

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc706a-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXMCX06A/X08A/X10A family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	connected		independent		of	the	ADC
	volta	ge refe	rence	source.			

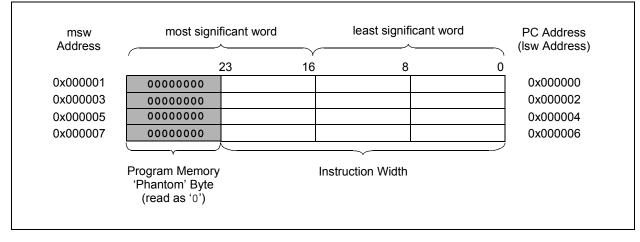
2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXMCX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXMCX06A/X08A/X10A devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

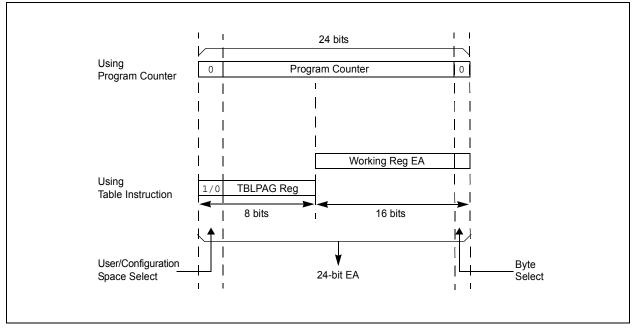
Flash memory can be programmed in two ways:

- 1. In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXMCX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and

three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or 'rows') of 64 instructions (192 bytes) at a time or by single program memory word; the user can erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

; Set up NVMCO	N for row programming operations	3	
MOV	#0x4001, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Set up a poi	nter to the first program memory	/ loc	ation to be written
; program memo	ry selected, and writes enabled		
MOV	#0x0000, W0	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	#0x6000, W0	;	An example program memory address
; Perform the	TBLWT instructions to write the	latc	hes
; Oth_program_	word		
MOV	#LOW_WORD_0, W2	;	
MOV	#HIGH_BYTE_0, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 1st_program_	word		
MOV	#LOW_WORD_1, W2	;	
MOV	#HIGH_BYTE_1, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 2nd_program	_word		
	#LOW_WORD_2, W2	;	
	<pre>#HIGH_BYTE_2, W3</pre>	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
•			
•			
•			
; 63rd_program	—		
MOV	#LOW_WORD_31, W2	;	
MOV	#HIGH_BYTE_31, W3	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

dsPIC33FJXXXMCX06A/X08A/X10A

GURE 7-1:			NTERRUPT VECTOR TABLE
1	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000002	
		0X000004	
	Oscillator Fail Trap Vector	-	
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014 —	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	— • • • • • • • • • • • • • • • • • • •
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
Ę	Interrupt Vector 54	0x000080	
ori	~	0,000000	
Pri	~		
er	~	_	
Drd	Interrupt Venter 116	0,0000000	
	Interrupt Vector 116	0x0000FC 0x0000FE	
nıs	Interrupt Vector 117		
Vat	Reserved	0x000100	
<u>г</u>	Reserved	0x000102	
sin	Reserved		
ea	Oscillator Fail Trap Vector		
Decreasing Natural Order Priority	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	Alternate interrupt veotor rable (Alt I)
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~	0,000,100	
		_	
	~	-	
		-	
	Interrupt Vector 116		
↓	Interrupt Vector 117	0x0001FE -	l
v	Start of Code	0x000200	
		ented interrupt v	

