

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc706at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJXXXMCX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's *Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJXXXMCX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJXXXMCX06A/X08A/X10A devices are a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below:

- 1. Fractional or integer DSP multiply (IF)
- 2. Signed or unsigned DSP multiply (US)
- 3. Conventional or convergent rounding (RND)
- 4. Automatic saturation on/off for AccA (SATA)
- 5. Automatic saturation on/off for AccB (SATB)
- 6. Automatic saturation on/off for writes to data memory (SATDW)
- 7. Accumulator Saturation mode selection (ACCSAT)

Table 2-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3.

JUIVIIVIARI								
Instruction	Algebraic Operation	ACC Write Back						
CLR	A = 0	Yes						
ED	$A = (x - y)^2$	No						
EDAC	$A = A + (x - y)^2$	No						
MAC	$A = A + (x \bullet y)$	Yes						
MAC	$A = A + x^2$	No						
MOVSAC	No change in A	Yes						
MPY	$A = x \bullet y$	No						
MPY	$A = x^2$	No						
MPY.N	$A = -x \bullet y$	No						
MSC	$A = A - x \bullet y$	Yes						

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the MSb is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518 x 10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented); whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- 1. OA: AccA overflowed into guard bits
- OB: AccB overflowed into guard bits
- 3. SA:

AccA saturated (bit 31 overflow and saturation) or

AccA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- 4. SB:
 - AccB saturated (bit 31 overflow and saturation) or

AccB overflowed into guard bits and saturated (bit 39 overflow and saturation)

5. OAB:

Logical OR of OA and OB

6. SAB:

Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when they and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to **Section 7.0 "Interrupt Controller"**) are set. This allows the user to take immediate action, for example, to correct system gain.

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 16-Kbyte RAM

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_				
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	FLTBIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-8	Unimplement	ted: Read as ')'				
bit 7	C2TXIF: ECA	N2 Transmit D	ata Request I	nterrupt Flag S	Status bit		
	1 = Interrupt r	equest has occ	curred				
h it 0		equest has not	occurred				
DIT 6	LINF: ECA		ata Request I	nterrupt Flag a	Status Dit		
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred				
bit 5	DMA7IF: DM	A Channel 7 Da	ata Transfer C	Complete Interr	rupt Flag Status	bit	
	1 = Interrupt r	equest has occ	curred		aprilling annual		
	0 = Interrupt r	equest has not	occurred				
bit 4	DMA6IF: DMA	A Channel 6 Da	ata Transfer C	Complete Interr	rupt Flag Status	bit	
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 3	Unimplement	ted: Read as ')'				
bit 2	U2EIF: UART	2 Error Interru	ot Flag Status	bit			
	1 = Interrupt r	equest has occ	concurred				
bit 1	U1FIF: UART	1 Error Interru	ot Flag Status	bit			
Sit 1	1 = Interrupt r	equest has oc	curred	bit			
	0 = Interrupt r	equest has not	occurred				
bit 0	FLTBIF: PWM	/I Fault B Interr	upt Flag Statu	ıs bit			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 7-12:	IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
----------------	--

DAMO		11.0				D /// 0	
		0-0		R/W-U			R/W-U
IOIE	DIVIA4IE	—	UCOIE	OCHE	OCOLE	OCSIE	LICOLE
bit 15							Dit O
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE
bit 7						<u> </u>	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	T6IE: Timer6	Interrupt Enab	le bit				
	1 = Interrupt r	request enable	d				
hit 14			ableu ata Tranafar (Complete Inter	runt Enchlo hit		
DIL 14	1 = Interrunt r	A Channel 4 D	ala mansier (d		rupt Enable bit		
	0 = Interrupt r	request not ena	abled				
bit 13	Unimplemen	ted: Read as '	0'				
bit 12	OC8IE: Outpu	ut Compare Ch	annel 8 Interr	upt Enable bit			
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 11	OC7IE: Outpu	ut Compare Ch	annel 7 Interr	upt Enable bit			
	1 = Interrupt r0 = Interrupt r	request enable	u abled				
bit 10	OC6IE: Outpu	ut Compare Ch	annel 6 Interr	upt Enable bit			
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 9	OC5IE: Outpu	ut Compare Ch	annel 5 Interr	upt Enable bit			
	1 = Interrupt r	request enable	d abled				
bit 8		Capture Chann	el 6 Interrupt I	Enable bit			
bit o	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 7	IC5IE: Input C	Capture Chann	el 5 Interrupt I	Enable bit			
	1 = Interrupt r	request enable	d				
hit 6		Capture Chapp	ableu ol 4 Intorrunt I	Enable bit			
DILO	1 = Interrupt r	request enable	d 4 milenupi i				
	0 = Interrupt r	request not ena	abled				
bit 5	IC3IE: Input C	Capture Chann	el 3 Interrupt I	Enable bit			
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer (Complete Inter	rupt Enable bit		
	0 = Interrupt r	request enable	abled				
bit 3	C1IE: ECAN1	Event Interrur	ot Enable bit				
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				

