

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	93
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	PG-TQFP-128-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-c161cs-lf-ca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C161CS/JC/JI please refer to the "**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

Introduction

The C161CS/JC/JI derivatives are high performance derivatives of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. They combine high CPU performance (up to 12.5 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program ROM, internal RAM, and extension RAM.

Figure 1 Logic Symbol

Table 2	Pin Definitions and Functions (cont'd)
	FIII Deminions and Functions (CONLU)

Symbol	Pin No.	Input Outp.	Function
P7		10	Port 7 is a 4-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 7 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 7 is selectable (TTL or special). Port 7 pins provide inputs/ outputs for CAPCOM2 and serial interface lines ¹⁾
P7.4	13	I/O I I	CC28IOCAPCOM2: CC28 Capture Inp./Compare Outp.,CAN1_RxD CAN 1 Receive Data Input,(C161CS/JC)CAN2_RxD CAN 2 Receive Data Input,(C161CS)SDITxDSDI M Transmit Data Output(C161JC/JI)
P7.5	14	I/O O O I	CC29IOCAPCOM2: CC29 Capture Inp./Compare Outp.,CAN1_TxDCAN 1 Transmit Data Output,(C161CS/JC)CAN2_TxDCAN 2 Transmit Data Output,(C161CS)SDLRxDSDLM Receive Data Input(C161JC/JI)
P7.6	15	I/O I I O	CC30IOCAPCOM2: CC30 Capture Inp./Compare Outp.,CAN1_RxD CAN 1 Receive Data Input,(C161CS/JC)CAN2_RxD CAN 2 Receive Data Input,(C161CS)SDL TxDSDLM Transmit Data Output(C161JC/JI)
P7.7	16	I/O O O I	CC31IOCAPCOM2: CC31 Capture Inp./Compare Outp., CAN1_TxD CAN 1 Transmit Data Output, CAN2_TxD CAN 2 Transmit Data Output, SDL_RxD(C161CS/JC) (C161CS)SDL_RxDSDLM Receive Data Input(C161JC/JI)
P9.0 P9.1 P9.2 P9.3 P9.4 P9.5	19 20 21 22 23 24	IO I/O I/O I/O I/O I/O -	Port 9 is a 6-bit bidirectional open drain I/O port (provide external pullup resistors if required). It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. The following Port 9 pins also serve for alternate functions: SDA0 IIC Bus Data Line 0 SCL0 IIC Bus Clock Line 0 SDA1 IIC Bus Clock Line 1 SCL1 IIC Bus Clock Line 1 SDA2 IIC Bus Data Line 2 -
			Note: Port 9 pins can only tolerate positive overload currents (see Table 9).

Table 2	FII	Dennit	ions and Fu	inctions (cont a)					
Symbol	Pin No.	Input Outp.	Function						
Ρ3		IO	Port 3 is a 15-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 3 outputs can be configured as push/ pull or open drain drivers. The input threshold of Port 3 is selectable (TTL or special).						
D3 0	52			The following Port 3 pins also serve for alternate functions: FOIN CAPCOM1 Timer T0 Count Input.					
F 3.0	55			ASC1 Clock/Data Output (Async /Sync)					
P3.1	54	õ	TEOUT	GPT2 Timer T6 Toggle Latch Output.					
	•	I/O	RxD1	ASC1 Data Input (Async.) or Inp./Output (Sync.)					
P3.2	55	1	CAPIN	GPT2 Register CAPREL Capture Input					
P3.3	56	0	T3OUT	GPT1 Timer T3 Toggle Latch Output					
P3.4	57	1	T3EUD	GPT1 Timer T3 External Up/Down Control Input					
P3.5	58	1	T4IN	GPT1 Timer T4 Count/Gate/Reload/Capture Inp					
P3.6	59	1	T3IN	GPT1 Timer T3 Count/Gate Input					
P3.7	60	1	T2IN	GPT1 Timer T2 Count/Gate/Reload/Capture Inp					
P3.8	61	I/O	MRST	SSC Master-Receive/Slave-Transmit Inp./Outp.					
P3.9	62	I/O	MTSR	SSC Master-Transmit/Slave-Receive Outp./Inp.					
P3.10	63	0	TxD0	ASC0 Clock/Data Output (Async./Sync.)					
P3.11	64	I/O	RxD0	ASC0 Data Input (Async.) or Inp./Outp. (Sync.)					
P3.12	65	0	BHE	External Memory High Byte Enable Signal,					
		0	WRH	External Memory High Byte Write Strobe					
P3.13	66	I/O	SCLK	SSC Master Clock Output / Slave Clock Input.					
P3.15	67	0	CLKOUT	System Clock Output (= CPU Clock)					
		0	FOUT	Programmable Frequency Output					

