

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256mc710a-h-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts.

NOTES:

4.0 MEMORY ORGANIZATION

Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06A/X08A/X10A architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJXXXMCX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 4.6** "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices is shown in Figure 4-1.

	dsPIC33FJ64MCXXXA	dsPIC33FJ128MCXXXA	dsPIC33FJ256MCXXXA	
	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000
	Reset Address	Reset Address	Reset Address	- 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FF
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x000104 0x0001FE
y Space	User Program Flash Memory (22K instructions)	User Program Flash Memory (44K instructions)	User Program Flash Memory (88K instructions)	0x000200 .0x00ABFE 0x00AC00
bue				0015755
ž				0x0157FE
User	Unimplemented (Read '0's)	Unimplemented		0x02ABFE
		(Read '0's)	Unimplemented (Read '0's)	0x02AC00
	Reserved	Reserved	Reserved	0x800000
iration Memory Space	Device Configuration Registers	Device Configuration Registers	Device Configuration Registers	0xF7FFFE 0xF80000 0xF80017 0xF80010
	Reserved	Reserved	Reserved	
Config		DEVID (2)		0xFEFFFE 0xFF0000

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES

TABLE 4-9: 8-OUTPUT PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	—	PTSIDL	—	—	—	—	—		PTOP	S<3:0>		PTCKF	'S<1:0>	PTMO	D<1:0>	0000 0000 0000 0000
P1TMR	01C2	PTDIR	PWM Timer Count Value Register								0000 0000 0000 0000							
P1TPER	01C4	—	- PWM Time Base Period Register							0000 0000 0000 0000								
P1SECMP	01C6	SEVTDIR						PW	/M Special	Event Com	npare Regi	ister						0000 0000 0000 0000
PWM1CON1	01C8	_	_	_	_	PMOD4	PMOD3	PMOD2	PMOD1	PEN4H	PEN3H	PEN2H	PEN1H	PEN4L	PEN3L	PEN2L	PEN1L	0000 0000 1111 1111
PWM1CON2	01CA	_	_	_	_		SEVOF	°S<3:0>		_	_	_	_	_	IUE	OSYNC	UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS	6<1:0>			DTB	<5:0>			DTAPS	DTAPS<1:0> DTA<5:0>				0000 0000 0000 0000			
P1DTCON2	01CE	_	_	_	_	_	_	_	_	DTS4A	DTS4I	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	_	_	_	FAEN4	FAEN3	FAEN2	FAEN1	0000 0000 0000 0000
P1FLTBCON	01D2	FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM	_	_	_	FBEN4	FBEN3	FBEN2	FBEN1	0000 0000 0000 0000
P10VDCON	01D4	POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 0000 0000
P1DC1	01D6							PW	I Duty Cyc	le #1 Regi	ster							0000 0000 0000 0000
P1DC2	01D8		PWM Duty Cycle #2 Register							0000 0000 0000 0000								
P1DC3	01DA		PWM Duty Cycle #3 Register							0000 0000 0000 0000								
P1DC4	01DC							PW	I Duty Cyc	le #4 Regi	ster							0000 0000 0000 0000

Legend: u = uninitialized bit, - = unimplemented, read as '0'

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	See Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—	_	1, 2, 3
	ECPLL, FRCPLL	Tpor + Tstartup + Trst	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	Tpor + Tstartup + Trst	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST	—	-	3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	Tstartup + Trst	Tost + Tlock	TFSCM	3, 4, 5, 6
MCLR	Any Clock	Trst	—	-	3
WDT	Any Clock	Trst	—	_	3
Software	Any Clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	_		3
Trap Conflict	Any Clock	Trst	_	_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode if the regulator is enabled.

3: TRST = Internal state Reset time (20 µs nominal).

4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.

5: TLOCK = PLL lock time (20 μs nominal).

