

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SLDM, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	93
Program Memory Size	·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	PG-TQFP-128-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-c161ji-lf-ca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet, V3.0, Jan. 2001

C161CS-32R/-L C161JC-32R/-L C161JI-32R/-L

16-Bit Single-Chip Microcontroller

Microcontrollers

Never stop thinking.

Table 2	F	Pin Defini	tions and F	unctions	(cont'd)						
Symbol	Pin No.	Input Outp.	Function								
P5		I	The pins c	Port 5 is a 12-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:							
P5.0	27	1	AN0								
P5.1	28	1	AN1								
P5.2	29	1	AN2								
P5.3	30	1	AN3								
P5.4	31	1	AN4								
P5.5	32	1	AN5								
P5.6	33	1	AN6								
P5.7	34	1	AN7								
P5.12	37	1	AN12,	T6IN	GPT2 Timer T6 Count Inp.						
P5.13	38	1	AN13,	T5IN	GPT2 Timer T5 Count Inp.						
P5.14	39	1	AN14,	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.						
P5.15	40		AN15,	T2EUD	GPT1 Timer T5 Ext. Up/Down Ctrl. Inp.						

Note: When one or both of the on-chip CAN Modules or the SDLM are used with the interface lines assigned to Port 4, the interface lines override the segment address lines and the segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines A21/A19 ... A16. CS lines can be used to increase the total amount of addressable external memory.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161CS/JC/JI's instructions can be executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16-bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

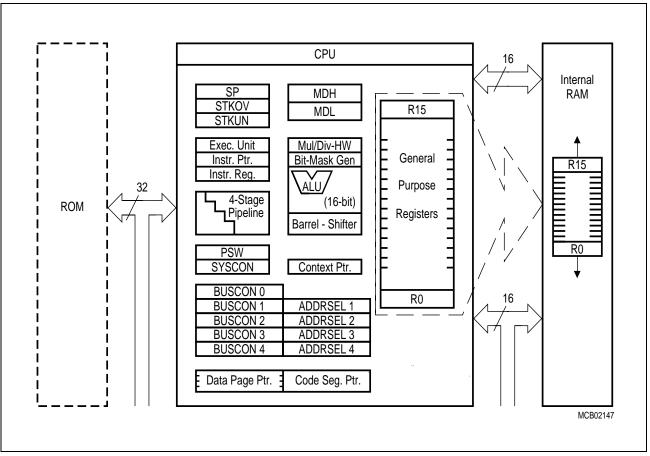


Figure 4 CPU Block Diagram

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C161CS/JC/JI is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C161CS/JC/JI supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C161CS/JC/JI has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C161CS/JC/JI interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

Capture/Compare (CAPCOM) Units

The CAPCOM units support generation and control of timing sequences on up to 32 channels with a maximum resolution of 16 TCL. The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events.

Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/ compare registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/ compare registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function. Eight registers of each module have one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; several compare events per timer period are possible
Mode 2	Interrupt-only compare mode; only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare time overflow; only one compare event per timer period is generated

Table 5Compare Modes (CAPCOM)

