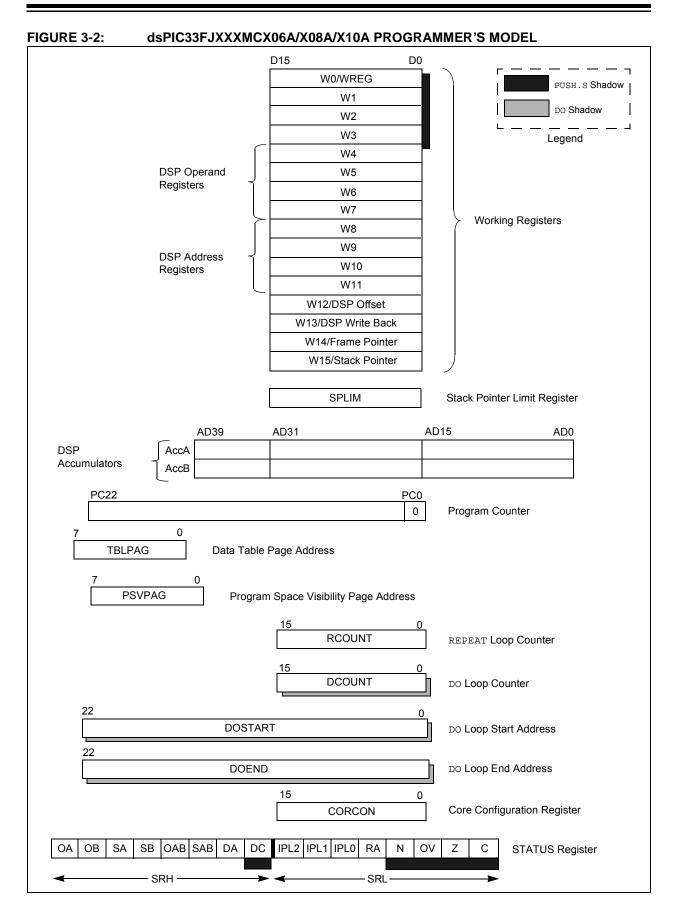


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc706at-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJXXXMCX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's *Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJXXXMCX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJXXXMCX06A/X08A/X10A devices are a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below:

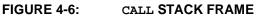
- 1. Fractional or integer DSP multiply (IF)
- 2. Signed or unsigned DSP multiply (US)
- 3. Conventional or convergent rounding (RND)
- 4. Automatic saturation on/off for AccA (SATA)
- 5. Automatic saturation on/off for AccB (SATB)
- 6. Automatic saturation on/off for writes to data memory (SATDW)
- 7. Accumulator Saturation mode selection (ACCSAT)

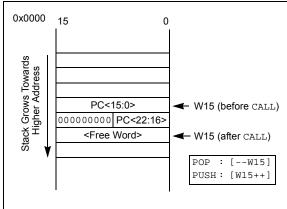
Table 2-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3.

SUMMARY								
Instruction	Algebraic Operation	ACC Write Back						
CLR	A = 0	Yes						
ED	$A = (x - y)^2$	No						
EDAC	$A = A + (x - y)^2$	No						
MAC	$A = A + (x \bullet y)$	Yes						
MAC	$A = A + x^2$	No						
MOVSAC	No change in A	Yes						
MPY	$A = x \bullet y$	No						
MPY	$A = x^2$	No						
MPY.N	$A = -x \bullet y$	No						
MSC	$A = A - x \bullet y$	Yes						

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

4.2.7 SOFTWARE STACK


In addition to its use as a working register, the W15 register in the dsPIC33FJXXXMCX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33FJXXXMCX06A/X08A/X10A devices support data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-36 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the following form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note:	Not all instructions support all the
	addressing modes given above. Individ-
	ual instructions may support different
	subsets of these addressing modes.

