

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256mc510at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-25:ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1FOR dsPIC33FJXXXMC708A/710A DEVICES (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx			
C2RXF11EID	056E				EID<	15:8>				EID<7:0>						xxxx					
C2RXF12SID	0570		SID<10:3>							SID<2:0> — EXIDE — EID<17:16>						xxxx					
C2RXF12EID	0572				EID<	15:8>							EID	<7:0>				xxxx			
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx			
C2RXF13EID	0576				EID<	15:8>							EID	<7:0>				xxxx			
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx			
C2RXF14EID	057A				EID<	15:8>							EID	<7:0>				xxxx			
C2RXF15SID	057C				SID<	10:3>					SID<2:0>		_	EXIDE		EID<	17:16>	xxxx			
C2RXF15EID	057E				EID<	15:8>							EID	<7:0>		EID<7:0>					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14		_	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	—	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA ⁽²⁾	06C0	ODCA15	ODCA14		_	_	—		—	—	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

NOTES:

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)

- bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 T7IF: Timer7 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		_		OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC2IP<2:0>				DMA0IP<2:0>	
bit 7							bit 0
Logondy							
R - Readable	hit	W – Writable k	nit	II – I Inimpler	mented hit re	ad as 'O'	
-n = Value at P	OR	'1' = Bit is set	JIL	0 – Onimpler 0' = Bit is cle	henieu bii, re ared	x = Bit is unkno	nwn
					arcu		
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	OC2IP<2:0>	•: Output Compa	re Channel 2	Interrupt Prior	ity bits		
	•	upt is priority 7 (r	lignest priorit	y interrupt)			
	•						
	•	unt in unionity of					
	001 = Interror 000	upt is priority 1	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	errupt Priority b	its		
	111 = Interru	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0					
bit 2-0	DMA0IP<2:0	J>: DMA Channe	el 0 Data Trai	nsfer Complete	Interrupt Pric	ority bits	
	•		lighest phone	y menupi)			
	•						
	• 001 = Interr	int is priority 1					
	000 = Interru	upt source is disa	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		CNIP<2:0>				—	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		MI2C1IP<2:0>				SI2C1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	CNIP<2:0>:	Change Notifica	ation Interrup	t Priority bits			
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 11-7	Unimplemer	nted: Read as '	0'				
bit 6-4	MI2C1IP<2:0	D>: I2C1 Master	Events Inter	rupt Priority bite	5		
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	ipt source is dis	abled				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2-0	SI2C1IP<2:0	>: I2C1 Slave E	Events Interru	pt Priority bits			
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	ipt source is dis	abled				

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>		
bit 15							bit 8	
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PLLPO	ST<1:0>	—		F	PLLPRE<4:)>		
bit 7							bit 0	
Lenende			fram Canfing	ration bits on DOI				
D - Doodoblo	hit	y = value set	hit		R ntod hit ro	od oo 'O'		
		'1' = Rit is set	DIL	0° – Onimpleme	x = Bit is unkn	it is unknown		
	FOR	I – DILIS SEL			eu		JWII	
bit 15	ROI: Recove	r on Interrupt bi	t					
	1 = Interrupt	s will clear the [DOZEN bit ar	nd the processor (clock/periph	eral clock ratio is	set to 1:1	
	0 = Interrupt	s have no effect	t on the DOZ	EN bit	F - F			
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction	Select bits				
	000 = Fcy/1							
	001 = FCY/2							
	010 = FCY/4 011 = FCY/8	(default)						
	100 = Fcy/16	5						
	101 = FCY/32	2						
	110 = FCY/64 111 = FCY/12	+ 28						
bit 11	DOZEN: DO	ZE Mode Enabl	e bit ⁽¹⁾					
	1 = DOZE<2	2:0> field specifi	es the ratio b	between the perip	heral clocks	and the processo	or clocks	
	0 = Process	or clock/periphe	eral clock ratio	o forced to 1:1				
bit 10-8	FRCDIV<2:0	Internal Fast	RC Oscillato	or Postscaler bits				
	000 = FRC d	livide by 1 (defa	ult)					
	001 = FRC d	livide by 2 livide by 4						
	011 = FRC d	livide by 8						
	100 = FRC d	livide by 16						
	101 = FRC d	livide by 32						
	110 = FRC d	livide by 64						
bit 7-6	PLLPOST<1	:0>: PLL VCO (Output Divide	er Select bits (also	o denoted a	s 'N2', PLL postsc	aler)	
	00 = Output/	2		·		•	,	
	01 = Output/	4 (default)						
	10 = Reserve	ed 8						
bit 5		u ted: Read as 'i	ר י					
bit 4-0	PI I PRF<4.	>: PLI Phase I	Detector Inni	it Divider bits (als	o denoted a	is 'N1' PLL presc	aler)	
Sit 1 0	00000 = Inp	ut/2 (default)						
	00001 = Inp	ut/3						
	•							
	•							
	• 11111 = Inni	ut/33						

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXMCX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 23.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires the following basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009-2012} Microchip Technology Inc.

