

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc510a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source		
54	46	0x000070	0x000170	DMA4 – DMA Channel 4		
55	47	0x000072	0x000172	T6 – Timer6		
56	48	0x000074	0x000174	T7 – Timer7		
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events		
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events		
59	51	0x00007A	0x00017A	T8 – Timer8		
60	52	0x00007C	0x00017C	T9 – Timer9		
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3		
62	54	0x000080	0x000180	INT4 – External Interrupt 4		
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready		
64	56	0x000084	0x000184	C2 – ECAN2 Event		
65	57	0x000086	0x000186	PWM – PWM Period Match		
66	58	0x000088	0x000188	QEI – Position Counter Compare		
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5		
70	62	0x000090	0x000190	Reserved		
71	63	0x000092	0x000192	FLTA – MCPWM Fault A		
72	64	0x000094	0x000194	FLTB – MCPWM Fault B		
73	65	0x000096	0x000196	U1E – UART1 Error		
74	66	0x000098	0x000198	U2E – UART2 Error		
75	67	0x00009A	0x00019A	Reserved		
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6		
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7		
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request		
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request		
80-125	72-117	0x0000A4- 0x0000FE	0x0001A4- 0x0001FE	Reserved		

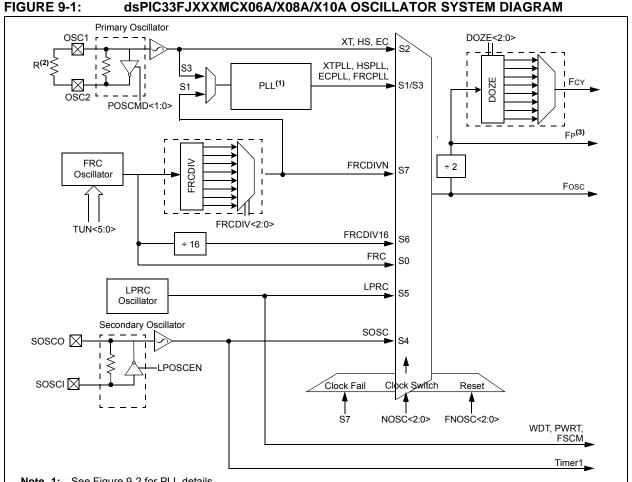
TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	_	—	—	—	—	_			
bit 15			•	•			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	FLTBIE			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-8 bit 7	•	ted: Read as '		nterrunt Enabl	e hit					
bit 7	C2TXIE: ECA	N2 Transmit D	ata Request li	nterrupt Enable	e bit					
		request enable request not ena								
bit 6	C1TXIE: ECA	N1 Transmit D	ata Request I	nterrupt Enable	e bit					
		request enable request not ena								
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	complete Enab	le Status bit					
		request enable request not ena								
bit 4	DMA6IE: DM	DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit								
		request enable request not ena								
bit 3	Unimplemen	ted: Read as '	0'							
bit 2	U2EIE: UART	Γ2 Error Interru	pt Enable bit							
		 1 = Interrupt request enabled 0 = Interrupt request not enabled 								
bit 1	•	U1EIE: UART1 Error Interrupt Enable bit								
	1 = Interrupt ı	request enable request not ena	d							
bit 0	•	V Fault B Interr								
-	ו = Interrupt ו	request enable request not ena	d							


NOTES:

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A oscillator system provides the following:

- · Various external and internal oscillator options as clock sources
- · An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- · The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- · Programmable clock postscaler for system power savings
- · A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- · Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 MΩ must be connected.
- 3: The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers that can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support the following features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers. Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation, do the following:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contain the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contain the least significant word.

To configure any of the timers for individual 16-bit operation, do the following:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1, and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

bit 4-3	TQCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value (Prescaler utilized for 16-Bit Timer mode only.)
bit 2	POSRES: Position Counter Reset Enable bit 1 = Index pulse resets position counter 0 = Index pulse does not reset position counter (Bit only applies when QEIM<2:0> = 100 or 110.)
bit 1	TQCS: Timer Clock Source Select bit 1 = External clock from QEA pin (on the rising edge) 0 = Internal clock (Tcy)
bit 0	<pre>UPDN_SRC: Position Counter Direction Selection Control bit⁽¹⁾ 1 = QEB pin state defines position counter direction 0 = Control/status bit, UPDN (QEICON<11>), defines Position Counter (POSxCNT) direction</pre>

