

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc506a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	—		US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit 8
R/W-U	R/W-U		R/W-U		R/W-U	R/W-U	R/W-U
SAIA	SAIB	SAIDW	ACCSAI	IPL3	P5V	RND	IF hit 0
							DILU
Legend:		C = Clearable	e bit				
R = Reada	able bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is	cleared	'x = Bit is unk	nown	U = Unimpler	mented bit, rea	ad as '0'	
bit 15-13	Unimplemen	ted: Read as	ʻ0'				
bit 12	US: DSP Mul	tiply Unsigned	/Signed Contr	ol bit			
	1 = DSP engi 0 = DSP engi	ine multiplies a	ire unsigned				
bit 11	EDT: Farly DO	1 oop Termina	ation Control b	_{oit} (1)			
	1 = Terminate	e executing DO	loop at end of	f current loop it	eration		
	0 = No effect	J					
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops active					
	•						
	• 001 = 1 DO lo	op active					
	000 = 0 DO lo	ops active					
bit 7	SATA: AccA	Saturation Ena	able bit				
	1 = Accumula	ator A saturatio	on enabled				
h # C		ator A saturation	on disabled				
DILO		Saturation Ena					
	1 = Accumula 0 = Accumula	ator B saturation	n disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
	1 = Data spac	ce write satura	tion enabled				
	0 = Data spa	ce write satura	tion disabled				
bit 4	ACCSAT: Acc	cumulator Satu	uration Mode S	Select bit			
	1 = 9.31 satu	ration (super s	aturation)				
hit 3	0 = 1.31 Satu	torrupt Priority	saturation)	-it 2(2)			
DIL 3	1 = CPU inter	runt priority le	vel is greater t	han 7			
	0 = CPU inter	rrupt priority le	vel is 7 or less				
bit 2	PSV: Program	n Space Visibil	lity in Data Spa	ace Enable bit			
	1 = Program	space visible i	n data space				
	0 = Program	space not visit	ole in data spa	се			
bit 1	RND: Roundi	ng Mode Sele	ct bit	1			
	1 = Blased (C	conventional) ro	ounding enable	ed			
bit 0	IF: Integer or	Fractional Mul	Itiplier Mode S	elect hit			
	1 = Integer m	ode enabled for	or DSP multin	V ODS			
	0 = Fractiona	I mode enable	d for DSP mul	tiply ops			
Note 1:	This bit will always	read as '0'.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

							,										-	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
YMODSRT	004C								YS<15:1>								0	xxxx
YMODEND	004E								YE<15:1>								1	xxxx
XBREV	0050	BREN								XB<14:0>								xxxx
DISICNT	0052	—	—						Disab	le Interrupt	s Counter F	Register						xxxx
BSRAM	0750	-	_	_	_	_	—	_	—	—	_	_	_	_	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	—	_	—	_	_	_	_	—	—	_	_		_	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	_	_	_	_	TRISC4	TRISC3	TRISC2	TRISC1	-	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTE REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	-	-	-	-	—	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	01FF
PORTE	02DA	_	_	_	_	_	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-31: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	—	—	TRISF13	TRISF12	—	—	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	_	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	_	LATF13	LATF12	_	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE		_	ODCF13	ODCF12	_	_	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing are disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than 15 and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than 15 and the YMODEN bit is set at MODCON<14>.

REGISTE	R 6-1: RCON			GISTER ⁽¹⁾			
R/W-0) R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAP	R IOPUWR	—	_	—	_	_	VREGS ⁽³⁾
bit 15							bit 8
LAIR bit 7	SWR	SWDTEN,	VUIO	SLEEF	IDLE	DUK	
DIL 7							
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	1 = A Trap Co 0 = A Trap Co	onflict Reset ha	s occurred s not occurre	d			
bit 14		aal Opcode or	Uninitialized	~ W Access Rese	et Flag bit		
	1 = An illega	al opcode detec	tion, an illeg	gal address mo	ode or uninitia	lized W regist	er used as an
	Address	Pointer caused	a Reset				
1.1.40.0	0 = An illega	l opcode or unir	nitialized W H	leset has not of	ccurred		
bit 13-9	Unimplemen	ited: Read as ')' Na 11 - Dail	O (3)			
DIT 8		age Regulator :	standby Durir	ng Sleep bit			
	1 = Voltage re0 = Voltage re	egulator is activ	to Standby n	p mode node during Sle	ер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit	0	•		
	1 = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not oc	red curred			
bit 6	SWR: Softwa	are Reset (Instru	iction) Flag b	it			
	1 = A RESET	instruction has	been execute	ed			
	$0 = \mathbf{A} \text{ RESET}$	instruction has	not been exe	ecuted			
DIT 5		oπware Enable/	Disable of W				
	0 = WDT is d	isabled					
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	t			
	1 = WDT time 0 = WDT time	e-out has occuri e-out has not oc	red curred				
bit 3	SLEEP: Wak	e-up from Sleep	Flag bit				
	1 = Device ha 0 = Device ha	as been in Slee as not been in S	o mode Sleep mode				
bit 2	IDLE: Wake-	up from Idle Fla	g bit				
	1 = Device w 0 = Device w	as in Idle mode as not in Idle m	ode				
Note 1:	All of the Reset sta	atus bits may be	set or cleare	d in software. S	Setting one of th	nese bits in soft	ware does not
р.				rammod) the M		anablad radar	diago of the