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

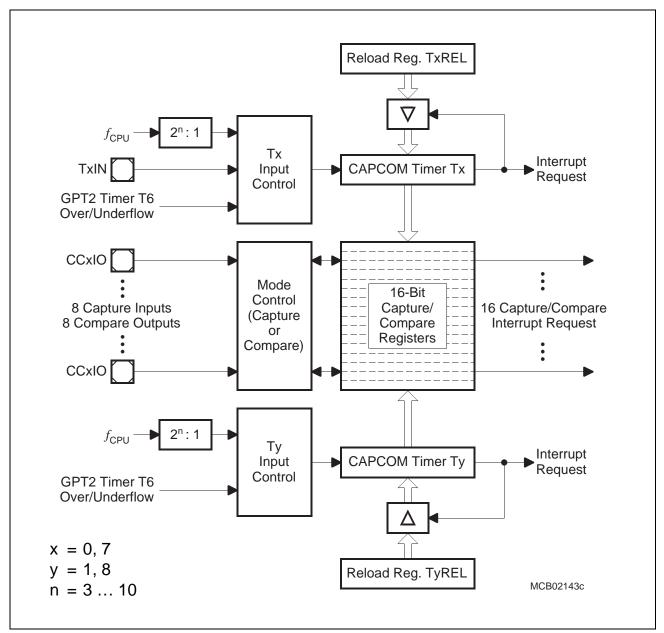
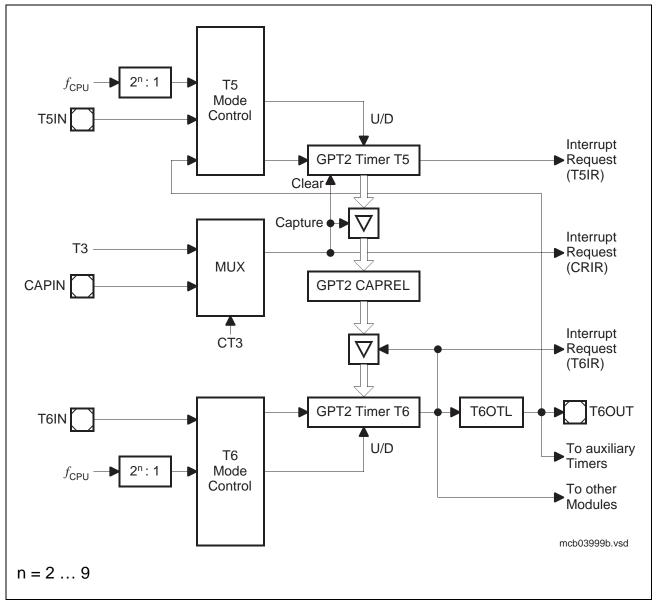


Figure 5 CAPCOM Unit Block Diagram

Figure 6 Block Diagram of GPT1


With its maximum resolution of 8 TCL, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The count direction (up/ down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM timers T0 or T1, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared

after the capture procedure. This allows the C161CS/JC/JI to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Serial Data Link Module (SDLM)

The Serial Data Link Module (SDLM) provides serial communication via a J1850 type multiplexed serial bus via an external J1850 bus transceiver. The module conforms to the SAE Class B J1850 specification for variable pulse width modulation (VPW). The SDLM is integrated as an on-chip peripheral and is connected to the CPU via the XBUS.

General SDLM Features:

- Compliant to the SAE Class B J1850 specification (VPW)
- Class 2 protocol fully supported
- Variable Pulse Width (VPW) operation at 10.4 kBaud
- High Speed 4X operation at 41.6 kBaud
- Programmable Normalization Bit
- Programmable Delay for transceiver interface
- Digital Noise Filter
- Power Down mode with automatic wakeup support upon bus activity
- Single Byte Header and Consolidated Header supported
- CRC generation and checking
- Receive and transmit Block Mode

Data Link Operation Features:

- 11 Byte Transmit Buffer
- Double buffered 11 Byte receive buffer (optional overwrite enable)
- Support for In Frame Response (IFR) types 1, 2 and 3
- Transmit and Receiver Message Buffers configurable for either FIFO or Byte mode
- Advanced Interrupt Handling with 8 separately enabled sources:

Error, format or bus shorted CRC error Lost Arbitration Break received In-Frame-Response request Header received Complete message received Transmit successful

- Automatic IFR transmission (Types 1 and 2) for 3-Byte consolidated headers
- User configurable clock divider
- Bus status flags (IDLE, EOF, EOD, SOF, Tx and Rx in progress)
- Note: When the SDLM is used with the interface lines assigned to Port 4, the interface lines override the segment address lines and the segment address output on Port 4 is therefore limited to 6/4 bits i.e. address lines A21/A19 ... A16. CS lines can be used to increase the total amount of addressable external memory.

Instruction Set Summary

 Table 6 lists the instructions of the C161CS/JC/JI in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"C166 Family Instruction Set Manual"**.