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0				
ALTIVT	DISI	—	_	—	—		—				
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP				
bit 7							bit 0				
Legend:											
R = Readable		W = Writable		-	nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		ole Alternate In	•	lable bit							
		nate Interrupt \ lard (default) v									
bit 14		struction Statu									
		ruction is activ									
	0 = DISI inst	ruction is not a	ictive								
bit 13-5	Unimplemen	ted: Read as '	0'								
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Select	bit						
		on negative ed									
	-	on positive edg									
bit 3		INT3EP: External Interrupt 3 Edge Detect Polarity Select bit									
	 1 = Interrupt on negative edge 0 = Interrupt on positive edge 										
bit 2	-			Polarity Select	bit						
SIT Z	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge										
	0 = Interrupt on positive edge										
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit										
		on negative ed	0								
	•	on positive edg									
bit 0				Polarity Select	bit						
		on negative ed									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-11: IEC	1: INTERRUPT ENABLE CONTROL REGISTER 1
--------------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE				
bit 15	•	·	•		•	•	bit 8				
			DAMO	DAMO							
R/W-0 IC8IE	R/W-0	R/W-0 AD2IE	R/W-0 INT1IE	R/W-0	U-0	R/W-0	R/W-0 SI2C1IE				
bit 7	IC7IE	ADZIE		CNIE	—	MI2C1IE	bit 0				
Legend:											
R = Readable		W = Writable		-	mented bit, read						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
bit 15	U2TXIE: UAR	RT2 Transmitter	r Interrupt Ena	able bit							
		request enable									
		request not ena									
bit 14	U2RXIE: UAF	RT2 Receiver Ir	nterrupt Enabl	le bit							
		request enable									
bit 13		request not ena									
DIL 13	INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled										
		request not ena									
bit 12	T5IE: Timer5 Interrupt Enable bit										
	1 = Interrupt request enabled										
	-	0 = Interrupt request not enabled									
bit 11	T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request enabled										
		request enable									
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit										
		request enable request not ena									
bit 9	•	•		unt Enable bit							
bit 5	OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request enabled										
		request not ena									
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Interi	rupt Enable bit						
		request enable									
bit 7	 0 = Interrupt request not enabled IC8IE: Input Capture Channel 8 Interrupt Enable bit 										
	1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 6	-	Capture Chann	-	Enable bit							
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 5		2 Conversion C		runt Enable bit							
		request enable	•	ישףי בוומטופ טונ							
	•	request not ena									
bit 4	INT1IE: Exter	nal Interrupt 1	Enable bit								
		request enable									
	0 = Interrupt r	request not ena	abled								

REGISTER 7-26: IPC11: INTERRUPT PRIC	ORITY CONTROL REGISTER 11
--------------------------------------	---------------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		T6IP<2:0>				DMA4IP<2:0>					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_		_	_	_		OC8IP<2:0>					
bit 7					I		bit				
Legend:											
R = Readab		W = Writable I	oit	-	mented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	-	ented: Read as 'o									
bit 14-12	T6IP<2:0>: Timer6 Interrupt Priority bits										
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•										
	•										
	001 = Interrupt is priority 1										
		upt source is disa									
bit 11	Unimplemented: Read as '0'										
bit 10-8	DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 7-3	Unimpleme	ented: Read as '0)'								
bit 2-0	OC8IP<2:0	: Output Compa	re Channel 8	Interrupt Prior	ity bits						
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	•										
	• 001 = Interr	upt is priority 1									

dsPIC33FJXXXMCX06A/X08A/X10A

NOTES:

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7						•	bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'	

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP	<3:0>			F2BI	D<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BP	<3:0>			F0B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable	hit	U = Unimplem	ented hit rea	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown
		2.1.0 000		0 2000 0000			
bit 15-12	F3BP<3:0>:	RX Buffer Writt	en when Filte	er 3 Hits bits			
		hits received in		-			
		hits received in	NRX Buffer 1	4			
	•						
	•						
	0001 = Filter	hits received ir	n RX Buffer 1				
	0000 = Filter	hits received in	n RX Buffer 0				
bit 11-8		RX Buffer Writt					
		hits received in hits received in		-			
	•		li o C Ballor I				
	•						
	•						
		hits received in hits received in					
bit 7-4		RX Buffer Writt					
		hits received in hits received in		-			
	•		THAT Durier 1	-			
	•						
	•						
		hits received in hits received in					
bit 3-0	F0BP<3:0>:	RX Buffer Writt	en when Filte	er 0 Hits bits			
		hits received in					
	1110 = Filter	hits received ir	n RX Buffer 1	4			
	•						
	•						
	0001 = Filter	hits received in					
		TIILS IECEIVEU II					

REGISTER 21-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			SID	<10:3>				
bit 15							bit 8	
R/W-x								
R/W-X	R/W-x SID<2:0>	R/W-x	U-0	R/W-x MIDE	U-0	R/W-x	R/W-x	
h:+ 7	SID<2:0>		_	MIDE		EID<	-	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is				'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-5	SID<10:0>:	Standard Identif	ier bits					
		bit, SIDx, in filter x, is a don't care i	•	parison				
bit 4	Unimpleme	ented: Read as '0)'					
bit 3	MIDE: Iden	tifier Receive Mo	de bit					
	0 = Match e	only message type either standard or Filter SID) = (Me	extended a	ddress messag	e if filters match	n i	(IDE bit in filter	
bit 2	Unimpleme	ented: Read as '0)'					
bit 1-0	EID<17:16>	Extended Ident	ifier bits					
		bit, EIDx, in filter x, is a don't care						

