

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc710a-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31	I	Analog	Analog input channels.
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	 0	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0	—	ECAN1 bus transmit pin.
C2RX	I	ST	ECAN2 bus receive pin.
C2TX	0	—	ECAN2 bus transmit pin.
PGED1	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	I	ST	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2		ST	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	1/0	SI	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	1	SI	Clock input pin for Programming/Debugging Communication Channel 3.
IC1-IC8	I	ST	Capture Inputs 1 through 8.
INDX QEA		ST ST	Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/
			gate input in Timer mode.
QEB	I	ST	Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/
UPDN	Ο	CMOS	Position up/down counter direction state.
INT0	I	ST	External Interrupt 0.
INT1	I	ST	External Interrupt 1.
INT2	I	ST	External Interrupt 2.
INT3	I	ST	External Interrupt 3.
INT4	I	ST	External Interrupt 4.
FLTA	I	ST	PWM Fault A input.
FLTB	I	ST	PWM Fault B input.
PWM1L	0	—	PWM1 low output.
PWM1H	0	_	PWM1 high output.
PWM2L	0	—	PWM2 low output.
PWM2H	0	—	PWM2 high output.
PWW3L	0	_	PWM3 IOW OUTPUT.
PWWJ	0	_	PWM3 high output
PWM4H	0		PWM4 high output
	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device
	1	ST	Compare Fault A input (for Compare Chappels 1, 2, 3 and 4)
OCEB		ST	Compare Fault B input (for Compare Channels 5, 6, 7 and 8)
0C1-0C8	Ö	_	Compare outputs 1 through 8.
0901	1	ST/CMOS	Oscillator crystal input ST huffer when configured in PC mode:
OSC2	I/O		CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
			mode. Optionally functions as CLKO in RC and EC modes.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output Ana ST = Schmitt Trigger input with CMOS levels O =

Analog = Analog input ls O = Output

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB), and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic, which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).

- 2. Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).
- 3. Bit 39 Catastrophic Overflow:

The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- 1. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation"**). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts.

4.0 MEMORY ORGANIZATION

Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06A/X08A/X10A architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJXXXMCX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.6** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices is shown in Figure 4-1.

	dsPIC33FJ64MCXXXA	dsPIC33FJ128MCXXXA	dsPIC33FJ256MCXXXA	
	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000
	Reset Address	Reset Address	Reset Address	- 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FF
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
ry Space	User Program Flash Memory (22K instructions)	User Program Flash Memory (44K instructions)	User Program Flash Memory (88K instructions)	0x000200 .0x00ABFE 0x00AC00
bue				0015755
ž				0x0157FE
User	Unimplemented (Read '0's)	Unimplemented		0x02ABFE
		(Read '0's)	Unimplemented (Read '0's)	0x02AC00
	Reserved	Reserved	Reserved	0x800000
iration Memory Space	Device Configuration Registers	Device Configuration Registers	Device Configuration Registers	0xF7FFFE 0xF80000 0xF80017 0xF80010
	Reserved	Reserved	Reserved	
Config		DEVID (2)		0xFEFFFE 0xFF0000

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES

	Reset – GOTO Instruction	0x000000	
	Reset = G010 Address	0x000002	
	Reserved	0X000004	
	Oscillator Fail Trap Vector	-	
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014 —	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
_	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
rio	~		
L L	~		
de	~		
õ	Interrupt Vector 116	0x0000FC	
ral	Interrupt Vector 117	0x0000FE -	
atu	Reserved	0x000100	
Z	Reserved	0x000102	
sing	Reserved		
sas	Oscillator Fail Trap Vector	1	
CLE	Address Error Trap Vector		
De	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector	1	
	Reserved		
	Reserved	1	
	Interrupt Vector 0	0x000114 —	1
	Interrupt Vector 1	1	
	~	1	
	~	1	
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	(((())))
	Interrupt Vector 53	0x00017F	
	Interrupt Vector 54	0x000180	
	~		
	~	-	
	~		
	Interrupt Vector 116	1	
	Interrupt Vector 117	0x0001FF	
▼	Start of Code	0x000200	
-		01000200	