This document also provides a detailled description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 6Instruction Set Summary

Table 7 C161CS/JC/JI Registers, Ordered by Name (cont'd)

Name		Physical Address		8-Bit Addr.	Description	Reset Value
IDPROG		F078 _H	Ε	3C _H	Identifier	XXXX _H
IFR		EB18 _H	Χ		SDLM In-Frame Response Register	0000 _H
INTCON		EB2C _H	Χ		SDLM Interrupt Control Register	0000 _H
IPCR		EB04 _H	Χ		SDLM Interface Port Connect Register	0007 _H
ISNC		F1DE _H	Е	EF _H	Interrupt Subnode Control Register	0000 _H
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP4	b	F1CA _H	Ε	E5 _H	Port 4 Open Drain Control Register	00 _H
ODP6	b	F1CE _H	Е	E7 _H	Port 6 Open Drain Control Register	00 _H
ODP7	b	F1D2 _H	Ε	E9 _H	Port 7 Open Drain Control Register	00 _H
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H		82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P2	b	FFC0 _H		E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H		E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H		E4 _H	Port 4 Register (7 bits)	00 _H
P5	b	FFA2 _H		D1 _H	Port 5 Register (read only)	XXXX _H
P6	b	$FFCC_{H}$		E6 _H	Port 6 Register (8 bits)	00 _H
P7	b	FFD0 _H		E8 _H	Port 7 Register (8 bits)	00 _H
P9	b	FFD8 _H		ECH	Port 9 Register (8 bits)	00 _H
PECC0		FEC0 _H		60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H		61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H		62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H		63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H		64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H		65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H		66 _H	PEC Channel 6 Control Register	0000 _H

Table 7 C161CS/JC/JI Registers, Ordered by Name (cont'd)

Name				8-Bit Addr.	Description	Reset Value
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H
SYSCON1	b	F1DC _H	Ε	EEH	CPU System Configuration Register 1	0000 _H
SYSCON2	b	F1D0 _H	Ε	E8 _H	CPU System Configuration Register 2	0000 _H
SYSCON3	b	F1D4 _H	Ε	EA _H	CPU System Configuration Register 3	0X00 _H
Т0		FE50 _H		28 _H	CAPCOM Timer 0 Register	0000 _H
T01CON	b	FF50 _H		A8 _H	CAPCOM Timer 0 and Timer 1 Ctrl. Reg.	0000 _H
TOIC	b	FF9C _H		CEH	CAPCOM Timer 0 Interrupt Ctrl. Reg.	0000 _H
TOREL		FE54 _H		2A _H	CAPCOM Timer 0 Reload Register	0000 _H
T1		FE52 _H		29 _H	CAPCOM Timer 1 Register	0000 _H
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	no
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	no
T1IC	b	FF9E _H		CF _H	CAPCOM Timer 1 Interrupt Ctrl. Reg.	0000 _H
T1REL		FE56 _H		2B _H	CAPCOM Timer 1 Reload Register	0000 _H
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H		23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H		A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H		B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H		24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H		A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H		B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
T7		F050 _H	Ε	28 _H	CAPCOM Timer 7 Register	0000 _H
T78CON	b	FF20 _H		90 _H	CAPCOM Timer 7 and 8 Ctrl. Reg.	0000 _H
T7IC	b	F17A _H	Ε	BD _H	CAPCOM Timer 7 Interrupt Ctrl. Reg.	0000 _H
T7REL		F054 _H	Ε	2A _H	CAPCOM Timer 7 Reload Register	0000 _H

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C161CS/ JC/JI and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C161CS/JC/JI will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C161CS/JC/JI.