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_		CNIP<2:0>		—		—			
bit 15							bit 8		
U-0	R/W-1	R/W-0 MI2C1IP<2:0>	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
			SI2C1IP<2:0>						
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	-	nented: Read as 'o							
bit 14-12		>: Change Notifica	-	-					
	111 = Interrupt is priority 7 (highest priority interrupt)								
	•								
	•	•							
		errupt is priority 1							
	000 = Inte	errupt source is dis	abled						
bit 11-7	Unimplem	nented: Read as 'o	כ'						
bit 6-4	MI2C1IP<	2:0>: I2C1 Master	Events Inter	rupt Priority bits	S				
	111 = Interrupt is priority 7 (highest priority interrupt)								
	•								
	•								
	001 = Inte	001 = Interrupt is priority 1							
	000 = Interrupt source is disabled								
bit 3	Unimplem	nented: Read as 'o	כ'						
bit 2-0	SI2C1IP<	2:0>: I2C1 Slave E	Events Interru	pt Priority bits					
	111 = Inte	errupt is priority 7 (I	highest priori	ty interrupt)					
	•								
	•								
	- 001 - Inte								
		errupt is priority 1							

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

REGISTER 7-26: IPC11: INTERRUPT PRIC	ORITY CONTROL REGISTER 11
--------------------------------------	---------------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		T6IP<2:0>				DMA4IP<2:0>				
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_		_	_	_		OC8IP<2:0>				
bit 7					I		bit			
Legend:										
R = Readab		W = Writable I	oit	-	mented bit, read					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	-	ented: Read as 'o								
bit 14-12		Timer6 Interrupt	-							
	111 = Interrupt is priority 7 (highest priority interrupt)									
	001 = Interrupt is priority 1									
		upt source is disa								
bit 11	-	ented: Read as 'o								
bit 10-8		0>: DMA Channe		-	Interrupt Prior	ity bits				
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	•									
	001 = Interrupt is priority 1									
	000 = Interr	upt source is disa	abled							
bit 7-3	Unimpleme	ented: Read as '0)'							
bit 2-0	OC8IP<2:0	: Output Compa	re Channel 8	Interrupt Prior	ity bits					
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
	•									
	• 001 = Interr	upt is priority 1								

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
	_	_	_		ILF	<3:0>				
oit 15		1					bit 8			
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
—				VECNUM<6:0>	>					
oit 7							bit (
₋egend: R = Readab	la hit	W = Writable	h:t		opted bit rec	ad aa (0)				
				U = Unimplem						
n = Value a	IPOR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN			
oit 15-12	Unimpleme	ented: Read as the	0'							
pit 11-8	•	ILR<3:0>: New CPU Interrupt Priority Level bits								
	1111 = CPU interrupt priority level is 15									
	•									
	•									
	• 0001 = CPU interrupt priority level is 1									
		J interrupt priorit								
oit 7	Unimpleme	ented: Read as '	0'							
oit 6-0	VECNUM<	VECNUM<6:0>: Vector Number of Pending Interrupt bits								
		Interrupt vector		•						
	•		Ū							
	•									
	•	Interrupt vector	nondina in nu	mbor 0						
	0000001 = Interrupt vector pending is number 9 0000000 = Interrupt vector pending is number 8									

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

NOTES:

REGISTEF		R/W-0					U-0
	R/W-0		R/W-0	U-0	U-0	U-0	0-0
T9MD	T8MD	T7MD	T6MD			—	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—		—		I2C2MD	AD2MD ⁽¹⁾
bit 7							bit
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	ented bit. rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 15	T9MD: Timer	9 Module Disal	ole bit				
	1 = Timer9 m	Timer9 module is disabled					
	0 = Timer9 m	module is enabled					
bit 14	T8MD: Timer8	3 Module Disat	ole bit				
	1 = Timer8 m	odule is disable	ed				
	0 = Timer8 m	odule is enable	ed				
bit 13	T7MD: Timer7	7 Module Disal	ole bit				
		odule is disable					
	0 = Timer7 m	odule is enable	ed				
bit 12	T6MD: Timer6	6 Module Disat	ole bit				
		odule is disable					
	0 = Timer6 m	odule is enable	ed				
bit 11-2	Unimplement	ted: Read as '	0'				
bit 1	12C2MD: 12C2	2 Module Disat	ole bit				
		ule is disabled					
	0 = I2C2 mod						
bit 0	AD2MD: AD2	Module Disab	le bit ⁽¹⁾				
	1 = AD2 modu						
	0 = AD2 modu	ile is enabled					

