E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	93
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	PG-TQFP-128-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161cslfcafxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet, V3.0, Jan. 2001

C161CS-32R/-L C161JC-32R/-L C161JI-32R/-L

16-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Table 2	Table 2 Pin Definitions and Functions (control)							
Symbol	Pin No.	Input Outp.	Function					
P5		I	Port 5 is a 12-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:					
P5.0	27	1	AN0					
P5.1	28	1	AN1					
P5.2	29	1	AN2					
P5.3	30	1	AN3					
P5.4	31	1	AN4					
P5.5	32	1	AN5					
P5.6	33	1	AN6					
P5.7	34	1	AN7					
P5.12	37	1	AN12,	T6IN	GPT2 Timer T6 Count Inp.			
P5.13	38	1	AN13,	T5IN	GPT2 Timer T5 Count Inp.			
P5.14	39	1	AN14,	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.			
P5.15	40	I	AN15,	T2EUD	GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.			

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin No.	Input Outp.	Function						
PORT1 P1L.0-7	103- 110	Ю	PORT1 consists of the two 8-bit bidirectional I/O ports P1L and P1H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver						
P1H.0-7	113- 120		is put into high-impedance state. PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes and also after switching from a demultiplexed bus mode to a multiplexed bus mode. The following PORT1 pins also serve for alternate functions:						
P1H.4 P1H.5 P1H.6 P1H.7	117 118 119 120	I/O I/O I/O I/O	CC24IO CAPCOM2: CC24 Capture Inp./Compare Outp. CC25IO CAPCOM2: CC25 Capture Inp./Compare Outp. CC26IO CAPCOM2: CC26 Capture Inp./Compare Outp. CC27IO CAPCOM2: CC27 Capture Inp./Compare Outp.						
XTAL2 XTAL1	123 124	O I	 XTAL2: Output of the oscillator amplifier circuit. XTAL1: Input to the oscillator amplifier and input to the internal clock generator To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed. 						
XTAL3	126	I	XTAL3: Input to the 32-kHz oscillator amplifier and input to the internal clock generator						
XTAL4	127	0	XTAL4: Output of the oscillator amplifier circuit. To clock the device from an external source, drive XTAL3, while leaving XTAL4 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.						

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C161CS/JC/JI is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C161CS/JC/JI supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C161CS/JC/JI has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

 Table 3 shows all of the possible C161CS/JC/JI interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Figure 6 Block Diagram of GPT1

With its maximum resolution of 8 TCL, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/ down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared

CAN-Modules

The integrated CAN-Modules handle the completely autonomous transmission and reception of CAN frames in accordance with the CAN specification V2.0 part B (active), i.e. the on-chip CAN-Modules can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

The modules provide Full CAN functionality on up to 15 message objects each. Message object 15 may be configured for Basic CAN functionality. Both modes provide separate masks for acceptance filtering which allows to accept a number of identifiers in Full CAN mode and also allows to disregard a number of identifiers in Basic CAN mode. All message objects can be updated independent from the other objects and are equipped for the maximum message length of 8 bytes.

The bit timing is derived from the XCLK and is programmable up to a data rate of 1 MBaud. Each CAN-Module uses two pins of Port 4 or Port 8 to interface to an external bus transceiver. The interface pins are assigned via software.

Module CAN2 (C161CS only) is identical with the first one, except that it uses a separate address area and a separate interrupt node.

The two CAN modules can be internally coupled by assigning their interface pins to the same two port pins, or they can interface to separate CAN buses.

Note: When one or both of the on-chip CAN Modules are used with the interface lines assigned to Port 4, the interface lines override the segment address lines and the segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines A21/A19 ... A16. CS lines can be used to increase the total amount of addressable external memory.

IIC Module

The integrated IIC Bus Module handles the transmission and reception of frames over the two-line IIC bus in accordance with the IIC Bus specification. The on-chip IIC Module can receive and transmit data using 7-bit or 10-bit addressing and it can operate in slave mode, in master mode or in multi-master mode.