DC Characteristics

(Operating Conditions apply)¹⁾

Parameter	Symbol		Limit	Values	Unit	Test Condition
			min.	max.		
Input low voltage (TTL, all except XTAL1, XTAL3, Port 9)	V_{IL}	SR	-0.5	0.2 V _{DD} - 0.1	V	_
Input low voltage XTAL1, XTAL3, Port 9	V _{IL2}	SR	-0.5	0.3 V _{DD}	V	_
Input low voltage (Special Threshold)	V _{ILS}	SR	-0.5	2.0	V	_
Input high voltage (TTL, all except RSTIN, XTAL1, XTAL3, Port 9)	V _{IH}	SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage XTAL1, XTAL3, Port 9	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	_
Input high voltage (Special Threshold)	V _{IHS}	SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-
Input Hysteresis (Special Threshold)	HYS		400	_	mV	Series resistance = 0Ω
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	-	0.45	V	$I_{OL} = 2.4 \text{ mA}^{3)}$ $I_{OL} = 0.5 \text{ mA}^{4)}$
Output low voltage (Port 9)	V _{OL9}	CC	_	0.4	V	<i>I</i> _{OL} = 3.0 mA

P0.15-13 (P0H.7-5). Register RP0H can be loaded from the upper half of register RSTCON under software control.

Table 10 associates the combinations of these three bits with the respective clock generation mode.

CLKCFG (P0H.7-5)	$CPU Frequency f_{CPU} = f_{OSC} \times F$	External Clock Input Range ¹⁾	Notes
1 1 1	$f_{OSC} \times 4$	2.5 to 6.25 MHz	Default configuration
1 1 0	$f_{OSC} \times 3$	3.33 to 8.33 MHz	-
1 0 1	$f_{OSC} \times 2$	5 to 12.5 MHz	-
1 0 0	$f_{OSC} \times 5$	2 to 5 MHz	-
0 1 1	$f_{OSC} \times 1$	1 to 25 MHz	Direct drive ²⁾
0 1 0	$f_{OSC} \times 1.5$	6.66 to 16.6 MHz	-
0 0 1	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler
0 0 0	$f_{\rm OSC} \times 2.5$	4 to 10 MHz	-

 Table 10
 C161CS/JC/JI Clock Generation Modes

¹⁾ The external clock input range refers to a CPU clock range of 10 ... 25 MHz.

²⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = 001_B) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

When PLL operation is configured (via CLKCFG) the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} \times \mathbf{F}$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of f_{CPU} is constantly adjusted so it is locked to f_{OSC} . The slight variation causes a jitter of f_{CPU} which also effects the duration of individual TCLs.

A/D Converter Characteristics

(Operating Conditions apply)

Table 13	A/D Converter Characteristics
----------	-------------------------------

Parameter	Symbol		Limit	Values	Unit	Test	
			min.	max.		Condition	
Analog reference supply	VAREF	SR	4.0	V _{DD} + 0.1	V	1)	
Analog reference ground	VAGNE	SR	V _{SS} - 0.1	$V_{\rm SS}$ + 0.2	V		
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V _{AREF}	V	2)	
Basic clock frequency	f _{BC}		0.5	6.25	MHz	3)	
Conversion time	t _C	CC	_	40 <i>t</i> _{BC} +	_	4)	
				$t_{\rm S}$ + $2t_{\rm CPU}$		$t_{\rm CPU} = 1 / f_{\rm CPU}$	
Calibration time after reset	t _{CAL}	CC	-	3328 t _{BC}	-	5)	
Total unadjusted error	TUE	CC	-	±2	LSB	1)	
Internal resistance of	R _{AREF}	SR	_	t _{BC} / 60	kΩ	t _{BC} in [ns] ⁶⁾⁷⁾	
reference voltage source				- 0.25			
Internal resistance of analog	R _{ASRC}	SR	_	t _S / 450	kΩ	t _S in [ns] ⁷⁾⁸⁾	
source				- 0.25			
ADC input capacitance	C_{AIN}	CC	-	33	pF	7)	

¹⁾ TUE is tested at $V_{AREF} = 5.0 \text{ V}$, $V_{AGND} = 0 \text{ V}$, $V_{DD} = 4.9 \text{ V}$. It is guaranteed by design for all other voltages within the defined voltage range.