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

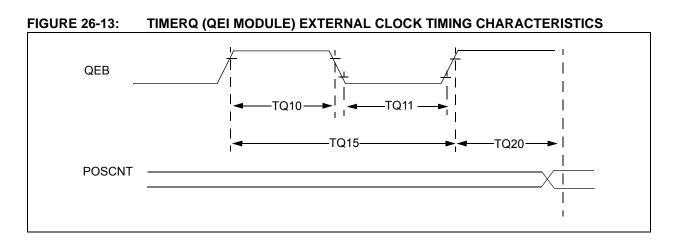
REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
—	—	—	_	—	IMV<	2:0>	CEID				
bit 15							bit 8				
R/W-0		R/W-0		U-0	U-0	U-0	U-0				
QEOUT		QECK<2:0>		—	—	—	—				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	nown				
bit 15-11	Unimplemen	ted: Read as '0)'								
bit 10-9	IMV<1:0>: Inc	dex Match Valu	e bits								
		These bits allow the user to specify the state of the QEAx and QEBx input pins during an index pulse									
		when the POSxCNT register is to be reset.									
		In 4X Quadrature Count Mode:									
	IMV1 = Required state of Phase B input signal for match on index pulse IMV0 = Required state of Phase A input signal for match on index pulse										
	T = D = D	and state of Db									
	-		ase A input s								
	In 2X Quadra	ture Count Mod	ase A input s <u>le:</u>	signal for match	n on index pulse						
	In 2X Quadra	ture Count Moc ts phase input :	ase A input s <u>le:</u> signal for ind	signal for match		_ = Phase B)					
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requ	ture Count Moc ts phase input :	ase A input s l <u>e:</u> signal for ind selected Ph	signal for match	n on index pulse (0 = Phase A, 1	_ = Phase B)					
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count	ture Count Moc ts phase input s red state of the	ase A input s l <u>e:</u> signal for ind selected Ph Disable bit	signal for match lex state match nase input signa	n on index pulse (0 = Phase A, 1	_ = Phase B)					
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts	ture Count Moc ts phase input s red state of the Error Interrupt I	ase A input s signal for ind selected Ph Disable bit rrors are disa	signal for match lex state match nase input signa abled	n on index pulse (0 = Phase A, 1	_ = Phase B)					
	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena	signal for match lex state match nase input signa abled abled	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)					
bit 8 bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e due to count e	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F	signal for match lex state match nase input signa abled abled	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)					
	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F led	signal for match lex state match nase input signa abled abled Filter Output En	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>:	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Seleci IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 110 = 1:128 c 101 = 1:64 cle 100 = 1:32 cle	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide clock divide pock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 101 = 1:128 ct 101 = 1:32 ct 011 = 1:16 ct	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide clock divide ock divide ock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 101 = 1:128 ct 101 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide bock divide bock divide bock divide bock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 101 = 1:128 ct 101 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto 001 = 1:2 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					
bit 7	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 100 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto 001 = 1:2 cto 000 = 1:1 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F led Ded (normal IDXx Digital	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)					

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS


AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro mode	onous	Greater of 20 or (Tcy + 20)/N			ns ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchro mode	onous	Greater of 20 or (Tcy + 20)/N			ns ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchro mode	onous	Greater of 40 or (2Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr			0.75 Tcy + 40	_	1.75 Tcy + 40	ns	—

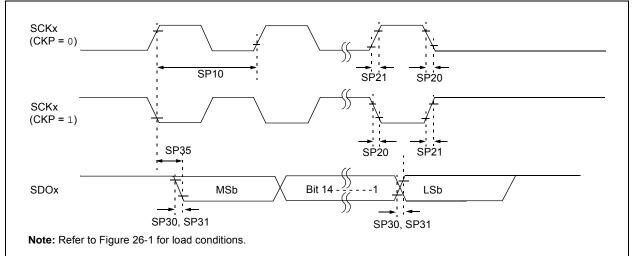
Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-24:TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING
REQUIREMENTS