Several physical interfaces (port pins) can be established under software control. Data can be transferred at speeds up to 400 kbit/sec.

Two interrupt nodes dedicated to the IIC module allow efficient interrupt service and also support operation via PEC transfers.

Note: The port pins associated with the IIC interfaces feature open drain drivers only, as required by the IIC specification.

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between 20 μ s and 671 ms can be monitored (@ 25 MHz).

The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).

Oscillator Watchdog

The Oscillator Watchdog (OWD) monitors the clock signal generated by the on-chip oscillator (either with a crystal or via external clock drive). For this operation the PLL provides a clock signal which is used to supervise transitions on the oscillator clock. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the OWD activates the PLL Unlock / OWD interrupt node and supplies the CPU with the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

In direct drive mode the PLL base frequency is used directly ($f_{CPU} = 2 \dots 5 \text{ MHz}$). In prescaler mode the PLL base frequency is divided by 2 ($f_{CPU} = 1 \dots 2.5 \text{ MHz}$).

Note: The CPU clock source is only switched back to the oscillator clock after a hardware reset.

The oscillator watchdog can be disabled by setting bit OWDDIS in register SYSCON. In this case (OWDDIS = '1') the PLL remains idle and provides no clock signal, while the CPU clock signal is derived directly from the oscillator clock or via prescaler or SDD. Also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of an external reset ($\overline{EA} = '0'$) bit OWDDIS reflects the inverted level of pin \overline{RD} at that time. Thus the oscillator watchdog may also be disabled via hardware by (externally) pulling the \overline{RD} line low upon a reset, similar to the standard reset configuration via PORT0. At the end of an internal reset ($\overline{EA} = '1'$) bit OWDDIS is cleared.

Table 6 Ins	truction Set Summary (control)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

Special Function Registers Overview

Table 7 lists all SFRs which are implemented in the C161CS/JC/JI in alphabetical order. **Bit-addressable** SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Note: Registers within device specific interface modules (CAN, SDLM) are only present in the corresponding device, of course.

Name	Physical Address	8-Bit Addr.	Description	Reset Value
ADCIC b	FF98 _H	CCH	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON b	FFA0 _H	D0 _H	A/D Converter Control Register	0000 _H
ADDAT	FEA0 _H	50 _H	A/D Converter Result Register	0000 _H
ADDAT2	F0A0 _H E	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1	FE18 _H	0C _H	Address Select Register 1	0000 _H
ADDRSEL2	FE1A _H	0D _H	Address Select Register 2	0000 _H
ADDRSEL3	FE1C _H	0E _H	Address Select Register 3	0000 _H
ADDRSEL4	FE1E _H	0F _H	Address Select Register 4	0000 _H
ADEIC b	FF9A _H	CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUFFCON	EB24 _H X		SDLM Buffer Control Register	0000 _H
BUFFSTAT	EB1C _H X		SDLM Buffer Status Register	0000 _H
BUSCON0 b	FF0C _H	86 _H	Bus Configuration Register 0	0000 _H
BUSCON1 b	FF14 _H	8A _H	Bus Configuration Register 1	0000 _H
BUSCON2 b	FF16 _H	8B _H	Bus Configuration Register 2	0000 _H
BUSCON3 b	FF18 _H	8C _H	Bus Configuration Register 3	0000 _H
BUSCON4 b	FF1A _H	8D _H	Bus Configuration Register 4	0000 _H
BUSSTAT	EB20 _H X		SDLM Bus Status Register	0000 _H
C1BTR	EF04 _H X		CAN1 Bit Timing Register	UUUU _H
C1CSR	EF00 _H X		CAN1 Control / Status Register	XX01 _H
C1GMS	EF06 _H X		CAN1 Global Mask Short	UFUU _H

 Table 7
 C161CS/JC/JI Registers, Ordered by Name

Table 7 C161CS/JC/JI Registers, Ordered by Name (cont'd)