Table 2Pin Definitions and Functions (cont'd)

Table 2	2 Pin Definitions and Functions (cont d)							
Symbol	Pin No.	Input Outp.	Function					
P4		10	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise					
			programmable for input or output via direction bits. For a pin					
			configured as input, the output driver is put into high-					
			nuch/pull or open drain drivers. The input threshold of Port 4					
			is selectable (TTL or special).					
			Port 4 can be used to output the segment address lines and					
			for serial interface lines: ¹⁾					
P4.0	70	0	A16 Least Significant Segment Address Line					
P4.1	71	0	A17 Segment Address Line					
P4.2	72	0	A18 Segment Address Line					
P4.3	73	0	A19 Segment Address Line					
P4.4	74	0	A20 Segment Address Line,					
			CAN2_RxD CAN 2 Receive Data Input, (C161CS)					
			SDL_RxD SDLM Receive Data Input (C161JC/JI)					
P4.5	75	0	A21 Segment Address Line,					
	70		CAN1_RxD CAN 1 Receive Data Input, (C161CS/JC)					
P4.6	76	0	A22 Segment Address Line,					
		0	CAN2_TXD CAN 2 Transmit Data Output, (C161C5/JC)					
			SDI RyD SDI M Receive Data Input (C161 IC/ II)					
P4 7	77	\mathbf{O}	A23 Most Significant Segment Address Line					
		Ĩ	CAN1 RxD CAN 1 Receive Data Input. (C161CS/JC)					
		0	CAN2 TxD CAN 2 Transmit Data Output, (C161CS)					
		1	CAN2_RxD CAN 2 Receive Data Input, (C161CS)					
		0	SDL_TxD SDLM Transmit Data Output (C161JC/JI)					
RD	80	0	External Memory Read Strobe. RD is activated for every					
			external instruction or data read access.					
WR/	81	0	External Memory Write Strobe. In WR-mode this pin is					
WRL			activated for every external data write access. In WRL-mode					
			this pin is activated for low byte data write accesses on a					
			16-bit bus, and for every data write access on an 8-bit bus.					
			See WRCFG in register SYSCON for mode selection.					

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Figure 5 CAPCOM Unit Block Diagram

Instruction Set Summary

 Table 6 lists the instructions of the C161CS/JC/JI in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailled description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 6 Instruction Set Summary