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)

	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>		_	_	CSCNA	CHPS	S<1:0>
bit 15							bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	_		SMPI<	:3:0>		BUFM	ALTS
bit 7	I						bit (
Legend:							
R = Readable	e bit	W = Writab	le bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown
		0	the see Defense of a	De la filmantia a	h:t-		
bit 15-13			bltage Reference (Configuration	DITS		
		VREF+	VREF-	4			
	000	AVDD	Avss	_			
		ernal VREF+	Avss	-			
	010 011 Exte	AVDD ernal VREF+	External VREF- External VREF-	-			
	1xx		Avss	-			
hit 10 11				J			
bit 12-11				ring Comple	A bit		
bit 10	1 = Scan inp	•	ctions for CH0+ du	ning Sample	A DIL		
	0 = Do not s						
bit 9-8		•	nnels Utilized bits				
	When AD12	B = 1, CHPS	<1:0> is: U-0, Uni	mplemented	, Read as '0'.		
			, CH2 and CH3	-			
	01 = Conver		CH1				
h:+ 7	00 = Conver						
bit 7			it (only valid when g second half of bι	-	uld access dat	a in the first ha	If
			first half of buffer				
			,	,			
bit 6	Unimplemer	nted: Read as	s 'O'				
	SMPI<3:0>:	Selects Incre	ment Rate for DM	A Address Bi	ts or Number of	Sample/Conve	
	SMPI<3:0>: Operations p	Selects Incre er Interrupt b	ment Rate for DM/ its			·	ersion
	SMPI<3:0>: Operations p 1111 = Incre conv	Selects Incre er Interrupt b ments the Di ersion operat	ment Rate for DM/ its MA address or ge ion	nerates inter	rupt after comp	letion of every	ersion 16th sample
	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre	Selects Incre er Interrupt b ments the Di ersion operat ments the Di	ment Rate for DM/ its MA address or ge ion MA address or ge	nerates inter	rupt after comp	letion of every	ersion 16th sample
	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre	Selects Incre er Interrupt b ments the Di ersion operat	ment Rate for DM/ its MA address or ge ion MA address or ge	nerates inter	rupt after comp	letion of every	ersion 16th sample
	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre	Selects Incre er Interrupt b ments the Di ersion operat ments the Di	ment Rate for DM/ its MA address or ge ion MA address or ge	nerates inter	rupt after comp	letion of every	ersion 16th sample
bit 6 bit 5-2	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre conv	Selects Incre er Interrupt b ements the Di ersion operat ements the Di ersion operat	ment Rate for DM/ its MA address or ge ion MA address or ge	nerates inter	rupt after comp rupt after comp	letion of every letion of every	ersion 16th sample 15th sample
	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre conv	Selects Incre er Interrupt b ements the Di ersion operat ersion operat ersion operat ements the Di on operation	ment Rate for DM/ its MA address or ge ion MA address or ge ion	nerates inter nerates inter erates interru	rupt after comp rupt after comp pt after complet	letion of every letion of every ion of every 2nd	ersion 16th sample 15th sample d sample/cor
	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre conv	Selects Incre er Interrupt b ements the Di ersion operat ersion operat ersion operat ements the Di on operation	ment Rate for DM/ its MA address or ge ion MA address or ge ion	nerates inter nerates inter erates interru	rupt after comp rupt after comp pt after complet	letion of every letion of every ion of every 2nd	ersion 16th sample 15th sample d sample/cor
	SMPI<3:0>: Operations p 1111 = Incre conv 1110 = Incre conv	Selects Incre er Interrupt b ments the Di- ersion operation ersion operation ements the Di- on operation ements the Di- operation	ment Rate for DM/ its MA address or ge ion MA address or gen MA address or gen	nerates inter nerates inter erates interru	rupt after comp rupt after comp pt after complet	letion of every letion of every ion of every 2nd	ersion 16th sample 15th sample d sample/cor

REGISTER 22-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH ^(1,2)
--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
bit 15			•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
bit 7			•	•		•	bit 0
							DILU

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

CSS<31:16>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 22-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is			l as '0' x = Bit is unkr	างพท			
Legend:							
bit 7	•		•	•			bit 0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
00015	00014	00012	00010	00011	00010	0000	-
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0

CSS<15:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan 0 = Skip ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREF.
 - **2:** CSSx = ANx, where x = 0 through 15.