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI		—	_		_	—
bit 15	-					•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ALTIVT: Enab	ole Alternate Inf	terrupt Vector	Table bit			
	1 = Use Alter	nate Interrupt V	ector Table				
bit 14		struction Status	e hit				
Dit 14	1 = 177 inst	ruction is active	2				
	0 = DISI inst	ruction is not a	ctive				
bit 13-5	Unimplemen	ted: Read as '	כ'				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge				
	0 = Interrupt o	on positive edge	е				
bit 3	INT3EP: Exte	ernal Interrupt 3	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of $0 = $ Interrupt of $0 =$	on negative edg	ge				
hit 2	INT2EP: Exte	anal Interrunt 2	Edge Detect	Polarity Selec	t bit		
Dit Z	1 = Interrupt (on negative edg	ne				
	0 = Interrupt of	on positive edge	e				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge				
	0 = Interrupt o	on positive edge	е				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt o	on negative edg	ge				
		on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INT0IF			
bit 7							bit 0			
Legend:	1.11		1.11			1 (0)				
R = Readable		VV = VVritable	DIT	U = Unimple	mented bit, read	as '0'	0.00			
-n = value at h	OR	I = BILIS SE			eared	x = Bit is unkn	IOWI			
hit 15	Unimplemen	tad. Read as	0'							
bit 14		A Channel 1 D	∪ ata Transfer (complete Inter	runt Elan Status	bit				
	1 = Interrupt I	request has oc	curred		apt hag olates	, bit				
	0 = Interrupt i	request has no	t occurred							
bit 13	AD1IF: ADC1	1 Conversion C	Complete Interi	rupt Flag Statu	is bit					
	1 = Interrupt I	rupt request has occurred								
hit 10		request has no	r Intorrunt Ela	n Statua hit						
DIL 12	1 = Interrupt i	request has oc	curred	y Status Dit						
	0 = Interrupt i	request has no	t occurred							
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit						
	1 = Interrupt i	Interrupt request has occurred								
		request has no	t occurred							
bit 10	SPI1IF: SPI1	Event Interrup	ot Flag Status t	Dit						
	1 = Interrupt i 0 = Interrupt i	request has oc	t occurred							
bit 9	SPI1EIF: SPI	1 Fault Interru	pt Flag Status	bit						
	1 = Interrupt I	request has oc	curred							
hit Q		request has no	t occurred							
DILO	1 = Interrupt	request has or								
	0 = Interrupt i	request has no	t occurred							
bit 7	T2IF: Timer2	Interrupt Flag	Status bit							
	1 = Interrupt i	request has oc	curred							
		request has no	toccurred		. 1. 1					
DIT 6	1 = Interrupt	ut Compare Cr	annel 2 Interri	upt Flag Status	s dit					
	0 = Interrupt i	request has oc	t occurred							
bit 5	IC2IF: Input C	Capture Chann	el 2 Interrupt F	- lag Status bit						
	1 = Interrupt i	request has oc	curred							
	0 = Interrupt I	request has no	t occurred							
bit 4	DMA0IF: DM	A Channel 0 D	ata Transfer C	Complete Inter	rupt Flag Status	bit				
	$\perp = 1 \text{merrupt}$ 0 = Interrupt 1	request has oc	t occurred							
bit 3	T1IF: Timer1	Interrupt Flag	Status bit							
	1 = Interrupt i	request has oc	curred							
	0 = Interrupt i	request has no	t occurred							

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

		_	-								
U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	—	—	_	_		QEIIP<2:0>					
bit 15	·						bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		PWMIP<2:0>				C2IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	id as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15-11	Unimplemen	ted: Read as '0)'								
bit 10-8	QEIIP<2:0>:	QEI Interrupt Pi	riority bits								
	111 = Interrup	pt is priority 7 (h	nighest priori	ty interrupt)							
	•										
	•										
	001 = Interrup	pt is priority 1									
	000 = Interru	pt source is disa	abled								
bit 7	Unimplemen	ted: Read as '0)'								
bit 6-4	PWMIP<2:0>	: PWM Interrup	t Priority bits	6							
	111 = Interrup	pt is priority 7 (ł	nighest priori	ty interrupt)							
	•										
	•										
	001 = Interrup	001 = Interrupt is priority 1									
	000 = Interru	pt source is disa	abled								
bit 3	Unimplemen	ted: Read as '0)'								
bit 2-0	C2IP<2:0>: E	CAN2 Event In	terrupt Prior	ity bits							
	111 = Interrup	pt is priority 7 (r	highest priori	ty interrupt)							
	•										
	•										
	001 = Interrup	pt is priority 1									
	000 = Interrup	pt source is disa	abled								