Name	Physical	8-Bit	3-Bit Description	
	Address	Addr.		Value
C1PCIR	EF02 _H X		CAN1 Port Control / Interrupt Register	XXXX _H
C1LARn	EFn4 _H X		CAN1 Lower Arbitration Reg. (msg. n)	UUUU _H
C1LGML	EF0A _H X		CAN1 Lower Global Mask Long	UUUU _H
C1LMLM	EF0E _H X		CAN1 Lower Mask of Last Message	UUUU _H
C1MCFGn	EFn6 _H X		CAN1 Message Config. Reg. (msg. n)	UU _H
C1MCRn	EFn0 _H X		CAN1 Message Control Reg. (msg. n)	UUUU _H
C1UARn	EFn2 _H X		CAN1 Upper Arbitration Reg. (msg. n)	UUUU _H
C1UGML	EF08 _H X		CAN1 Upper Global Mask Long	UUUU _H
C1UMLM	EF0C _H X		CAN1 Upper Mask of Last Message	UUUU _H
C2BTR	EE04 _H X		CAN2 Bit Timing Register	UUUU _H
C2CSR	EE00 _H X		CAN2 Control / Status Register	XX01 _H
C2GMS	EE06 _H X		CAN2 Global Mask Short	UFUU _H
C2PCIR	EE02 _H X		CAN2 Port Control / Interrupt Register	XXXX _H
C2LARn	EEn4 _H X		CAN2 Lower Arbitration Reg. (msg. n)	UUUU _H
C2LGML	EE0A _H X		CAN2 Lower Global Mask Long	UUUU _H
C2LMLM	EE0E _H X		CAN2 Lower Mask of Last Message	UUUU _H
C2MCFGn	EEn6 _H X		CAN2 Message Config. Reg. (msg. n)	UU _H
C2MCRn	EEn0 _H X		CAN2 Message Control Reg. (msg. n)	UUUU _H
C2UARn	EEn2 _H X		CAN2 Upper Arbitration Reg. (msg. n)	UUUU _H
C2UGML	EE08 _H X		CAN2 Upper Global Mask Long	UUUU _H
C2UMLM	EE0C _H X		CAN2 Upper Mask of Last Message	UUUU _H
CAPREL	FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC0	FE80 _H	40 _H	CAPCOM Register 0	0000 _H
CC0IC b	FF78 _H	BC _H	CAPCOM Register 0 Interrupt Ctrl. Reg.	0000 _H
CC1	FE82 _H	41 _H	CAPCOM Register 1	0000 _H
CC10	FE94 _H	4A _H	CAPCOM Register 10	0000 _H
CC10IC b	FF8C _H	C6 _H	CAPCOM Reg. 10 Interrupt Ctrl. Reg.	0000 _H
CC11	FE96 _H	4B _H	CAPCOM Register 11	0000 _H
CC11IC b	FF8E _H	C7 _H	CAPCOM Reg. 11 Interrupt Ctrl. Reg.	0000 _H
CC12	FE98 _H	4C _H	CAPCOM Register 12	0000 _H
CC12IC b	FF90 _H	C8 _H	CAPCOM Reg. 12 Interrupt Ctrl. Reg.	0000 _H
CC13	FE9A _H	4D _H	CAPCOM Register 13	0000 _H

Name		Physical		8-Bit	Description	Reset
		Address	5	Addr.		Value
CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Reg.	0000 _H
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register	0000 _H
					(8 bits, not directly writeable)	
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
DP0L	b	F100 _H E		80 _H	P0L Direction Control Register	00 _H
DP1H	b	F106 _H E		83 _H	P1H Direction Control Register	00 _H
DP1L	b	F104 _H E		82 _H	P1L Direction Control Register	00 _H
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H
DP7	b	FFD2 _H		E9 _H	Port 7 Direction Control Register	00 _H
DP9	b	FFDA _H		ED _H	Port 9 Direction Control Register	00 _H
DPP0	FE00 _H			00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1	PP1 FE02 _H			01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
ERRSTAT		EB22 _H	Χ		SDLM Error Status Register	0000 _H
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
EXISEL	XISEL b F1DA _H E		Ε	ED _H	External Interrupt Source Select Register	0000 _H
FLAGRST		EB28 _H	Χ		SDLM Flag Reset Register	0000 _H
FOCON	b	FFAA _H		D5 _H	Frequency Output Control Register	0000 _H
GLOBCON		EB10 _H	Χ		SDLM Global Control Register	0000 _H
ICADR		ED06 _H	Χ		IIC Address Register	0XXX _H
ICCFG		ED00 _H	Χ		IIC Configuration Register	XX00 _H
ICCON		ED02 _H	Χ		IIC Control Register	0000 _H
ICRTB		ED08 _H	Χ		IIC Receive/Transmit Buffer	ХХ _Н
ICST		ED04 _H	Χ		IIC Status Register	0000 _H
IDCHIP		F07C _H	Ε	3E _H	Identifier	1XXX _H
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
IDMEM		F07A _H	Ε	3D _H	Identifier	X040 _H