6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—		T1IP<2:0>		_		OC1IP<2:0>		
bit 15							bit 8	
								
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
		IC1IP<2:0>				INT0IP<2:0>		
bit 7							bit 0	
Logond								
Legend. $\mathbf{P} = \mathbf{P}$ and the particular bit $\mathbf{M} = \mathbf{W}$ with the particular bit $\mathbf{P} = \mathbf{U}$ implemented bit read as '0'								
-n = Value at F	POR	'1' = Bit is set	JIL	0' = Bit is cle	ared	x = Bit is unkno	own	
bit 15	Unimpleme	nted: Read as '0)'					
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits					
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)				
	•							
	•							
	001 = Interrupt is priority 1							
	000 = Interrupt source is disabled							
bit 11	Unimpleme	nted: Read as ')' 		11 I.11			
DIT 10-8	111 = Intern	Output Compa upt is priority 7 (k	re Channel 1	Interrupt Prior	ity bits			
	•		lightest phone	ly interrupt)				
	•							
	• 001 = Intern	unt is priority 1						
	000 = Intern	upt source is disa	abled					
bit 7	Unimpleme	nted: Read as '0)'					
bit 6-4	IC1IP<2:0>:	Input Capture C	hannel 1 Inte	errupt Priority b	its			
	111 = Interr	upt is priority 7 (ł	nighest priorit	ty interrupt)				
	•							
	•							
	001 = Interr	upt is priority 1	ablad					
hit 2		upt source is disa	ableu					
bit 2-0		- Evternal Interr	, unt 0 Priority	hite				
511 2-0	111 = Intern	upt is priority 7 (h	niahest priorit	v interrupt)				
	•	aptio priority i (i	g. loot p.loin	.,				
	•							
	001 = Interr	upt is priority 1						
	000 = Interr	upt source is disa	abled					

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—		DMA1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>				U1TXIP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimpleme	nted: Read as '	0'				
bit 10-8	DMA1IP<2:	0>: DMA Chann	el 1 Data Tra	Insfer Complete	e Interrupt Priori	ty bits	
	111 = Interrupt is priority 7 (highest priority interrupt)						
	•						
	•						
	001 = Intern	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	AD1IP<2:0>	ADC1 Convers	sion Complet	te Interrupt Prio	rity bits		
	111 = Interre	upt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	U1TXIP<2:0	>: UART1 Trans	smitter Interr	upt Priority bits			
	111 = Interr	upt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1					
	000 = Interr	upt source is dis	abled				

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—		ILF	<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0)>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknow	'n
bit 15-12	Unimplemen	ted: Read as 'd)'				
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits			
	1111 = CPU	interrupt priority	/ level is 15				
	•						
	•						
	0001 = CPU	interrupt priority	/ level is 1				
	0000 = CPU	interrupt priority	/ level is 0				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-0	VECNUM<6:	D>: Vector Num	ber of Pendir	ng Interrupt bit	S		
	0111111 = Ir	terrupt vector p	pending is nur	mber 135			
	•						
	•						
	0000001 = Ir	iterrupt vector p	pending is nur	mber 9			
	0000000 = Ir	iterrupt vector p	pending is nur	mber 8			

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A oscillator system provides the following:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- **2:** If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- 3: The term, FP refers to the clock source for all the peripherals, while FcY refers to the clock source for the CPU. Throughout this document FP and FcY are used interchangeably, except in the case of Doze mode. FP and FcY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	SPI1MD: SPI1 Module Disable bit
	1 = SPI1 module is disabled
	0 = SPI1 module is enabled
bit 2	C2MD: ECAN2 Module Disable bit
	1 = ECAN2 module is disabled
	0 = ECAN2 module is enabled
bit 1	C1MD: ECAN1 Module Disable bit
	1 = ECAN1 module is disabled
	0 = ECAN1 module is enabled
bit 0	AD1MD: ADC1 Module Disable bit ⁽¹⁾
	1 = ADC1 module is disabled
	0 = ADC1 module is enabled

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTAM	_		—	FAEN4	FAEN3	FAEN2	FAEN1
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-8	FAOVxH<4:1	>:FAOVxL<4:	1>: Fault Inpu	t A PWM Overi	ride Value bits		
	1 = The PWN	1 output pin is c	lriven active o	n an external F	ault input ever	nt	
		l output pin is c	iriven inactive	on an external	Fault input eve	ent	
bit /	FLIAM: Fault	t A Mode bit					
	1 = The Fault 0 = The Fault	: A input pin fur : A input pin late	ctions in the C	by cle-by-Cycle	mode ates programm	ed in FLTACON	l<15:8>
bit 6-4	Unimplemen	ted: Read as '	0'	•	1 0		
bit 3	FAEN4: Fault	t Input A Enable	e bit				
	1 = PWM4H/I	PWM4L pin pai	r is controlled	by Fault Input	A		
	0 = PWM4H/	PWM4L pin pai	r is not contro	lled by Fault In	put A		
bit 2	FAEN3: Fault	t Input A Enable	e bit				
	1 = PWM3H/	PWM3L pin pai	r is controlled	by Fault Input	A		
	0 = PWM3H/	PWM3L pin pai	r is not contro	lled by Fault In	put A		
bit 1	FAEN2: Fault	t Input A Enable	e bit				
	1 = PWM2H/ 0 = PWM2H/	PWM2L pin pai PWM2L pin pai	r is controlled r is not contro	by Fault Input lled by Fault In	A put A		
bit 0	FAEN1: Fault	t Input A Enable	e bit				
	1 = PWM1H/	PWM1L pin pai	r is controlled	by Fault Input	A		
	0 = PWM1H/	PWM1L pin pai	r is not contro	lled by Fault In	put A		