R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 FLTAIE DMA5IE ____ QEIIE **PWMIE** C2IE ____ ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTAIE: PWM Fault A Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 Unimplemented: Read as '0' bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12-11 Unimplemented: Read as '0' bit 10 **QEIIE:** QEI Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 **PWMIE:** PWM Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 C2IE: ECAN2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 INT4IE: External Interrupt 4 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 INT3IE: External Interrupt 3 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 **T9IE:** Timer9 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 **T8IE:** Timer8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 2 MI2C2IE: I2C2 Master Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI1EIP<2:0>		—		T3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as ')'				
bit 14-12	U1RXIP<2:	0>: UART1 Rece	iver Interrupt	t Priority bits			
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	SPI1IP<2:0	>: SPI1 Event Int	errupt Priorit	y bits			
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as ')'				
bit 6-4	SPI1EIP<2:	:0>: SPI1 Error Ir	terrupt Priori	ity bits			
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as ')'				
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits				
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		FLTAIP<2:0>		—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-1	U-0	U-0
—		DMA5IP<2:0>			—	—	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	FLTAIP<2:0	0>: PWM Fault A	Interrupt Pri	ority bits			
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 11-7	Unimpleme	ented: Read as '	0'				
bit 6-4	DMA5IP<2	:0>: DMA Chann	el 5 Data Tra	insfer Complete	e Interrupt Prior	ity bits	
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 3-0	Unimpleme	ented: Read as '	0'				

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	—	_	—	—			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
—	_		—		_	FRMDLY			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit						
	1 = Framed S	Plx support en	abled (SSx pi	n used as fram	ne Sync pulse ir	nput/output)			
	0 = Framed S	Plx support dis	sabled						
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	ntrol bit					
	1 = Frame Sy	nc pulse input	(slave) t (master)						
hit 13	EPMPOL · Er	ame Sync Puls	o Dolarity hit						
bit 15	1 = Frame Sv	ine sync i uis ne nuise is acti	ive-high						
	0 = Frame Sy	nc pulse is act	ive-low						
bit 12-2	Unimplemen	ted: Read as '	0'						
bit 1	FRMDLY: Fra	me Sync Pulse	e Edge Select	bit					
	1 = Frame Sy	nc pulse coinc	ides with first	bit clock					
	0 = Frame Sy	nc pulse prece	des first bit cl	ock					
bit 0	Unimplemented: This bit must not be set to '1' by the user application.								