Name		Physical Address		8-Bit Addr.	Description	Reset Value
RXD18		EB58 _H	Χ		SDLM Receive Data Register 18 (bus)	0000 _H
SOBG FEB4 _H			5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H	
S0CON	b	FFB0 _H		D8 _H	Serial Channel 0 Control Register	0000 _H
SOEIC	b	FF70 _H		B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg.	0000 _H
SORBUF		FEB2 _H		59 _H	Serial Channel 0 Receive Buffer Register (read only)	XXXX _H
SORIC	b	FF6E _H		B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H	Ε	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
SOTBUF		FEB0 _H		58 _H	Serial Channel 0 Transmit Buffer Register	0000 _H
SOTIC	b	FF6C _H		B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H
S1BG		EDA4 _H X -			Serial Channel 1 Baud Rate Generator Reload Register	0000 _H
S1CON		EDA6 _H	Χ		Serial Channel 1 Control Register	0000 _H
S1RBUF		EDA2 _H	Χ		Serial Channel 1 Receive Buffer Register (read only)	XXXX _H
S1TBUF		EDA0 _H	Χ		Serial Channel 1 Transmit Buffer Register	0000 _H
SOFPTR		EB60 _H	Χ		SDLM Start-of-Frame Pointer Register	0000 _H
SP		FE12 _H		09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H
SSCEIC	b	FF76 _H		BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H	Ε	59 _H	SSC Receive Buffer (read only)	XXXX _H
SSCRIC	b	FF74 _H		ΒΑ _Η	SSC Receive Interrupt Control Register	0000 _H
SSCTB		F0B0 _H	Ε	58 _H	SSC Transmit Buffer (write only)	0000 _H
SSCTIC	b	FF72 _H		B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H

Name		Physical		8-Bit	Description	Reset
		Address	S	Addr.		Value
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H
SYSCON1	b	F1DC _H	Ε	EEH	CPU System Configuration Register 1	0000 _H
SYSCON2	b	F1D0 _H	Ε	E8 _H	CPU System Configuration Register 2	0000 _H
SYSCON3	b	F1D4 _H	Ε	EA _H	CPU System Configuration Register 3	0X00 _H
Т0		FE50 _H		28 _H	CAPCOM Timer 0 Register	0000 _H
T01CON	b	FF50 _H		A8 _H	CAPCOM Timer 0 and Timer 1 Ctrl. Reg.	0000 _H
TOIC	b	FF9C _H		CEH	CAPCOM Timer 0 Interrupt Ctrl. Reg.	0000 _H
TOREL		FE54 _H		2A _H	CAPCOM Timer 0 Reload Register	0000 _H
T1		FE52 _H		29 _H	CAPCOM Timer 1 Register	0000 _H
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	no
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	no
T1IC	b	FF9E _H		CF _H	CAPCOM Timer 1 Interrupt Ctrl. Reg.	0000 _H
T1REL		FE56 _H		2B _H	CAPCOM Timer 1 Reload Register	0000 _H
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H		23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H		A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H		B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H		24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H		A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H		B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
T7		F050 _H	Ε	28 _H	CAPCOM Timer 7 Register	0000 _H
T78CON	b	FF20 _H		90 _H	CAPCOM Timer 7 and 8 Ctrl. Reg.	0000 _H
T7IC	b	F17A _H	Ε	BD _H	CAPCOM Timer 7 Interrupt Ctrl. Reg.	0000 _H
T7REL		F054 _H	Ε	2A _H	CAPCOM Timer 7 Reload Register	0000 _H

Figure 10 Supply/Idle Current as a Function of Operating Frequency

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and Figure 12).

For a period of $N \times \text{TCL}$ the minimum value is computed using the corresponding deviation D_N :

$$(N \times \text{TCL})_{\text{min}} = N \times \text{TCL}_{\text{NOM}} - D_N \quad D_N \text{ [ns]} = \pm (13.3 + N \times 6.3) / f_{\text{CPU}} \text{ [MHz]},$$

where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3 × 6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ f_{CPU} = 25 MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N = 40 value can be used (see Figure 12).