Name	Physical	8-Bit	Description	Reset
	Address	Addr.		Value
C1PCIR	EF02 _H X		CAN1 Port Control / Interrupt Register	XXXX _H
C1LARn	EFn4 _H X		CAN1 Lower Arbitration Reg. (msg. n)	UUUU _H
C1LGML	EF0A _H X		CAN1 Lower Global Mask Long	UUUU _H
C1LMLM	EF0E _H X		CAN1 Lower Mask of Last Message	UUUU _H
C1MCFGn	EFn6 _H X		CAN1 Message Config. Reg. (msg. n)	UU _H
C1MCRn	EFn0 _H X		CAN1 Message Control Reg. (msg. n)	UUUU _H
C1UARn	EFn2 _H X		CAN1 Upper Arbitration Reg. (msg. n)	UUUU _H
C1UGML	EF08 _H X		CAN1 Upper Global Mask Long	UUUU _H
C1UMLM	EF0C _H X		CAN1 Upper Mask of Last Message	UUUU _H
C2BTR	EE04 _H X		CAN2 Bit Timing Register	UUUU _H
C2CSR	EE00 _H X		CAN2 Control / Status Register	XX01 _H
C2GMS	EE06 _H X		CAN2 Global Mask Short	UFUU _H
C2PCIR	EE02 _H X		CAN2 Port Control / Interrupt Register	XXXX _H
C2LARn	EEn4 _H X		CAN2 Lower Arbitration Reg. (msg. n)	UUUU _H
C2LGML	EE0A _H X		CAN2 Lower Global Mask Long	UUUU _H
C2LMLM	EE0E _H X		CAN2 Lower Mask of Last Message	UUUU _H
C2MCFGn	EEn6 _H X		CAN2 Message Config. Reg. (msg. n)	UU _H
C2MCRn	EEn0 _H X		CAN2 Message Control Reg. (msg. n)	UUUU _H
C2UARn	EEn2 _H X		CAN2 Upper Arbitration Reg. (msg. n)	UUUU _H
C2UGML	EE08 _H X		CAN2 Upper Global Mask Long	UUUU _H
C2UMLM	EE0C _H X		CAN2 Upper Mask of Last Message	UUUU _H
CAPREL	FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC0	FE80 _H	40 _H	CAPCOM Register 0	0000 _H
CC0IC b	FF78 _H	BC _H	CAPCOM Register 0 Interrupt Ctrl. Reg.	0000 _H
CC1	FE82 _H	41 _H	CAPCOM Register 1	0000 _H
CC10	FE94 _H	4A _H	CAPCOM Register 10	0000 _H
CC10IC b	FF8C _H	C6 _H	CAPCOM Reg. 10 Interrupt Ctrl. Reg.	0000 _H
CC11	FE96 _H	4B _H	CAPCOM Register 11	0000 _H
CC11IC b	FF8E _H	C7 _H	CAPCOM Reg. 11 Interrupt Ctrl. Reg.	0000 _H
CC12	FE98 _H	4C _H	CAPCOM Register 12	0000 _H
CC12IC b	FF90 _H	C8 _H	CAPCOM Reg. 12 Interrupt Ctrl. Reg.	0000 _H
CC13	FE9A _H	4D _H	CAPCOM Register 13	0000 _H

- ⁶⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁷⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁸⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁹⁾ This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- ¹⁰⁾ This specification is valid during Reset and during Adapt-mode.
- ¹¹⁾ Not 100% tested, guaranteed by design and characterization.