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN					
bit 15		Į					bit 8					
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					
bit 7							bit 0					
Legend: U = Unimplemented bit, read as '0'												
R = Readable	bit	W = Writable	bit	HS = Hardwai	re Settable bit	HC = Hardwar	e Clearable bit					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
bit 15	I2CEN: I2Cx	Enable bit										
	1 = Enables t	the I2Cx modu	le and configu	res the SDAx a	and SCLx pins a	as serial port pir	IS					
bit 14		ted. Pead as	1e. Απτ C ···· p · ₀ '			10115.						
bit 13		n in Idle Mode	hit									
bit 10	1 = Discontin	ue module ope	eration when d	evice enters a	n Idle mode							
	0 = Continue	module opera	tion in Idle mo	de								
bit 12	SCLREL: SC	Lx Release Co	ontrol bit (whe	n operating as	l ² C slave)							
	1 = Release	SCLx clock										
	0 = Hold SCL	x clock low (cl	ock stretch)									
	$\frac{\text{If STREN} = 1}{\text{Rit is R/W} (i e)}$	<u>:</u> software ma	av write '0' to in	nitiate stretch a	and write '1' to n	elease clock) F	lardware clear					
	at beginning	of slave transn	nission. Hardw	are clear at en	d of slave recep	otion.						
	If STREN = 0) <u>:</u>										
	Bit is R/S (i.e	., software mag	y only write '1'	to release cloo	ck). Hardware c	lear at beginnin	g of slave					
bit 11		lligant Darinha	ral Managama	nt Intorfago (IE	MI) Enable bit							
		ligent Penphe le is enabled: :	all addresses		nii) Enable bit							
	0 = IPMI mod	le disabled		lonnowicagea								
bit 10	A10M: 10-Bit	Slave Addres	s bit									
	1 = I2CxADD	is a 10-bit sla	ve address									
	0 = I2CxADD	is a 7-bit slav	e address									
bit 9	DISSLW: Dis	able Slew Rat	e Control bit									
	1 = Slew rate 0 = Slew rate	control disable	ed ed									
bit 8	SMEN: SMB	us Input Levels	s bit									
	1 = Enable I/	O pin threshold	ds compliant w	vith SMBus spe	ecification							
	0 = Disable S	MBus input th	resholds									
bit 7	GCEN: Gene	eral Call Enable	e bit (when ope	erating as I ² C s	slave)							
	1 = Enable in	nterrupt when	a general call	address is rec	eived in the I2C	xRSR (module	is enabled for					
	<pre>receptior 0 = General</pre>	1) call address di	isahled									
bit 6	STRFN SCI	x Clock Stretc	h Enable hit (w	hen operating	as l ² C slave)							
5100	Used in coniu	unction with the	e SCLREL bit.	on operating								
	1 = Enable so	oftware or rece	eive clock stret	ching								
	0 = Disable s	oftware or rece	eive clock stret	tching								

21.0 ENHANCED CAN MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Enhanced Controller Area Network (ECAN™)" (DS70185) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN™ technology) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJXXXMCX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Frame Types

The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

• Extended Data Frame:

An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

• Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

REGISTER 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		_		_			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW<	<1:0>			BRF	P<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-8	Unimplemen	ted: Read as ')'				
bit 7-6	SJW<1:0>: S	ynchronization	Jump Width I	oits			
	11 = Length i	s 4 x Tq					
	10 = Length	s 3 x TQ					
	01 = Length i	SZXIQ SIXTO					
bit 5-0	BRP<5:0>: F	Baud Rate Pres	caler bits				
	11 1111 = T	$Q = 2 \times 64 \times 1/I$	-CAN				
	•						
	•						
	•						
	00 0010 = T	Q = 2 x 3 x 1/F	CAN				
	00 0001 = T	$Q = 2 \times 2 \times 1/Fc$	CAN				
	$00 \ 0000 = T$	Q = 2 x 1 x 1/Fo	CAN				

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

TABLE 26-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max Units Conditions					
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +85°C		
SY11	Tpwrt	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_		
SY20	Twdt1	Watchdog Timer Time-out Period	_	_	_	_	See Section 23.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 26-19)		
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	_	_	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		Tcy + 20	—	—	ns	Must also meet parameter TA15	
			Synchro with pre-	nous, scaler	(Tcy + 20)/N	_	—	ns	N = prescale value (1, 8, 64,	
			Asynchronous		20	—	-	ns	256)	
TA11	ΤτχL	TxCK Low Time	Synchronous, no prescaler		(Tcy + 20)/N	-	—	ns	Must also meet parameter TA15 N = prescale value (1, 8, 64,	
			Synchronous, with prescaler		20	—	—	ns		
			Asynchronous		20	—	—	ns	256)	
TA15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler		2Tcy + 40	—	—	ns	—	
			Synchro with pre	nous, scaler	Greater of: 40 ns or (2Tcy + 40)/N	-	-	_	N = prescale value (1, 8, 64, 256)	
			Asynchr	onous	40	—	—	ns	—	
OS60	Ft1	SOSC1/T1CK Osci Frequency Range (by setting bit, TCS (llator Input oscillator enablec (T1CON<1>))		DC	_	50	kHz	_	
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	al TxCK Clock rement		0.75 Tcy + 40		1.75 Tcy + 40	ns	_	

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Symbol Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency			15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	_			ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_			ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—

TABLE 26-33: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 27-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +150^{\circ}C$ for High Temperature							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ⁽¹⁾							
HF21	LPRC	-70 ⁽²⁾	_	+70 ⁽²⁾	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C \qquad$		

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 27-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28			ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_	
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

29.1 Package Marking Information (Continued)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1mm)

Legend	: XXX Y YY WW NNN (63) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.