Figure 12 Approximated Maximum Accumulated PLL Jitter

Multiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CP = 25	PU Clock MHz	Variable (1 / 2TCL = 1	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	t ₁₃	CC	$50 + t_{\rm C}$	_	3TCL - 10 + <i>t</i> _C	_	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	20 + <i>t</i> _C	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	_	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	^t 16	SR	_	$40 + t_{A} + t_{C}$	-	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	-	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD	t ₁₉	SR	_	26 + t _F	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	_	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	<i>t</i> ₂₃	CC	26 + <i>t</i> _F	_	2TCL - 14 + <i>t</i> _F	_	ns
$\frac{\text{ALE rising edge after } \overline{\text{RD}},}{\text{WR}}$	t ₂₅	CC	26 + <i>t</i> _F	_	2TCL - 14 + <i>t</i> _F	_	ns
Address hold after RD, WR	t ₂₇	CC	26 + $t_{\rm F}$	_	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{CS}^{1)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data In ¹⁾	t ₃₉	SR	_	40 + <i>t</i> _C + 2 <i>t</i> _A	-	$3TCL - 20 + t_{C} + 2t_{A}$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	$46 + t_{\rm F}$	_	3TCL - 14 + <i>t</i> _F	_	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	16 + <i>t</i> _A	_	TCL - 4 + <i>t</i> _A	-	ns

Multiplexed Bus, With Read/Write Delay, Normal ALE

AC Characteristics

Demultiplexed Bus

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	-	TCL - 10	-	ns
					+ t_A		
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_{A}$	-	TCL - 16	-	ns
					$+ t_A$		
ALE falling edge to \overline{RD} ,	t ₈	CC	$10 + t_{A}$	-	TCL - 10	-	ns
WR (with RW-delay)					$+ t_A$		
ALE falling edge to \overline{RD} ,	t ₉	CC	$-10 + t_{A}$	-	-10	-	ns
WR (no RW-delay)					$+ t_A$		
RD, WR low time	<i>t</i> ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10	-	ns
(with RW-delay)					+ <i>t</i> _C		
RD, WR low time	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10	-	ns
(no RW-delay)					+ <i>t</i> _C		
RD to valid data in	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	_	2TCL - 20	ns
(with RW-delay)						+ <i>t</i> _C	
RD to valid data in	t ₁₅	SR	-	$40 + t_{\rm C}$	-	3TCL - 20	ns
(no RW-delay)						+ <i>t</i> _C	
ALE low to valid data in	<i>t</i> ₁₆	SR	-	40 +	_	3TCL - 20	ns
				$t_{A} + t_{C}$		$+ t_{A} + t_{C}$	
Address to valid data in	t ₁₇	SR	-	50 +	_	4TCL - 30	ns
				$2t_A + t_C$		$+ 2t_{A} + t_{C}$	
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD rising	t ₂₀	SR	—	26 +	_	2TCL - 14	ns
edge (with RW-delay ¹⁾)	20			$2t_{A} + t_{F}^{(1)}$		$+ 22t_{A}$	
						$+ t_{\rm F}^{(1)}$	
Data float after RD rising	t ₂₁	SR	_	10 +	_	TCL - 10	ns
edge (no RW-delay ¹⁾)				$2t_{A} + t_{F}^{1}$		$+ 22t_{A}$	
						$+ t_{\rm F}''$	

Demultiplexed Bus (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
Data valid to \overline{WR}	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	_	ns
Data hold after WR	t ₂₄	CC	10 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₆	CC	-10 + <i>t</i> _F	-	-10 + <i>t</i> _F	_	ns
Address hold after $\overline{WR}^{2)}$	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_{F}$	-	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ³⁾	t ₃₉	SR	_	$40 + t_{\rm C} + 2t_{\rm A}$	-	3TCL - 20 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	t ₄₁	CC	6 + <i>t</i> _F	_	TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW-delay)	t ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW-delay)	t ₄₃	CC	$-4 + t_{A}$	_	-4 + t _A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	16 + <i>t</i> _C	_	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	_	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	_	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	50 + $t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	_	ns
Data valid to \overline{WrCS}	<i>t</i> ₅₀	CC	26 + $t_{\rm C}$	_	2TCL - 14 + <i>t</i> _C	_	ns
Data hold after RdCS	t ₅₁	SR	0	-	0	-	ns
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	_	20 + <i>t</i> _F	_	$2\text{TCL} - 20 + 2t_A + t_F^{(1)}$	ns

Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE

Figure 21 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

Figure 22 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE

Figure 25 External Bus Arbitration, Releasing the Bus

- **Notes**¹⁾ The C161CS/JC/JI will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active.
- ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{64} .