8 bits of write data in the host-to-target direction
- RD16 = 16 bits of read data in the target-to-host direction
- WD16 = 16 bits of write data in the host-to-target direction
 - SS = the contents of BDCSCR in the target-to-host direction (STATUS)
 - CC = 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)
- RBKP = 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint register)
- WBKP = 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)

Appendix A Electrical Characteristics

- ⁶ Here USB module is enabled and clocked at 48 MHz (USBEN = 1, USBVREN =1, USBPHYEN = 1 and USBPU = 1), and D+ and D- pull down by two 15.1 kΩ resisters independently. The current consumption may be much higher when the packets are being transmitted through the attached cable.
- ⁷ MCU enters stop3 mode, USB bus in idle state. The USB suspend current will be dominated by the D+ pullup resister.

A.8 Analog Comparator (ACMP) Electricals

Table A-7. Analog Comparator Electrical Specifications

Num	С	Rating	Symbol	Min.	Typical	Max.	Unit
1	_	Supply voltage	V _{DD}	2.7		5.5	V
2	D	Supply current (active)	I _{DDAC}	—	20	35	μΑ
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	-	V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}	—	20	40	mV
5	D	Analog comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}	—	_	1.0	μA
7	D	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μS

A.9 ADC Characteristics

Table A-8. 5 Volt 12-bit ADC Operating Conditions

Characteristic	Conditions	Symbol	Min.	Typical ¹	Max.	Unit	Comment
Supply voltage	Absolute	V _{DDAD}	2.7	—	5.5	V	
Supply vollage	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSAD})^2$	ΔV_{SSAD}	-100	0	100	mV	
Ref Voltage High		V _{REFH}	2.7	V _{DDAD}	V _{DDAD}	V	
Ref Voltage Low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	
Input Voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input Capacitance		C _{ADIN}		4.5	5.5	pF	
Input Resistance		R _{ADIN}		3	5	kΩ	
	12 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz		_		2 5	kΩ	External to MCU
Analog Source Resistance	10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}	_	_	5 10		
	8 bit mode (all valid f _{ADCK})		_		10		