Power Consumption C161CS/JC/JI

(Operating Conditions apply)

Parameter	Symbol	Lim	it Values	Unit	Test Condition
		min.	max.		
Power supply current (active) with all peripherals active	I _{DD}	_	15 + 2.5 × <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply current with all peripherals active	I _{IDX}	_	5 + 1.5 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply curr., Main osc, with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDOM} ²⁾	_	500 + 50 × f _{OSC}	μA	$\frac{\text{RSTIN}}{f_{\text{OSC}}} = V_{\text{IH1}}$ $f_{\text{OSC}} \text{ in } [\text{MHz}]^{1)}$
Idle mode supply curr., Aux. osc, with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDOA} ²⁾	_	100	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ $f_{\text{OSC}} = 32 \text{ kHz}^{3)}$
Sleep and Power-down mode supply current with RTC running on main oscillator	<i>I_{PDRM}²⁾</i>	_	200 + 25 × f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ³⁾
Sleep and Power-down mode supply current with RTC disabled	I _{PDO}	_	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{3)}$

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

- ²⁾ This parameter is determined mainly by the current consumed by the oscillator (see Figure 9). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.
- ³⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD} , all outputs (including pins configured as outputs) disconnected.

P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register RSTCON under software control.

Table 10 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG (P0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range ¹⁾	Notes
1 1 1	$f_{OSC} \times 4$	2.5 to 6.25 MHz	Default configuration
1 1 0	$f_{OSC} \times 3$	3.33 to 8.33 MHz	-
1 0 1	$f_{OSC} \times 2$	5 to 12.5 MHz	-
1 0 0	$f_{OSC} \times 5$	2 to 5 MHz	-
0 1 1	$f_{OSC} \times 1$	1 to 25 MHz	Direct drive ²⁾
0 1 0	$f_{OSC} \times 1.5$	6.66 to 16.6 MHz	-
0 0 1	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler
0 0 0	$f_{OSC} \times 2.5$	4 to 10 MHz	-

 Table 10
 C161CS/JC/JI Clock Generation Modes

¹⁾ The external clock input range refers to a CPU clock range of 10 ... 25 MHz.

²⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times \mathbf{F}$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of f_{CPU} is constantly adjusted so it is locked to f_{OSC} . The slight variation causes a jitter of f_{CPU} which also effects the duration of individual TCLs.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and Figure 12).

For a period of $N \times \text{TCL}$ the minimum value is computed using the corresponding deviation D_N :

$$(N \times \text{TCL})_{\text{min}} = N \times \text{TCL}_{\text{NOM}} - D_N \quad D_N \text{ [ns]} = \pm (13.3 + N \times 6.3) / f_{\text{CPU}} \text{ [MHz]},$$

where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3 × 6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ f_{CPU} = 25 MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 12).

Figure 12 Approximated Maximum Accumulated PLL Jitter

⁸⁾ During the sample time the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S . After the end of the sample time t_S , changes of the analog input voltage have no effect on the conversion result.

Values for the sample time t_S depend on programming and can be taken from **Table 14**.

Sample time and conversion time of the C161CS/JC/JI's A/D Converter are programmable. Table 14 should be used to calculate the above timings. The limit values for f_{BC} must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample time ^t s
00	<i>f</i> _{CPU} / 4	00	$t_{\rm BC} imes 8$
01	<i>f</i> _{СРU} / 2	01	$t_{\rm BC} imes$ 16
10	<i>f</i> _{СРU} / 16	10	$t_{\rm BC} imes 32$
11	f _{CPU} / 8	11	$t_{\rm BC} imes 64$

Table 14A/D Converter Computation Table

Converter Timing Example:

Assumptions:	<i>f</i> cpu	= 25 MHz (i.e. <i>t</i> _{CPU} = 40 ns), ADCTC = '00', ADSTC = '00'.
Basic clock	$f_{\sf BC}$	= f _{CPU} / 4 = 6.25 MHz, i.e. t _{BC} = 160 ns.
Sample time	t _S	$= t_{\rm BC} \times 8 = 1280$ ns.
Conversion time	t _C	= t _S + 40 t _{BC} + 2 t _{CPU} = (1280 + 6400 + 80) ns = 7.8 μs.