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS

EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used with "XT with PLL" as the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 * 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: dsPIC33FJXXXMCX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	—
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	—
Primary Oscillator (XT)	Primary	01	010	-
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 16-11: PXOVDCON: PWMx OVERRIDE CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L
bit 7	•						bit 0
Legend.							

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 POVDxH<4:1>:POVDxL<4:1>: PWM Output Override bits

1 = Output on PWMx I/O pin is controlled by the PWM generator

0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit

bit 7-0 POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output bits

1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared

0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL		—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
_	—	—	—			FRMDLY	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit					
	1 = Framed S	Plx support en	abled (SSx pi	in used as fram	ne Sync pulse i	nput/output)		
	0 = Framed S	SPIx support dis	sabled					
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	ntrol bit				
	1 = Frame Sy	nc pulse input	(slave)					
hit 13	EPMPOL · Er	ame Sync Puls						
bit 15	1 = Frame Sv	ine Sync i uis inc nuise is acti	ive-high					
	0 = Frame Sy	nc pulse is act	ive-low					
bit 12-2	Unimplemen	ted: Read as '	0'					
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Select	bit				
	1 = Frame Sy	nc pulse coinci	ides with first	bit clock				
	0 = Frame Sy	nc pulse prece	des first bit cl	ock				
bit 0	Unimplemen	Jnimplemented: This bit must not be set to '1' by the user application.						

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on the UxRSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on the UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OFPR: Receive Ruffer Overrun Error Status bit (read/clear only)
	1 = Receive buffer has overflowed
	$0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state.$
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 21-20: CiRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

r								
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			SID	<10:3>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
	SID<2:0>		—	MIDE	_	EID<1	17:16>	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	SID<10:0>:	Standard Identi	fier bits					
	1 = Include b	oit, SIDx, in filter	comparison					
	0 = Bit, SIDx	, is a don't care	in filter comp	barison				
bit 4	Unimpleme	nted: Read as '	0'					
bit 3	MIDE: Ident	ifier Receive Mo	ode bit					
	1 = Match or	nly message typ	es (standard	or extended ad	dress) that corre	espond to the E>	KIDE bit in filter	
	0 = Match e	ither standard o	r extended a	ddress messag	e if filters matc	h		
	(i.e., if (l	Filter SID) = (Me	essage SID)	or if (Filter SID/	EID) = (Messag	ge SID/EID))		
bit 2	Unimpleme	nted: Read as '	0'					
bit 1-0	EID<17:16>:	Extended Iden	tifier bits					
	1 = Include	bit, EIDx, in filte	r comparisor	1				
	0 = Bit, EID	k, is a don't care	e in filter com	parison				

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 21-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:		C= Clearable bit		
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

RXFUL15:RXFUL0: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 21-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:		C= Clearable bit		
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11
DI60b	Іісн	Input High Injection Current	0		+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Тсү	_	ns	—	
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	—	ns	—	
TQ35	TQUIN	Quadrature Input Period		12 TCY	—	ns	—	
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns	—	
TQ40	TQUFL	Filter Time to Recognize Lov with Digital Filter	V	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder Interface (QEI)"** (DS70208) in the "*dsPIC33F/PIC24H Family Reference Manual*".

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

			Standard Op	erating	Conditio	ons: 2.4	V to 3.6V
АС СНА	RACTERIS	FICS	(unless othe	rwise st	ated)	о <i>с</i> т	• 05°O fan Industrial
			Operating ter	nperatur	e -40°	C ≤ IA ≤ C < T∧ <	+85°C for Industrial
Derem					-40		
No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency			15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—		—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		—	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		_	ns	_
SP51	TssH2doZ	SSx	10		50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	—	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

29.1 Package Marking Information (Continued)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1mm)

Legend	: XXX Y YY WW NNN (63) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A