If the analog reference supply voltage exceeds the power supply voltage by up to 0.2 V (i.e. $V_{AREF} = V_{DD} = +0.2$ V) the maximum TUE is increased to ±3 LSB. This range is not 100% tested. The specified TUE is guaranteed only if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be ± 4 LSB.

- ²⁾ V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.
- ³⁾ The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- ⁴⁾ This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result.
 Values for the basic clock t_{BC} depend on programming and can be taken from Table 14.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

- ⁵⁾ During the reset calibration conversions can be executed (with the current accuracy). The time required for these conversions is added to the total reset calibration time.
- ⁶⁾ During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- ⁷⁾ Not 100% tested, guaranteed by design and characterization.

Multiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol			PU Clock MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	-	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	-	$40 + t_{A} + t_{C}$	-	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	-	$50 + 2t_A + t_C$	-	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD	<i>t</i> ₁₉	SR	_	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	_	ns
Data hold after \overline{WR}	<i>t</i> ₂₃	CC	26 + $t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	26 + $t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{CS}^{1)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	-	40 + t_{C} + $2t_{A}$	_	$3TCL - 20 + t_C + 2t_A$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	46 + <i>t</i> _F	-	3TCL - 14 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	_	ns

Demultiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol			PU Clock MHz	Variable 1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Data valid to \overline{WR}	<i>t</i> ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	t ₂₄	CC	10 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₆	CC	-10 + <i>t</i> _F	-	-10 + <i>t</i> _F	-	ns
Address hold after $\overline{WR}^{2)}$	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_{F}$	-	ns
ALE falling edge to $\overline{\text{CS}}^{3)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data $\ln^{3)}$	t ₃₉	SR	_	$40 + t_{C} + 2t_{A}$	_	$3TCL - 20 + t_C + 2t_A$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	<i>t</i> ₄₁	CC	6 + <i>t</i> _F	-	TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW-delay)	t ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW-delay)	<i>t</i> ₄₃	CC	$-4 + t_{A}$	-	-4 + t _A	_	ns
RdCS to Valid Data In (with RW-delay)	<i>t</i> ₄₆	SR	_	16 + <i>t</i> _C	_	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	<i>t</i> ₄₇	SR	-	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	<i>t</i> ₄₉	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
Data valid to WrCS	t ₅₀	CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	t ₅₁	SR	0	-	0	_	ns
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	-	20 + <i>t</i> _F	-	2TCL - 20 + $2t_A + t_F^{(1)}$	ns

Demultiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
Data float after RdCS (no RW-delay) ¹⁾	<i>t</i> ₆₈ SR	_	0 + <i>t</i> _F	-	TCL - 20 + $2t_A + t_F^{(1)}$	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	-6 + <i>t</i> _F	_	-6 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	$6 + t_{F}$	_	TCL - 14 + <i>t</i> _F	_	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

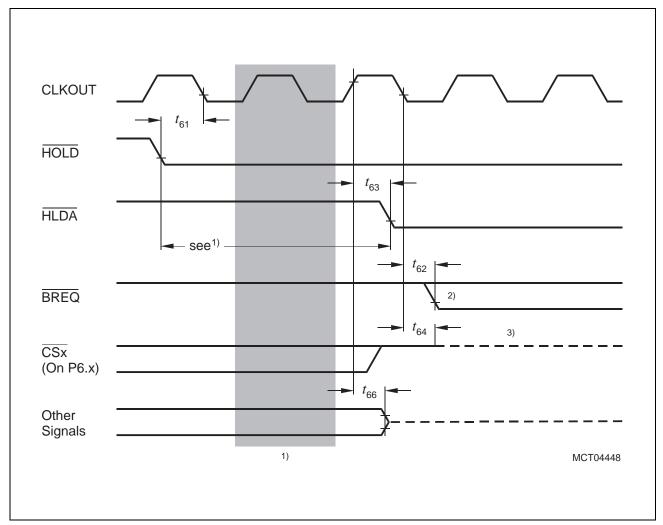


Figure 25 External Bus Arbitration, Releasing the Bus

- **Notes** ¹⁾ The C161CS/JC/JI will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{64} .

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com