

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc510a-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the following devices:

- dsPIC33FJ64MC506A
- dsPIC33FJ64MC508A
- dsPIC33FJ64MC510A
- dsPIC33FJ64MC706A
- dsPIC33FJ64MC710A
- dsPIC33FJ128MC506A
- dsPIC33FJ128MC510A
- dsPIC33FJ128MC706A
- dsPIC33FJ128MC708A
- dsPIC33FJ128MC710A
- dsPIC33FJ256MC510A
- dsPIC33FJ256MC710A

The dsPIC33FJXXXMCX06A/X08A/X10A includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes).

These features make this family suitable for a wide variety of high-performance, digital signal control applications. The devices are pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The dsPIC33FJXXXMCX06A/X08A/X10A family of devices employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control.

The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together, the dsPIC33FJXXXMCX06A/X08A/X10A provide Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXMCX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXMCX06A/X08A/X10A devices.

3.3 Special MCU Features

The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX10A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	—	—	_	_	—	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_		CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX08A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	—	_	—	_	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX06A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_		_	—	—	CN21IE	CN20IE		CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_			_	_		_	_	CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is as follows:

- 1. Read eight rows of program memory (512 instructions) and store it in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5 using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCC	ON for block erase operation		
MOV	#0x4042, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Init pointer	r to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TBLWTL	W0, [W0]	;	Set base address of erase block
DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
FLTAIF	_	DMA5IF	_	_	QEIIF	PWMIF	C2IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF
bit 7							bit 0
Lagand							
R - Roadablo	bit	M = Mritable	bit	II – Unimplo	montod bit road		
-n = Value at F		'1' = Bit is set	UIL	$0^{\circ} = \text{Bit is cle}$	ared	x = Bitis unkn	own
		1 - Dit 13 30t					iowii
bit 15	FLTAIF: PWN	/ Fault A Intern	upt Flag Statu	us bit			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 14	Unimplemen	ted: Read as ')'				
bit 13	DMA5IF: DM	A Channel 5 Da	ata Transfer (Complete Interi	rupt Flag Status	bit	
	1 = Interrupt r	request has occ	curred				
bit 12-11		iequest nas noi	n'				
bit 10		vent Interrunt F	Iao Status hit				
bit 10	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 9	PWMIF: PWN	A Interrupt Flag	Status bit				
	1 = Interrupt r	request has occ	curred .				
L:1 0		request has not	occurred	L 14			
DIT 8	1 = Interrupt r	2 Event Interrup	t Flag Status	DI			
	0 = Interrupt r	request has not	occurred				
bit 7	C2RXIF: ECA	AN2 Receive Da	ata Ready Int	errupt Flag Sta	itus bit		
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 6	INT4IF: Exter	mal Interrupt 4	Flag Status b	it			
	1 = Interrupt r	request has occ request has not					
bit 5	INT3IF: Exter	nal Interrupt 3	Flag Status b	it			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 4	T9IF: Timer9	Interrupt Flag S	Status bit				
	1 = Interrupt r	request has occ	curred				
hit 2		request has not					
DIL 3	1 = Interrupt r	Interrupt Flag a					
	0 = Interrupt r	request has not	occurred				
bit 2	MI2C2IF: 12C	2 Master Even	ts Interrupt FI	ag Status bit			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

16.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- Eight PWM I/O pins with four duty cycle generators
- · Up to 16-bit resolution
- 'On-the-fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	_		SEVO	PS<3:0>	
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_		_		IUE	OSYNC	UDIS
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-12	Unimplemen	nted: Read as '	0'				
bit 11-8	SEVOPS<3:0	0>: PWM Speci	al Event Trig	ger Output Post	scale Select b	its	
	1111 = 1:16	postscale					
	•						
	•						
	0001 = 1:2 p	ostscale					
hit 7-3		ostscale ted: Read as '	0'				
bit 2		ate Lindate Ena	∪ hla hit				
	1 = Undates	to the active PI	C registers :	are immediate			
	0 = Updates	to the active PI	DC registers	are synchronize	d to the PWM	time base	
bit 1	OSYNC: Out	put Override Sy	nchronizatio	n bit			
	1 = Output ov	verrides via the	OVDCON re	gister are synch	nronized to the	PWM time base	e
	0 = Output ov	verrides via the	OVDCON re	gister occur on	next TCY boun	dary	
bit 0	UDIS: PWM	Update Disable	bit				
	1 = Updates 0 = Updates	from Duty Cycle from Duty Cycle	e and Period e and Period	Buffer registers Buffer registers	are disabled are enabled		

REGISTER 16-6: PWMxCON2: PWMx CONTROL REGISTER 2

REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

	B (· · · ·	B # · · · ·	B 4 + 4 + 4	B 4 · · · ·		_	-
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP	<3:0>			F2B	P<3:0>	
bit 15							bit 8
R/M/-0	R/\\/_0	R/\\/_0	R/\\/_0	R/\\/-0	R/\\/_0	R/\\/_0	R/W-0
10,00-0	F1RP	<3.0>	14/0-0		F0B	P<3.0>	1000-0
bit 7	1101	-0.0			100	1 10.01	bit 0
Sit							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter •	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 3 Hits bits uffer 4			
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0	1			
bit 11-8	F2BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 2 Hits bits ıffer 4			
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0	1			
bit 7-4	F1BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 1 Hits bits ıffer 4			
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0	1			
bit 3-0	F0BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received ir hits received ir	en when Filte n RX FIFO bเ n RX Buffer 1	er 0 Hits bits uffer 4			
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0	1			