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers that can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support the following features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers. Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation, do the following:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contain the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contain the least significant word.

To configure any of the timers for individual 16-bit operation, do the following:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1, and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both the primary and secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

REGISTER 21-20: CiRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

r							
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID	<10:3>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID<2:0>		—	MIDE	_	EID<1	17:16>
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-5	SID<10:0>:	Standard Identi	fier bits				
	1 = Include b	oit, SIDx, in filter	comparison				
	0 = Bit, SIDx	, is a don't care	in filter comp	barison			
bit 4	Unimpleme	nted: Read as '	0'				
bit 3	MIDE: Ident	ifier Receive Mo	ode bit				
	1 = Match or	nly message typ	es (standard	or extended ad	dress) that corre	espond to the E>	KIDE bit in filter
	0 = Match e	ither standard o	r extended a	ddress messag	e if filters matc	h	
	(i.e., if (l	Filter SID) = (Me	essage SID)	or if (Filter SID/	EID) = (Messag	ge SID/EID))	
bit 2	Unimpleme	nted: Read as '	0'				
bit 1-0	EID<17:16>:	Extended Iden	tifier bits				
	1 = Include	bit, EIDx, in filte	r comparisor	1			
	0 = Bit, EID	k, is a don't care	e in filter com	parison			

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	<1:0>
bit 15	·					•	bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0, HC,HS	R/C-0, HC, HS
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit	C= Clear	able bit
R = Readable	bit	W = Writable b	it	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADON: ADC	Operating Mode	bit				
	1 = ADC model = ADC is or	dule is operating ff					
bit 14		 ted: Read as '0'					
bit 13	ADSIDL: Stor	o in Idle Mode bi	t				
	1 = Discontin	nue module oper	ation when dev	vice enters Idle	e mode		
	0 = Continue	module operation	on in Idle mode				
bit 12	ADDMABM:	DMA Buffer Buil	d Mode bit				
	1 = DMA buff	fers are written ir	the order of co	nversion. The	module will pro	vide an address	s to the DMA
	channel t	hat is the same	as the address	used for the n	ion-DMA stand-	-alone butter de a scatter/gat	ther address
	to the DN	IA channel, bas	ed on the index	of the analog	input and the s	ize of the DMA	buffer
bit 11	Unimplemen	ted: Read as '0'					
bit 10	AD12B: 10-B	it or 12-Bit Oper	ation Mode bit				
	1 = 12-bit, 1- 0 = 10-bit, 4-	channel ADC op channel ADC op	peration peration				
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits				
	For 10-Bit Op	eration:					
	11 = Signed f	ractional (Dout al (Dout = dddd	= sddd dddd	dd00 0000,	where $s = .NO$	I.d<9>)	
	01 = Signed i	nteger (DOUT =	ssss sssd da	idd dddd, wh	nere s = .NOT.d	<9>)	
	00 = Integer (DOUT = 0000 0	0dd dddd dd	dd)			
	For 12-Bit Op	eration:		1111 0000			
	11 = Signed f 10 = Fraction	ractional (DOUT al (Dout = dddd	= saaa aaaa I dddd dddd	aaaa 0000, '	where s = .NO	1.0<11>)	
	01 = Signed I	nteger (Dou⊤ =	ssss sddd do	ddd dddd, wl	nere s = .NOT.d	l<11>)	
	00 = Integer (DOUT = 0000 d	ddd dddd dd	dd)			
bit 7-5	SSRC<2:0>:	Sample Clock S	ource Select bit	ts			
	111 = Interna	al counter ends s	ampling and st	arts conversio	n (auto-convert	:)	
	101 = Reserv	/ed					
	100 = GP tim	er (Timer5 for A	DC1, Timer3 fo	r ADC2) comp	oare ends samp	ling and starts	conversion
	011 = MPWN	I interval ends s	ampling and sta		n Daro ondo como	ling and starts	convorsion
	001 = Active	transition on IN	F0 pin ends san	npling and sta	rts conversion	ning and starts	CONVENSION
	000 = Clearir	ng sample bit en	ds sampling an	d starts conve	rsion		
bit 4	Unimplemen	ted: Read as '0'					

REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)

23.0 SPECIAL FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "CodeGuard™ Security" 23. (DS70199), Section 24. "Programming and Diagnostics" (DS70207) and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

dsPIC33FJXXXMCX06A/X08A/X10A devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

23.1 Configuration Bits

dsPIC33FJXXXMCX06A/X08A/X10A devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) of the "*dsPIC33F/PIC24H Family Reference Manual*", for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 23-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 23-2.

Note that address, 0xF80000, is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFF) which can only be accessed using table reads and table writes.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0xF80000	FBS	RBS	<1:0>	_	—		BSS<2:0>		BWRP	
0xF80002	FSS	RSS	<1:0>	_	_		SSS<2:0>		SWRP	
0xF80004	FGS	_	_	_	_		GSS1	GSS0	GWRP	
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	_	—	_	FNC	SC<2:0>		
0xF80008	FOSC	FCKS	M<1:0>	_	_	-	OSCIOFNC	POSCM	1D<1:0>	
0xF8000A	FWDT	FWDTEN	WINDIS	PLLKEN ⁽³⁾	WDTPRE		WDTPOST •	<3:0>		
0xF8000C	FPOR	PWMPIN	HPOL	LPOL			FPW	/RT<2:0>		
0xF8000E	FICD	Rese	rved ⁽¹⁾	JTAGEN	_	-	—	ICS<	:1:0>	
0xF80010	FUID0			L	Iser Unit ID	Byte 0				
0xF80012	FUID1			L	Iser Unit ID	Byte 1	1			
0xF80014	FUID2	User Unit ID Byte 2								
0xF80016	FUID3			L	Iser Unit ID	Byte 3				

TABLE 23-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, reads as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

- **2:** When read, this bit returns the current programmed value.
- **3:** This bit is unimplemented on dsPIC33FJ64MCX06A/X08A/X10A and dsPIC33FJ128MCX06A/X08A/X10A devices and reads as '0'.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
	-	CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	ACC WX WXd WY WVd AWB	Clear Accumulator	1	1	OA OB SA SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO Sleep
17	COM	COM	£	$f = \overline{f}$	1	1	N 7
17	COM	COM			1	1	N,Z
		COM	I,WREG	WREG = 1	1	1	N,Z
		COM	Ws,Wd	Wd = Ws	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C.DC.N.OV.Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
29	DTV	DTV S	Wm.Wn	Signed 16/16-bit Integer Divide	1	18	NZCOV
	211	DIV SD	Wm . Wn	Signed 32/16-bit Integer Divide	1	18	NZCOV
		DTV U	Wm . Wn	Unsigned 16/16-bit Integer Divide	1	18	NZCOV
			Wm . Wn	Unsigned 32/16-bit Integer Divide	1	18	NZCOV
30	DIVE	DIVE		Signed 16/16-bit Fractional Divide	1	18	N Z C OV
31	DO	DO	#li+14 Evor	Do Code to PC + Expr lit $14 + 1$ Times	2	2	None
51	00	DO	millin, Expr	Do Code to PC + Expr. $(M_P) + 1$ Times	2	2	None
22	-		wn,Expr	Euclidean Distance (no accumulate)	2 4	2 4	
32	<u>в</u> л	5U	will"Will, ACC, WX, WY, WXQ				SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)		1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	t	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	±, WREG	WREG = Rotate Right through Carry Ma	1	1	C,N,Z
66	DDVG	RRC	Ws,Wa	f = Detete Dight (No Corry) f	1	1	
00	RRNC	RRNC	I f NDEC	WPEC = Pototo Right (No Carry) f	1	1	N,Z
		RRINC	I, WREG	WREG - Rolate Right (No Carry) Wa	1	1	N,Z
07	~~~	RRINC	ws,wa	Stars Assumulates	1	1	IN,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
69	0.7	SAC.R	ACC, #SIIT4, Wdo	Store Rounded Accumulator	1	1	
60	CETM	CETTM	ms,WILL		1	1	U,IN,∠
09	SEIM	SEIM	L		1	1	None
		OFTM CFTM	WREG	Will - UNITIT	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB,
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

25.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

25.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

25.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

25.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

25.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No. ⁽³⁾ Typical ⁽²⁾ Max			Units	Conditions			
Power-Down Current (IPD) ⁽¹⁾							
DC60d	50	200	μA	-40°C		Base Power-Down Current ⁽³⁾	
DC60a	50	200	μA	+25°C	2 2\/		
DC60b	200	500	μA	+85°C	5.50		
DC60c	600	1000	μA	+125°C			
DC61d	8	13	μA	-40°C		Watchdog Timer Current: ∆IwD⊤ ⁽³⁾	
DC61a	10	15	μA	+25°C	2 2)/		
DC61b	12	20	μA	+85°C	3.3V		
DC61c	13	25	μA	+125°C			

TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

· CLKO is configured as an I/O input pin in the Configuration word

All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled (PMDx bits are all '1's). The following ADC settings are enabled for each ADC module (ADCx) prior to executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1 and ADxMD = 0.

• VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)

- RTCC is disabled.
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

FIGURE 26-9: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 26-10: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWM Output Fall Time	_	—	—	ns	See parameter D032
MP11	TRPWM	PWM Output Rise Time	—	—	—	ns	See parameter D031
MP20	Tfd	Fault Input ↓ to PWM I/O Change	_	_	50	ns	_
MP30	Tfh	Minimum Pulse Width	50	—	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.