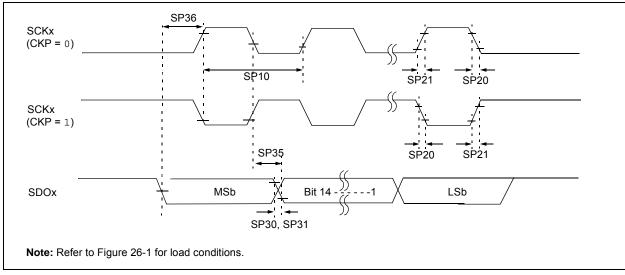
AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characte	eristic		Min	Тур	Мах	Units	Conditions
TC10	TtxH	TxCK High Time	Synchronous		Тсү + 20	—	_	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous		Tcy + 20	_	—	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous with prescaler		2 Tcy + 40	-	_	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.75 Tcy + 40	—	1.75 Tcy + 40		—

Note 1: These parameters are characterized, but are not tested in manufacturing.

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Character	istic ⁽¹⁾		Min	Тур	Max	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler		Tcy + 20	—	_	ns	Must also meet parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler		Tcy + 20	—	—	ns	Must also meet parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler		2 * Tcy + 40	_	—	ns	—
TQ20	TCKEXTMRL	Delay from External Edge to Timer Incre	ternal TxCK Clock		0.5 Tcy		1.5 TCY	_	—


 TABLE 26-31:
 QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 26-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 26-33	—	—	0,1	0,1	0,1		
10 MHz	—	Table 26-34	_	1	0,1	1		
10 MHz	—	Table 26-35	—	0	0,1	1		
15 MHz	—	—	Table 26-36	1	0	0		
11 MHz	_	_	Table 26-37	1	1	0		
15 MHz	_	_	Table 26-38	0	1	0		
11 MHz	_		Table 26-39	0	0	0		

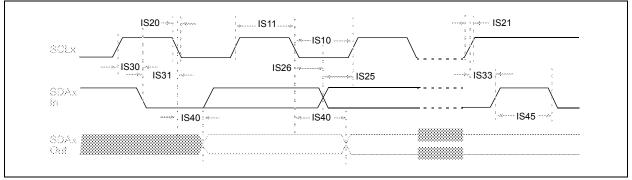
FIGURE 26-14: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 26-15: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency		_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	—	—	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	-		ns	_	
SP51	TssH2doZ	SSx	10	—	50	ns	-	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 26-26: CAN MODULE I/O TIMING CHARACTERISTICS

TABLE 26-42: ECAN™ TECHNOLOGY MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—	—	_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120		_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
	Device Supply										
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	—				
AD02	AVss	Module Vss Supply	Vss - 0.3	—	Vss + 0.3	V					
			Reference	ce Inpu	ts						
AD05	VREFH	Reference Voltage High	AVss + 2.5	_	AVdd	V	_				
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0				
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	—				
AD06a			0	—	0	V	Vrefh = AVdd Vrefl = AVss = 0				
AD07	Vref	Absolute Reference Voltage	2.5	—	3.6	V	Vref = Vrefh - Vrefl				
AD08	IREF	Current Drain	—	_	10	μA	ADC off				
AD08a	IAD	Operating Current		7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, see Note 1 12-bit ADC mode, see Note 1				
			Analog	g Input							
AD12	VINH	Input Voltage Range VINH	VINL	_	VREFH	\vee	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input				
AD13	VINL	Input Voltage Range Vın∟	Vrefl	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input				
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC				

TABLE 26-43: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	ds	PIC 33 FJ 256 MC7 10 A T I / PT - XXX	Examples:	
Tape and Reel Flag Temperature Rang Package	hily Size (KB) g (if applic e		 a) dsPIC33FJ256MC710ATI/PT: Motor Control dsPIC33, 64-Kbyte program memory, 64-pin, Industrial temperature, TQFP package. 	
Architecture:	33 =	16-bit Digital Signal Controller		
Flash Memory Family:	FJ =	Flash program memory, 3.3V		
Product Group:	MC5 = MC7 =	Motor Control family Motor Control family		
Pin Count:	06 = 08 = 10 =	64-pin 80-pin 100-pin		
Temperature Range:	I = E = H =	-40°C to +85°C (Industrial) -40°C to +125°C (Extended) -40°C to +150°C (High)		
Package:	PT = PF = MR =	14x14 mm TQFP (Thin Quad Flatpack)		
Pattern	Three-dig (blank oth	it QTP, SQTP, Code or Special Requirements erwise)		