Note 1: When configured for QEI mode, the control bit is a 'don't care'.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		_			_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
	—	—		—		FRMDLY	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15		ned SPIx Supp					
bit 15	1 = Framed S	Plx support en	abled (SSx p	in used as fram	e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S	Plx support en Plx support dis	abled (SSx p sabled		e Sync pulse ir	nput/output)	
bit 15 bit 14	1 = Framed S 0 = Framed S SPIFSD: Frar	Plx support en Plx support dis ne Sync Pulse	abled (SSx p sabled Direction Cor		e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input	abled (SSx p sabled Direction Cor (slave)		e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse	abled (SSx p sabled Direction Coi (slave) tt (master)		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low		e Sync pulse ir	nput/output)	
bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low 0'	ntrol bit	e Sync pulse ir	nput/output)	
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy 0 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as ' me Sync Pulse nc pulse coinci	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first	trol bit bit bit clock	e Sync pulse ir	nput/output)	
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as 'u me Sync Pulse nc pulse coinci nc pulse prece	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first cdes first bit cl	trol bit bit bit clock		nput/output)	

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

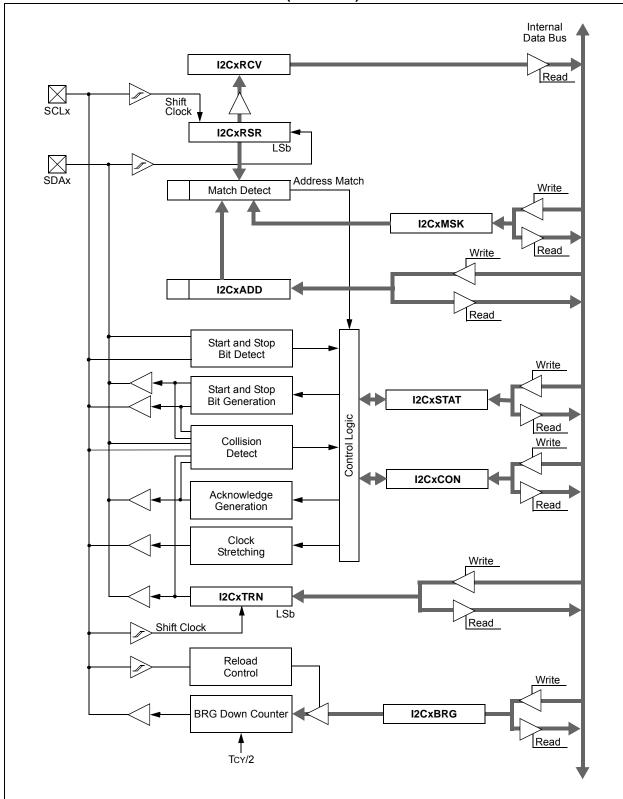


FIGURE 19-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

22.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

22.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported.
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

A block diagram of the ADC is shown in Figure 22-1.

22.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on ADC module (ADxCON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit
 - b) Select ADC interrupt priority

22.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM Buffer Pointer is incremented.

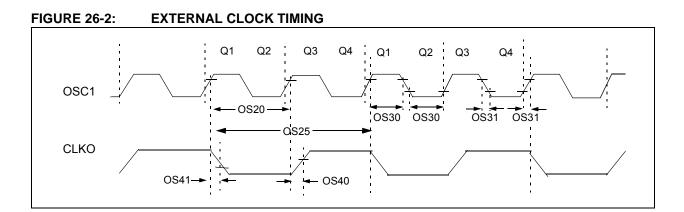
The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	<1:0>		
bit 15							bit 8		
D 11/ A	5444	D # 44 A			5444.0				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0, HC,HS	R/C-0, HC, HS		
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE		
bit 7							bit C		
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit	C= Clea	rable bit		
R = Readable	bit	W = Writable b			mented bit, read				
-n = Value at l		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown		
bit 15	ADON: ADC	Operating Mode	e bit						
		dule is operating)						
	0 = ADC is o								
bit 14	-	ted: Read as '0							
bit 13		o in Idle Mode b							
		•	ration when dev on in Idle mode		mode				
bit 12		•							
SIT 12	ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion. The module will provide an address to the DMA								
			as the address						
			n Scatter/Gathe						
bit 11			ed on the index	of the analog	input and the s		Duffer		
bit 10	-	ted: Read as '0							
		it or 12-Bit Ope channel ADC o							
		channel ADC o							
bit 9-8		Data Output Fo							
	For 10-Bit Op	-							
			= sddd dddd		where s = .NO	ſ.d<9>)			
	10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)								
						,			
	00 = Integer (Dout = 0000_00dd_dddd_dddd) For 12-Bit Operation:								
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)								
	10 = Fractional (Dout = dddd dddd dddd 0000) 01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>)								
			lddd dddd dd			(11)			
	SSRC<2:0>: Sample Clock Source Select bits								
bit 7-5	111 = Internal counter ends sampling and starts conversion (auto-convert)								
bit 7-5			sampling and st	arts conversion)			
bit 7-5	110 = Reserv	ved	sampling and st	arts conversio)			
bit 7-5	110 = Reserv 101 = Reserv	ved ved			-		conversion		
bit 7-5	110 = Reserv 101 = Reserv 100 = GP tim 011 = MPWM	ved ved ner (Timer5 for A A interval ends s	ADC1, Timer3 fo sampling and sta	r ADC2) comp arts conversior	are ends samp	ling and starts			
bit 7-5	110 = Reserv 101 = Reserv 100 = GP tim 011 = MPWM 010 = GP tim	ved ved her (Timer5 for A A interval ends s her (Timer3 for A	ADC1, Timer3 fo sampling and sta ADC1, Timer5 fo	r ADC2) comp arts conversior r ADC2) comp	are ends samp n are ends samp	ling and starts			
bit 7-5	110 = Reserv 101 = Reserv 100 = GP tim 011 = MPWM 010 = GP tim 001 = Active	ved ved her (Timer5 for A A interval ends s her (Timer3 for A transition on IN	ADC1, Timer3 fo sampling and sta	r ADC2) comp arts conversior r ADC2) comp npling and star	are ends samp n are ends samp ts conversion	ling and starts			

REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED) (where x = 1 or 2)

- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 - 0 = Always uses channel input selects for Sample A


TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description		
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}		
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}		
Wn	One of 16 working registers ∈ {W0W15}		
Wnd	One of 16 destination working registers ∈ {W0W15}		
Wns	One of 16 source working registers ∈ {W0W15}		
WREG	W0 (working register used in file register instructions)		
Ws	Source W register ∈ {Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws]}		
Wso Source W register ∈ {Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb]}			
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}		
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		
Wy Y Data Space Prefetch Address register for DSP instructions € {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = [W11 + W12], none}			
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol Characteristic		Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltage	9					
DC10	Supply V	oltage					
	Vdd	—	3.0		3.6	V	—
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V	—
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	Vss	V	_
DC17	SVDD	V DD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	_	V/ms	0-3.0V in 0.1s

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC	
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	_	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	_	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc		0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—		20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2	_	ns	_	
OS41	TckF	CLKO Fall Time ⁽³⁾		5.2	—	ns	—	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V, TA = +25°C	

TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is preliminary. This parameter is characterized, but not tested in manufacturing.

AC CH	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	I Characteristic Min. Typ Max. Units			Conditions					
Device Supply										
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	—			
AD02	AVss	Module Vss Supply	Vss - 0.3	—	Vss + 0.3	V				
			Reference	ce Inpu	ts					
AD05	VREFH	Reference Voltage High	AVss + 2.5	_	AVdd	V	_			
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0			
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	—			
AD06a			0	—	0	V	Vrefh = AVdd Vrefl = AVss = 0			
AD07	Vref	Absolute Reference Voltage	2.5	—	3.6	V	Vref = Vrefh - Vrefl			
AD08	IREF	Current Drain	—	_	10	μA	ADC off			
AD08a	IAD	Operating Current		7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, see Note 1 12-bit ADC mode, see Note 1			
			Analog	g Input						
AD12	VINH	Input Voltage Range VINH	VINL	—	VREFH	\vee	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range Vın∟	Vrefl	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC			

TABLE 26-43: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

AC CHA	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (10-Bit Mode	e) – Meas	uremen	ts with E	xternal	VREF+/VREF-	
AD20c	Nr	Resolution	10 data bits		bits	—		
AD21c	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22c	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23c	Gerr	Gain Error	-	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24c	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25c	—	Monotonicity	—		—	_	Guaranteed	
		ADC Accuracy (10-Bit Mode	e) – Meas	uremen	ts with l	nternal	VREF+/VREF-	
AD20d	Nr	Resolution	10 data bits		bits	_		
AD21d	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22d	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23d	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24d	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25d	—	Monotonicity	_		_	_	Guaranteed	
		Dynamic	Performa	nce (10-	Bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	—		-64	dB	—	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	72			dB	_	
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—	
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits		

TABLE 26-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

27.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 26.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 26.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.


Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽⁴⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0 V^{(5)}$	0.3V to 5.6V
Voltage on VCAP with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽²⁾	60 mA
Maximum junction temperature	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	2 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	4 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
 - **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins.
 - 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description				
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the Recommended Minimum Connection (see Figure 2-1).				
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).				
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 22-2).				
Section 23.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 23-1).				
Section 26.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".				
	Updated Operating MIPS vs. Voltage (see Table 26-1).				
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 26-4).				
	Updated the notes in the following tables:				
	Table 26-5				
	Table 26-6				
	Table 26-7				
	Table 26-8				
	Updated the I/O Pin Output Specifications (see Table 26-10).				
	Updated the Conditions for parameter BO10 (see Table 26-11).				
	Updated the Conditions for parameters D136b, D137b and D138b (TA = 150°C) (see Table 26-12).				
Section 27.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings ⁽¹⁾ ".				
Characteristics"	Updated the I/O Pin Output Specifications (see Table 27-6).				
	Removed Table 26-7: DC Characteristics: Program Memory.				

NOTES: