

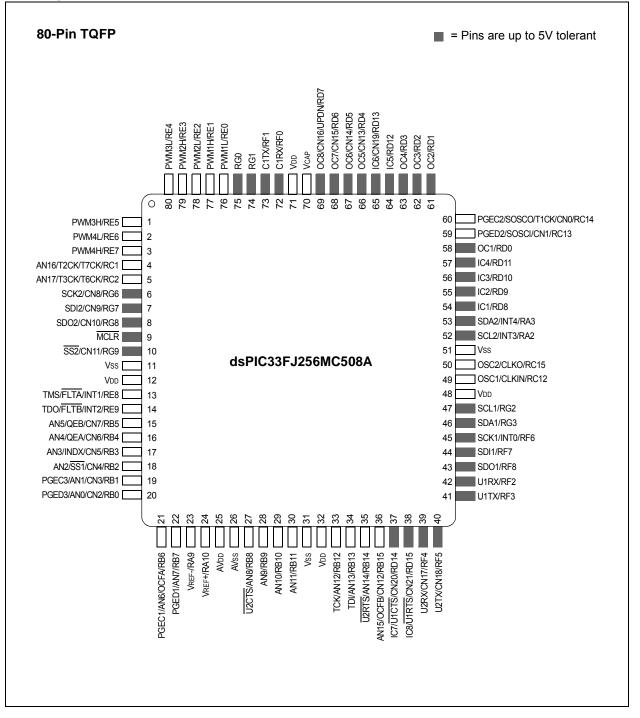
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

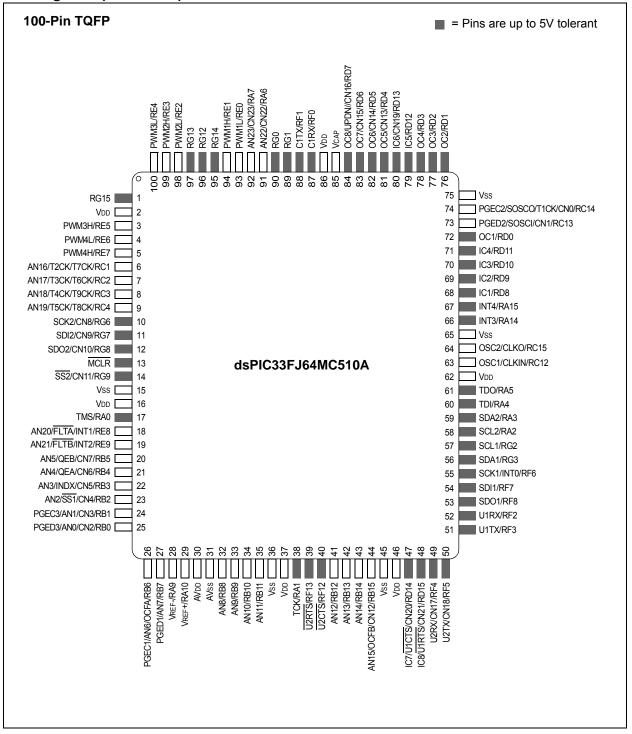
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256mc510a-e-pt


Email: info@E-XFL.COM

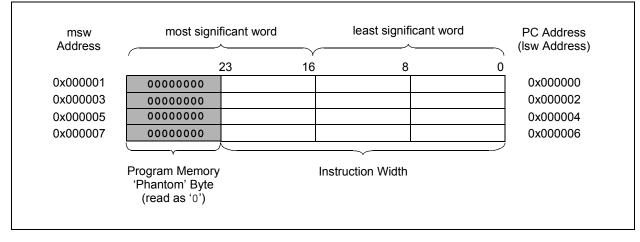
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

NOTES:

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXMCX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXMCX06A/X08A/X10A devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

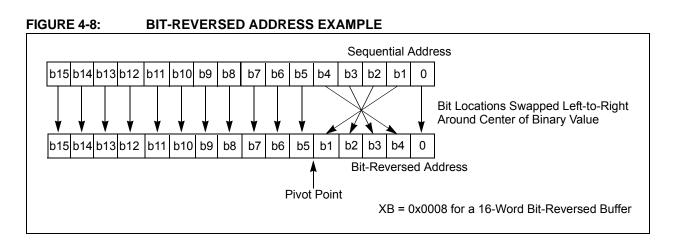
FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-10: QEI REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset State	e
QEI1CON	01E0	CNTERR	—	QEISIDL	INDX	UPDN	Q	EIM<2:0)>	SWPAB	PCDOUT	TQGATE	TQCKP	S<1:0>	POSRES	TQCS	UPDN_SRC	0000	0000 000	0 0000
DFLT1CON	01E2	_	—	_	_	_	IMV<	:1:0>	CEID	QEOUT		QECK<2:0>			_		_	0000	0000 000	0 0000
POS1CNT	01E4		Position Counter<15:0>					0000	0000 000	0 0000										
MAX1CNT	01E6		Maximum Count<15:0>						1111	1111 111	1 1111									

Legend: u = uninitialized bit, - = unimplemented, read as '0'

TABLE 4-11: I2C1 REGISTER MAP


SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_		_			_		I2C1 Receive Register					0000				
I2C1TRN	0202	_	_	_	_	_	_	_	_				I2C1 Trans	mit Register				OOFF
I2C1BRG	0204	—	_	_	-		—	—	Baud Rate Generator Register				0000					
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ss Register					0000
I2C1MSK	020C	—	_	_	_	_	—				120	1 Address	Mask Regis	ster				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	—	-	—	—	—	—	—	—	- I2C2 Receive Register					0000			
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2C2 Transı	nit Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_	Baud Rate Generator Register				0000					
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	_	_					I2C2 Addre	ss Register					0000
I2C2MSK	021C	—			—	-					120	2 Address	Mask Regis	ter				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

bit 1	SI2C2IE: I2C2 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

- bit 0 T7IE: Timer7 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		C1IP<2:0>				C1RXIP<2:0>							
bit 15							bit						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		SPI2IP<2:0>		_		SPI2EIP<2:0>							
bit 7							bit						
Legend:													
R = Readabl	le bit	W = Writable k	bit	U = Unimplei	mented bit, rea	id as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own						
bit 15	Unimpleme	ented: Read as '0	,										
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Priori	ity bits									
	<pre>111 = Interrupt is priority 7 (highest priority interrupt) .</pre>												
	•												
	•												
		upt is priority 1 upt source is disa	abled										
bit 11		ented: Read as '0											
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits												
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	001 = Interrupt is priority 1 000 = Interrupt source is disabled												
bit 7		ented: Read as '0											
bit 6-4	-	>: SPI2 Event Int		y bits									
	111 = Interr	upt is priority 7 (h	ighest priori	ty interrupt)									
	•												
	•												
	001 = Interr	upt is priority 1											
		upt source is disa											
bit 3	-	ented: Read as '0											
bit 2-0		0>: SPI2 Error In	-	-									
	111 = Interr	upt is priority 7 (h	lighest priori	ty interrupt)									
	•												
	•												
		upt is priority 1 upt source is disa	abled										
			11151										

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-Bit DMA Channel Control register (DMAxCON)
- A 16-Bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-Bit DMA RAM Primary Start Address Offset register (DMAxSTA)

- A 16-Bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-Bit DMA Peripheral Address register (DMAxPAD)
- A 10-Bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels.

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMOD	E<1:0>	—	—	MODE	=<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHEN: Channel Enable bit
	1 = Channel enabled
	0 = Channel disabled
bit 14	SIZE: Data Transfer Size bit
	1 = Byte
	0 = Word
bit 13	DIR: Transfer Direction bit (source/destination bus select)
	1 = Read from DMA RAM address; write to peripheral address
	0 = Read from peripheral address; write to DMA RAM address
bit 12	HALF: Early Block Transfer Complete Interrupt Select bit
	1 = Initiate block transfer complete interrupt when half of the data has been moved
	0 = Initiate block transfer complete interrupt when all of the data has been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit
	1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)
	0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
bit 5-4	AMODE<1:0>: DMA Channel Operating Mode Select bits
	11 = Reserved
	10 = Peripheral Indirect Addressing mode
	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode
bit 3-2	
	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits
	 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled
	01 = One-Shot, Ping-Pong modes disabled
	00 = Continuous, Ping-Pong modes disabled

16.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- Eight PWM I/O pins with four duty cycle generators
- · Up to 16-bit resolution
- 'On-the-fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	
bit 15	·		•			•	bit 8	
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLTAM	_	_	_	FAEN4	FAEN3	FAEN2	FAEN1	
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7	 0 = The PWM output pin is driven inactive on an external Fault input event FLTAM: Fault A Mode bit 1 = The Fault A input pin functions in the Cycle-by-Cycle mode 0 = The Fault A input pin latches all control pins to the states programmed in FLTACON<15:8> 							
bit 6-4	-	ited: Read as '						
bit 3	FAEN4: Fault Input A Enable bit 1 = PWM4H/PWM4L pin pair is controlled by Fault Input A 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input A							
bit 2	FAEN3: Fault Input A Enable bit 1 = PWM3H/PWM3L pin pair is controlled by Fault Input A 0 = PWM3H/PWM3L pin pair is not controlled by Fault Input A							
bit 1	FAEN2: Fault Input A Enable bit 1 = PWM2H/PWM2L pin pair is controlled by Fault Input A 0 = PWM2H/PWM2L pin pair is not controlled by Fault Input A							
bit 0	1 = PWM1H/	t Input A Enabl PWM1L pin pai PWM1L pin pai	r is controlled					

REGISTER 16-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER

REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	—	_	—	IMV<	2:0>	CEID			
bit 15	·						bit 8			
R/W-0		R/W-0		U-0	U-0	U-0	U-0			
QEOUT		QECK<2:0>		_	—	_				
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unkn		iown			
bit 15-11	-	ted: Read as '0								
bit 10-9	IMV<1:0>: Inc	IMV<1:0>: Index Match Value bits								
		These bits allow the user to specify the state of the QEAx and QEBx input pins during an index puls								
	when the POSxCNT register is to be reset.									
	In 4X Quadrature Count Mode:									
	IMV1 = Required state of Phase B input signal for match on index pulse IMV0 = Required state of Phase A input signal for match on index pulse									
	T M T O = D O M H	rad atata of Dh								
	-		ase A input s							
	In 2X Quadra	ture Count Mod	ase A input s <u>le:</u>	signal for match	n on index pulse					
	In 2X Quadra IMV1 = Selec	ture Count Moc ts phase input :	ase A input s <u>le:</u> signal for ind	signal for match		_ = Phase B)				
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requi	ture Count Moc ts phase input :	ase A input s l <u>e:</u> signal for ind selected Ph	signal for match	n on index pulse (0 = Phase A, 1	_ = Phase B)				
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requi CEID: Count	ture Count Moc ts phase input s red state of the	ase A input s l <u>e:</u> signal for ind selected Ph Disable bit	signal for match lex state match nase input signa	n on index pulse (0 = Phase A, 1	_ = Phase B)				
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts	ture Count Moc ts phase input s red state of the Error Interrupt I	ase A input s signal for ind selected Ph Disable bit rrors are disa	signal for match lex state match nase input signa abled	n on index pulse (0 = Phase A, 1	_ = Phase B)				
bit 8 bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena	signal for match lex state match nase input signa abled abled	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)				
	In 2X Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e due to count e	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F	signal for match lex state match nase input signa abled abled	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)				
	In 2X Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F led	signal for match lex state match nase input signa abled abled Filter Output En	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)				
	In 2X Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Selec IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>:	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 101 = 1:128 c 101 = 1:32 ch	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide clock divide pock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 101 = 1:128 c 101 = 1:32 cl 011 = 1:16 cl	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide clock divide ock divide ock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 110 = 1:128 c 101 = 1:64 cle 011 = 1:16 cle 010 = 1:4 clo	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide bock divide bock divide bock divide bock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 101 = 1:128 c 101 = 1:32 clo 011 = 1:16 clo 010 = 1:4 clo 001 = 1:2 clo	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				
bit 7	In 2X Quadrat IMV1 = Select IMV0 = Requi CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 100 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto 001 = 1:2 cto 000 = 1:1 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F led Ded (normal IDXx Digital	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)				

20.3 UART Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	—	UEN<1:0>			
bit 15							bit 8		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL		
bit 7							bit C		
Legend:		HC = Hardwa	re Clearable k	nit					
R = Readable	bit	W = Writable			mented bit read	l as '0'			
-n = Value at F		W = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown				014/2			
	-0K	I - DILIS SEL			aleu	X - DILISUIIKI	OWIT		
bit 15	UARTEN: UA	RTx Enable bi	t(1)						
	1 = UARTx is	s enabled: all L	JARTx pins ar	e controlled by	UARTx as defin	ned by UEN<1:	0>		
	0 = UARTx is				y port latches; L				
bit 14	minimal	ted: Read as '	0'						
	-								
bit 13	USIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode.								
					lie mode.				
bit 12	 0 = Continue module operation in Idle mode IREN: IrDA[®] Encoder and Decoder Enable bit⁽²⁾ 								
	1 = IrDA encoder and decoder enabled								
		oder and deco							
bit 11	RTSMD: Mode Selection for UxRTS Pin bit								
		in in Simplex n in in Flow Con							
bit 10	•	ted: Read as '							
bit 9-8	UEN<1:0>: UARTx Enable bits								
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches								
		UxRX, UxCTS							
					ed; UxCTS pin				
hit 7					JxRTS/BCLK pi	ns controlled by	port latches		
bit 7		e-up on Start bi		•		n the falling od	no: hit cloaroc		
		are on the follo			upt generated o		je, bit cleared		
	0 = No wake		5 - 5	0-					
bit 6	LPBACK: UA	RTx Loopback	Mode Select	bit					
		oopback mode							
	-	k mode is disal							
bit 5		o-Baud Enable			· · · · · · · · · · · · · · · · · · ·				
		aud rate meas her data; clear			er – requires re tion	ception of a Syr	IC TIEID (UX55)		
		e measuremen							
		17. "UART"	(DS70188) i	n the <i>"dsPIC3</i>	3 <i>F/PIC24H Fa</i> smit operation.	mily Reference	e <i>Manual"</i> fo		
	nis feature is on	-							
Z. 11					- 0).				

21.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

21.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set, and the TXREQ bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = 111. In this mode, the data which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 21-31: CiTRBnSTAT: ECAN™ RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—			FILHIT<4:0>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	_	-	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b			bit	t U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

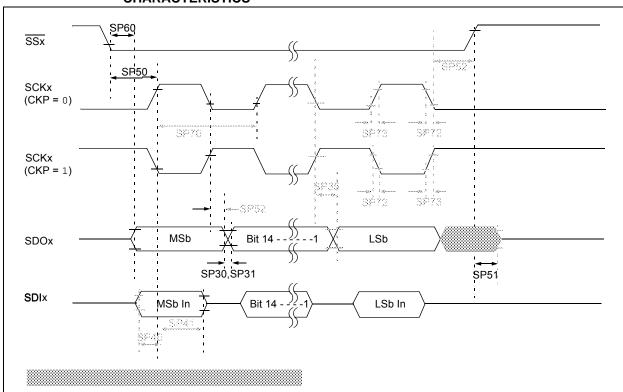
25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.


Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

FIGURE 26-19: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

IPC13 (Interrupt Priority Control 13)	125
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	129
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	118
IPC7 (Interrupt Priority Control 7)	119
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCOM (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 2)	157
PMD3 (Peripheral Module Disable Control 3)	159
PWMxCON1 (PWMx Control 1)	184
PWMxCON2 (PWMx Control 2)	
PxDC1 (PWMx Duty Cycle 1)	
PxDC2 (PWMx Duty Cycle 2)	
PxDC3 (PWMx Duty Cycle 3)	
PxDC4 (PWMx Duty Cycle 4)	192
PxDTCON1 (PWMx Dead-Time Control 1)	186
PxDTCON2 (PWMx Dead-Time Control 2)	187
PxFLTACON (PWMx Fault A Control)	188
PxFLTBCON (PWMx Fault B Control)	189
PxOVDCON (PWMx Override Control)	190
PxSECMP (PWMx Special Event Compare)	
PxTCON (PWMx Time Base Control)	
PxTMR (PWMx Timer Count Value)	
PxTPER (PWMx Time Base Period)	
QEIxCON (QEIx Control)	
RCON (Reset Control)	
SPIxCON1 (SPIx Control 1)2	200
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	
SR (CPU Status)	
T1CON (Timer1 Control)	166
TxCON (T2CON, T4CON, T6CON or	
T8CON Control)	170
TyCON (T3CON, T5CON, T7CON or	
T9CON Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	215
Reset	00
Clock Source Selection	
Special Function Register States	
Times	
Reset Sequence	
Resets	
Revision History	500

S

Serial Peripheral Interface (SPI)	197
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	63
Special Features of the CPU	259
SPI Module	
SPI1 Register Map	51
SPI2 Register Map	51
Symbols Used in Opcode Descriptions	
System Control	
Register Map	62

Т

•	
Temperature and Voltage Specifications	
AC	333
Timer1	165
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	167
Timing Characteristics	
CLKO and I/O	293
Timing Diagrams	
10-Bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0,	
SSRC<2:0> = 000)	326
10-Bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	
12-Bit A/D Conversion (ASAM = 0, SSRC = 000)	
CAN I/O	320
External Clock	291
I2Cx Bus Data (Master Mode)	316
I2Cx Bus Data (Slave Mode)	318
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	318
Input Capture (CAPx)	298
Motor Control PWM	
Motor Control PWM Fault	300
OC/PWM	299
Output Compare (OCx)	298
QEA/QEB Input	301
QEI Module Index Pulse	302
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	294
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock	
TimerQ (QEI Module) External Clock	303
Timing Requirements	
ADC Conversion (10-bit mode)	
ADC Conversion (12-bit Mode)	337
CLKO and I/O	293
External Clock	291
Input Capture	
SPIx Master Mode (CKE = 0)	
SPIx Module Master Mode (CKE = 1)	334
SPIx Module Slave Mode (CKE = 0)	335
SPIx Module Slave Mode (CKE = 1)	335