gure 18 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

AC Characteristics

Demultiplexed Bus

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	-	TCL - 10	-	ns
					+ t_A		
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_{A}$	-	TCL - 16	-	ns
					$+ t_A$		
ALE falling edge to \overline{RD} ,	t ₈	CC	$10 + t_{A}$	-	TCL - 10	-	ns
WR (with RW-delay)					$+ t_A$		
ALE falling edge to \overline{RD} ,	t ₉	CC	$-10 + t_{A}$	-	-10	-	ns
WR (no RW-delay)					$+ t_A$		
RD, WR low time	<i>t</i> ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10	-	ns
(with RW-delay)					+ <i>t</i> _C		
RD, WR low time	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10	-	ns
(no RW-delay)					+ <i>t</i> _C		
RD to valid data in	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	_	2TCL - 20	ns
(with RW-delay)						+ <i>t</i> _C	
RD to valid data in	t_{15}	SR	-	$40 + t_{\rm C}$	-	3TCL - 20	ns
(no RW-delay)						+ <i>t</i> _C	
ALE low to valid data in	<i>t</i> ₁₆	SR	-	40 +	_	3TCL - 20	ns
				$t_{A} + t_{C}$		$+ t_{A} + t_{C}$	
Address to valid data in	t ₁₇	SR	-	50 +	_	4TCL - 30	ns
				$2t_{A} + t_{C}$		$+ 2t_{A} + t_{C}$	
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD rising	t ₂₀	SR	—	26 +	_	2TCL - 14	ns
edge (with RW-delay ¹⁾)	20			$2t_{A} + t_{F}^{(1)}$		$+ 22t_{A}$	
						$+ t_{\rm F}^{(1)}$	
Data float after RD rising	t ₂₁	SR	_	10 +	_	TCL - 10	ns
edge (no RW-delay ¹⁾)				$2t_{A} + t_{F}^{1}$		$+ 22t_{A}$	
						$+ t_{\rm F}''$	

Demultiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	ymbol Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
Data float after RdCS (no RW-delay) ¹⁾	<i>t</i> ₆₈ SR	_	$0 + t_{F}$	-	TCL - 20 + $2t_A + t_F^{(1)}$	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	-6 + <i>t</i> _F	_	-6 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	$6 + t_{F}$	_	TCL - 14 + <i>t</i> _F	_	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

AC Characteristics

CLKOUT and READY

(Operating Conditions apply)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	40	40	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	14	_	TCL - 6	_	ns
CLKOUT low time	t ₃₁	CC	10	-	TCL - 10	-	ns
CLKOUT rise time	t ₃₂	CC	_	4	_	4	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	_	4	_	4	ns
CLKOUT rising edge to ALE falling edge	t ₃₄	CC	$0 + t_A$	$10 + t_{A}$	$0 + t_A$	$10 + t_A$	ns
Synchronous READY setup time to CLKOUT	t ₃₅	SR	14	_	14	-	ns
Synchronous READY hold time after CLKOUT	t ₃₆	SR	4	_	4	-	ns
Asynchronous READY low time	t ₃₇	SR	54	_	2TCL + <i>t</i> ₅₈	-	ns
Asynchronous READY setup time ¹⁾	t ₅₈	SR	14	_	14	-	ns
Asynchronous READY hold time ¹⁾	t ₅₉	SR	4	_	4	-	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	t ₆₀	SR	0	0 + $2t_A$ + t_C + $t_F^{2)}$	0	TCL - 20 + 2t _A + t _C + t _F ²	ns

¹⁾ These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

²⁾ Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current bus cycle.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.

Figure 25 External Bus Arbitration, Releasing the Bus

- **Notes** ¹⁾ The C161CS/JC/JI will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{64} .

Figure 26 External Bus Arbitration, (Regaining the Bus)

Notes

¹⁾ This is the last chance for BREQ to trigger the indicated regain-sequence. Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the C161CS/JC/JI requesting the bus.

²⁾ The next C161CS/JC/JI driven bus cycle may start here.