- 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- **3:** For dsPIC33FJ256MCX06A/X08A/X10A devices, this bit is unimplemented and reads back a programmed value.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	—
POR (RCON<0>)	POR	—

TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The System Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		OC3IP<2:0>				DMA2IP<2:0>	
bit 7							bit 0
Lagand							
R = Readable	hit	W = Writable I	hit	II = I Inimple	mented hit re	ad as 'O'	
-n = Value at F	POR	'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is cle}$	eared	x = Bit is unkno	wn
				0 Ditio dit			////
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (ł	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	OC4IP<2:0>	Output Compa 	re Channel 4	Interrupt Prior	rity bits		
	111 = Intern •	upt is priority 7 (r	lignest priori	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '()'				
bit 6-4	OC3IP<2:0>	: Output Compa	re Channel 3	Interrupt Prior	itv bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)	,		
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0)'				
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tra	nsfer Complete	e Interrupt Pric	prity bits	
	111 = Intern	upt is priority 7 (r	highest priorit	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1	ahled				
	555 - int o n		20100				

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	—		ILF	<3:0>		
bit 15							bit 8	
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
_				VECNUM<6:0)>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unknow	'n		
bit 15-12	Unimplemen	ted: Read as 'd)'					
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits				
	1111 = CPU	interrupt priority	/ level is 15					
	•							
	•							
	0001 = CPU	interrupt priority	/ level is 1					
	0000 = CPU	interrupt priority	/ level is 0					
bit 7	Unimplemen	ted: Read as ')'					
bit 6-0	VECNUM<6:	D>: Vector Num	ber of Pendir	ng Interrupt bit	S			
	0111111 = Ir	terrupt vector p	pending is nur	mber 135				
	•							
	•							
	0000001 = Ir	iterrupt vector p	pending is nur	mber 9				
	0000000 = Ir	iterrupt vector p	pending is nur	mber 8				

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R/W-0) U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹) _	TSIDL ⁽²⁾	_	—	—	—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
_	TGATE ⁽¹⁾	TCKPS	<1:0>(1)	_	—	TCS ^(1,3)	—				
bit 7							bit 0				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	TON: Timery On bit ⁽¹⁾										
	1 = Starts 16-bit Timery										
bit 14	Unimplemented: Read as '0'										
bit 13	TSIDI · Stop i	TSIDI : Stop in Idle Mode bit ⁽²⁾									
DIC 15	1 = Discontinu	1 = Discontinue module operation when device enters Idle mode									
	0 = Continue	module operati	ion in Idle mo	de							
bit 12-7	Unimplemen	ted: Read as '	כי								
bit 6	TGATE: Time	ery Gated Time	Accumulatio	n Enable bit ⁽¹⁾							
	When TCS =	<u>1:</u>									
	This bit is ign	ored.									
	When ICS = 1 = Gated tim	<u>0:</u> le accumulation	enabled								
	0 = Gated tim	e accumulation	n disabled								
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Presca	ale Select bits ⁽¹)						
	11 = 1:256										
	10 = 1:64										
	01 = 1.8 00 = 1.1										
bit 3-2	Unimplemen	ted: Read as '	o'								
bit 1	TCS: Timerv	Clock Source S	Select bit ^(1,3)								
	1 = External o	1 = External clock from TyCK pin (on the rising edge)									
	0 = Internal cl	lock (FCY)		0 0 /							
bit 0	Unimplemen	ted: Read as '	כ'								
Note 1:	When 32-bit opera functions are set the	tion is enabled prough T2CON	(T2CON<3>	= 1), these bits	have no effect	on Timery opera	tion; all timer				

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	_	PMOD4	PMOD3	PMOD2	PMOD1		
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
PEN4H ⁽¹⁾	PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	PEN4L ⁽¹⁾	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		nown		
bit 15-12	Unimplemen	ted: Read as '	0'						
bit 11-8	PMOD<4:1>:	PWM I/O Pair	Mode bits						
	1 = PWM I/O	pin pair is in th	e Independer	t PWM Output	t mode				
	0 = PWM I/O	pin pair is in th	e Complemer	ntary Output m	ode				
bit 7-4	PEN4H:PEN ²	1H: PWMxH I/0	D Enable bits ⁽	1)					
	1 = PWMxH p	oin is enabled f	or PWM outpu	ut .					
	0 = PWMxH p	oin is disabled;	I/O pin becon	nes general pu	irpose I/O				
bit 3-0	3-0 PEN4L:PEN1L: PWMxL I/O Enable bits ⁽¹⁾								
	1 = PWMxL pin is enabled for PWM output								
	0 = PWMxL p	oin is disabled;	I/O pin becom	nes general pu	rpose I/O				
	not condition of	the DENixLi en		dananda an th			uration bit in		

REGISTER 16-5: PWMxCON1: PWMx CONTROL REGISTER 1

Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.

REGISTER 16-14: PxDC3: PWMx DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PDC	3<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PDC3<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown					

bit 15-0 PDC3<15:0>: PWM Duty Cycle #3 Value bits

REGISTER 16-15: PxDC4: PWMx DUTY CYCLE REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PDC4	4<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PDC4<7:0>									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set	t '0' = Bit is cleared x = Bit is unk				nown			

bit 15-0 PDC4<15:0>: PWM Duty Cycle #4 Value bits

19.2 ²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546066

19.2.1 KEY RESOURCES

- Section 11. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

19.3 I²C Control Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

TABLE 24-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT,Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU,Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
L		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
ļ		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	i,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
64		RLC	Ws,Wd	VVd = Rotate Left through Carry VVs	1	1	C,N,Z
04	RLNC	RLNC	I f NDEC	I = Rolate Left (No Carry) I	1	1	N,Z
		RLINC	L, WREG	W/d = Potate Left (No Carry) We	1	1	N,Z
65	DDC	RENC	f	f = Rotate Right through Carry f	1	1	
00	RRC	PPC	f NDFC	WREG = Rotate Right through Carry f	1	1	C N Z
		PPC	We Wd	Wd = Rotate Right through Carry Ws	1	1	C N Z
66	RRNC	RENC	f	f = Rotate Right (No Carry) f	1	1	N 7
00	idave	RRNC	f.WREG	WREG = Rotate Right (No Carry) f	1	1	N 7
		RRNC	WS Wd	Wd = Rotate Right (No Carry) Ws	1	1	N 7
67	SAC	SAC	Acc #Slit4 Wdo	Store Accumulator	1	1	None
01	DAC	SAC R	Acc #Slit4 Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C.N.Z
69	SETM	SETM	f	f = 0xFFFF	1	. 1	None
	22111	SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

25.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	its Conditions					
Idle Current (II	DLE): Core Of	f, Clock On E	Base Current	(1)					
DC40d	3	25	mA	-40°C					
DC40a	3	25	mA	+25°C					
DC40b	3	25	mA	+85°C	3.3V	10 1011-5			
DC40c	3	25	mA	+125°C					
DC41d	4	25	mA	-40°C					
DC41a	5	25	mA	+25°C	2.21/				
DC41b	6	25	mA	+85°C	3.3V	10 MIPS			
DC41c	6	25	mA	+125°C					
DC42d	8	25	mA	-40°C					
DC42a	9	25	mA	+25°C	2.21/				
DC42b	10	25	mA	+85°C	3.3 V	20 1011-5			
DC42c	10	25	mA	+125°C					
DC43a	15	25	mA	+25°C					
DC43d	15	25	mA	-40°C	2.21/				
DC43b	15	25	mA	+85°C	3.3 V	30 WIF 3			
DC43c	15	25	mA	+125°C					
DC44d	16	25	mA	-40°C					
DC44a	16	25	mA	+25°C	2.21/				
DC44b	16	25	mA	+85°C	3.3V	40 MIPS			
DC44c	16	25	mA	+125°C					

TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- · JTAG is disabled
- **2:** These parameters are characterized but not tested in manufacturing.
- **3:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Тсү	_	ns	—	
TQ31	ΤουΗ	Quadrature Input High Time		6 TCY	—	ns	—	
TQ35	TQUIN	Quadrature Input Period		12 TCY	—	ns	—	
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns	—	
TQ40	TQUFL	Filter Time to Recognize Lov with Digital Filter	V	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder Interface (QEI)"** (DS70208) in the "*dsPIC33F/PIC24H Family Reference Manual*".

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

			Standard Operating Conditions: 2.4V to 3.6V						
АС СНА	RACTERIS	FICS	(unless othe	rwise st	ated)	о <i>с</i> т	• 05°O fan Industrial		
			Operating ter	nperatur	e -40°	C ≤ IA ≤ C < T∧ <	+85°C for Industrial		
Derem									
No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency			15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—		—	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		—	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		_	ns	_		
SP51	TssH2doZ	SSx	10		50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	—	ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

DC CHAI	RACTERI	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for High Temperature					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL ≤ 1.8 mA, VDD = 3.3V See Note 1	
HDO10 Vo	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IoL ≤ 3.6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	Io∟ ≤ 6 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	Io∟ ≥ -1.8 mA, VDD = 3.3V See Note 1	
HDO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	IOL ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	—	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1	
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1	
			3.0	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -1.4 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See Note 1} \end{array}$	
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -3.9 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See Note 1} \end{array}$	
HDO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5				IOH ≥ -7.5 mA, VDD = 3.3V See Note 1	
		IRC15	2.0	_	_	V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1	
			3.0	—	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	

TABLE 27-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 27-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions	
	LPRC @ 32.768 kHz ⁽¹⁾						
HF21	LPRC	-70 ⁽²⁾	_	+70 ⁽²⁾	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C \qquad$	

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 27-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

/ CHARAC	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28			ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_	
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.