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description					
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}					
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}					
Wn	One of 16 working registers ∈ {W0W15}					
Wnd	One of 16 destination working registers ∈ {W0W15}					
Wns	One of 16 source working registers ∈ {W0W15}					
WREG	W0 (working register used in file register instructions)					
Ws	Source W register ∈ {Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws]}					
Wso	Source W register ∈ {Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb]}					
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}					
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}					
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}					
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}					

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
51	MUL	MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * signed(Ws)			1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
	20111	SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-37:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА		rics	Standard Op (unless othe Operating ter	rwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_		11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge		—	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

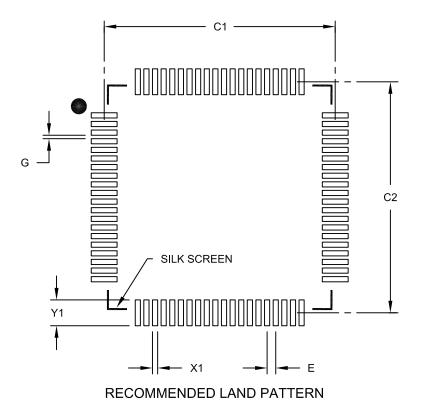
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

CHARAG	ACStandard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated)CHARACTERISTICSOperating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.SymbolCharacteristicMinTypMaxUnitsConditions								
		Clock	A Parame	ters				
HAD50	TAD	ADC Clock Period ⁽¹⁾	147		_	ns		
TIAD 50	IAD		177			113		
TIAD 30	IAD		version R	ate		113		

TABLE 27-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 27-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol Characteristic Min Ivo Max Units Conditions						Conditions	
		Cloc	k Parame	ters				
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_		ns	_	
	Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	800	Ksps		
Note 4. These permeters are characterized but retriated in merufacturing								

Note 1: These parameters are characterized but not tested in manufacturing.

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

dsPIC33FJXXXMCX06A/X08A/X10A

Е

ECAN Module
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)55
ECAN1 Register Map (C1CTRL1.WIN = 0)
ECAN1 Register Map (C1CTRL1.WIN = 1)56
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)58
ECAN2 Register Map (C2CTRL1.WIN = 0)
ECAN Technology
Frame Types217
Modes of Operation219
Overview
Electrical Characteristics
AC
Enhanced CAN Module217
Equations
Device Operating Frequency144
Fosc Calculation144
Programming Time74
XT with PLL Mode145
Errata11

F

Flash Program Memory	73
Control Registers	
Operations	
Programming Algorithm	76
RTSP Operation	74
Table Instructions	
Flexible Configuration	
FSCM	
Delay for Crystal and PLL Clock Sources	
Device Resets	
^	

G

Getting Started with 16-Bit DSCs	19

н

High Temperature Electrical Characteristics	
I	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	
I ² C	
Operating Modes	
I ² C Module	
I2C1 Register Map	50
I2C2 Register Map	50
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	259, 266
Input Capture	
Registers	
Input Change Notification Module	
Instruction Addressing Modes	63
File Register Instructions	63
Fundamental Modes Supported	64
MAC Instructions	64
MCU Instructions	63
Move and Accumulator Instructions	64
Other Instructions	64
Instruction Set	
Overview	270
Summary	

Instruction-Based Power-Saving Modes	
Idle	
Sleep	153
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON2	
INTTREG	
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine (ISR)	
Trap Service Routine	
Interrupt Vector Table (IVT)	. 85
Interrupts Coincident with Power Save Instructions	154
J	
JTAG Boundary Scan Interface	259
	200
M	
Memory Organization	. 35
Microchip Internet Web Site	
Migration	
Modes of Operation	
Disable	219
Initialization	219
Listen All Messages	219
Listen Only	219
Loopback Mode	219
Normal Operation	219
Modulo Addressing	. 64
Applicability	
Operation Example	. 65
Start and End Address	
W Address Register Selection	
Motor Control PWM	179
Motor Control PWM Module	
8-Output Register Map	. 49
MPLAB ASM30 Assembler, Linker, Librarian	276
MPLAB Integrated Development	
Environment Software	275
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	276
Ν	

NVM Module	
Register Map	
0	
Open-Drain Configuration	
Output Compare	
Modes	176

Ρ

-	
Packaging	3
Details	5
Marking	
Peripheral Module Disable (PMD)	