REGISTER 21-20: CiRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

r											
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
			SID	<10:3>							
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x				
	SID<2:0>		—	MIDE	_	EID<1	17:16>				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-5	SID<10:0>:	Standard Identi	fier bits								
	1 = Include b	oit, SIDx, in filter	comparison								
	0 = Bit, SIDx	, is a don't care	in filter comp	barison							
bit 4	Unimpleme	nted: Read as '	0'								
bit 3	MIDE: Ident	ifier Receive Mo	ode bit								
	1 = Match or	nly message typ	es (standard	or extended ad	dress) that corre	espond to the E>	KIDE bit in filter				
	0 = Match e	ither standard o	r extended a	ddress messag	e if filters matc	h					
	(i.e., if (l	Filter SID) = (Me	essage SID)	or if (Filter SID/	EID) = (Messag	ge SID/EID))					
bit 2	Unimpleme	nted: Read as '	0'								
bit 1-0	EID<17:16>:	Extended Iden	tifier bits								
	1 = Include	bit, EIDx, in filte	r comparisor	1							
	0 = Bit, EID	k, is a don't care	e in filter com	parison							

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	nented bit, read	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS vs. VOLTAGE

Param	VDD Range	Temp Range	Max MIPS				
No.	(in Volts)	(in °C)	dsPIC33FJXXXMCX06A/X08A/X10A				
_	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40				
_	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40				

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 26-11 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC33FJXXXMCX06A/X08A/X10A					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	40	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	40	—	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	ts Conditions				
Power-Down Current (IPD) ⁽¹⁾								
DC60d	50	200	μA	-40°C				
DC60a	50	200	μA	+25°C	2 2\/	Rasa Rower Down Current ⁽³⁾		
DC60b	200	500	μA	+85°C	5.50	base Fower-Down Current		
DC60c	600	1000	μA	+125°C				
DC61d	8	13	μA	-40°C				
DC61a	10	15	μA	+25°C	2 2)/	Matchdog Timor Current: Alwor(3)		
DC61b	12	20	μA	+85°C	3.3V			
DC61c	13	25	μA	+125°C				

TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

· CLKO is configured as an I/O input pin in the Configuration word

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled (PMDx bits are all '1's). The following ADC settings are enabled for each ADC module (ADCx) prior to executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1 and ADxMD = 0.

• VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)

- RTCC is disabled.
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_		0.4	V	IOL \leq 3 mA, VDD = 3.3V		
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	Iol \leq 6 mA, VDD = 3.3V		
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	v	IOL \leq 10 mA, VDD = 3.3V		
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$IOL \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	v	$IOL \ge -6 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Iol ≥ -10 mA, Vdd = 3.3V		
		Output High Voltage I/O Pins:	1.5		_		IOH ≥ -6 mA, VDD = 3.3V See Note 1		
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	$IOH \ge -5 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ See Note 1		
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1		
DO20A	VoH1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -11 mA, VDD = 3.3V See Note 1		
			3.0	—	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage 8x Source Driver Pins - OSC2,	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1		
		CLKO, RC15	2.0		_	V	IOH ≥ -12 mA, VDD = 3.3V See Note 1		
			3.0		_		IOH ≥ -4 mA, VDD = 3.3V See Note 1		

TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controll Oscillator (VCO) Inpl Frequency Range	ed ut	0.8	_	8.0	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	ms	—
OS53	DCLK	CLKO Stability (Jitter	-)	-3.0	0.5	3.0	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula:

Peripheral Clock Jitter = DCLK / $\sqrt{(Fosc/Peripheral bit rate clock)}$

Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz

SPI SCK Jitter = [DCLK / \sqrt{(80 MHz/5 MHz)]} = [3%/\sqrt{16}] = [3% / 4] = 0.75%

TABLE 26-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Characteristic	Min	Тур	Max	Units	tions			
	Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾								
F20a	FRC	-2	—	+2	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b	FRC	-5	—	+5	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 26-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min Typ Max Units Conditions			nditions			
	LPRC @ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	_	+30	%	$\text{-40}^\circ C \leq \text{TA} \leq \text{+85}^\circ C$	_	
F21b	LPRC	-35		+35	%	$-40^\circ C \le T A \le +125^\circ C$	—	

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 26-8: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 26-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_	_	Tcy + 20	ns	_
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-27: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for High Temperature						
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL ≤ 1.8 mA, VDD = 3.3V See Note 1		
HDO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IoL ≤ 3.6 mA, VDD = 3.3V See Note 1		
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	IoL ≤ 6 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	Io∟ ≥ -1.8 mA, VDD = 3.3V See Note 1		
HDO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	IOL ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1		
		Output High Voltage I/O Pins:	1.5	—	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1		
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1		
			3.0	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -1.4 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See Note 1} \end{array}$		
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -3.9 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See Note 1} \end{array}$		
HDO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5				$IOH \ge -7.5 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ See Note 1		
		IRC15	2.0	_	_	V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1		
			3.0	—	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		

TABLE 27-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
Fror	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply?YN	
Dev	ice: dsPIC33FJXXXMCX06A/X08A/X10A	Literature Number: DS70594D
Que	estions:	
1.	What are the best features of this document?	
2.	How does this document meet your hardware and software	are development needs?
3.	Do you find the organization of this document easy to fol	low? If not, why?
4.	What additions to the document do you think would enha	ance the structure and subject?
5.	What deletions from the document could be made witho	ut affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what an	d where)?
7.	How would you improve this document?	