REGISTER 16-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER

REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0 F15BF	R/W-0 P<3:0>	R/W-0	R/W-0	R/W-0 F14F	R/W-0	R/W-0
F15BF	?<3:0>			F14F	30-3.0>	
				1 1 16	-0.0~	
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F13BF	?<3:0>			F12E	3P<3:0>	
						bit 0
R = Readable bit W = Writable bit			U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at POR '1			'0' = Bit is clea	ared	x = Bit is unkr	nown
F15BP<3:0> 1111 = Filter 1110 = Filter • • 0001 = Filter	: RX Buffer Wrii hits received in hits received in hits received in	tten when Fil RX FIFO bu RX Buffer 1 RX Buffer 1	ter 15 Hits bits ıffer 4			
0000 = Filter F14BP<3:0> 1111 = Filter 1110 = Filter 0001 = Filter 0000 = Filter	hits received in RX Buffer Writ hits received in hits received in hits received in hits received in	I RX Buffer 0 Iten when Fil I RX FIFO bu I RX Buffer 1 I RX Buffer 1	ter 14 Hits bits ıffer 4			
F13BP<3:0> 1111 = Filter 1110 = Filter • • • • • • • • • • • • • • • • • • •	: RX Buffer Writ hits received in hits received in hits received in hits received in	tten when Fil RX FIFO bu RX Buffer 1 RX Buffer 1 RX Buffer 1	ter 13 Hits bits ıffer 4			
F12BP<3:0> 1111 = Filter 1110 = Filter • • 0001 = Filter 0000 = Filter	: RX Buffer Writ hits received in hits received in hits received in hits received in	tten when Fil RX FIFO bu RX Buffer 1 RX Buffer 1 RX Buffer 1 RX Buffer 0	ter 12 Hits bits ıffer 4			
	R/W-0 F13BF F13BP<3:0> 1111 = Filter 1110 = Filter 0001 = Filter 0001 = Filter 0000 = Filter F14BP<3:0> 1111 = Filter 1110 = Filter 0001 = Filter 0000 = Filter F13BP<3:0> 1111 = Filter 1110 = Filter 0001 = Filter 0000 = Filter	R/W-0 R/W-0 F13BP<3:0> Dit W = Writable OR '1' = Bit is set F15BP<3:0>: RX Buffer Writ 111 = Filter hits received in 1110 = Filter hits received in 0001 = Filter hits received in 0001 = Filter hits received in 0001 = Filter hits received in 111 = Filter hits received in 0001 = Filter hits received in 110 = Filter hits received in 0001 = Filter hits received in 1110 = Filter hits received in 0001 = Filter hits received in 00001 = Filter hits receiv	R/W-0 R/W-0 R/W-0 F13BP<3:0> bit W = Writable bit OR '1' = Bit is set F15BP<3:0>: RX Buffer Written when Fil 1111 = Filter hits received in RX FIFO bu 110 = Filter hits received in RX Buffer 1 • • 0001 = Filter hits received in RX Buffer 1 • • 0001 = Filter hits received in RX Buffer 1 • • 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 0 F14BP<3:0>: RX Buffer Written when Fil 1111 = Filter hits received in RX Buffer 1 • <	R/W-0 R/W-0 R/W-0 F13BP<3:0> Dit W = Writable bit U = Unimplem OR '1' = Bit is set '0' = Bit is clear F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits 111 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits 111 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 14 . . . 0	RW-0 R/W-0 R/W-0 R/W-0 F13BP<3:0> F12E Dit W = Writable bit U = Unimplemented bit, read OR '1' = Bit is set '0' = Bit is cleared F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 0 F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits 1111 = Filter hits received in RX Buffer 0 F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits 1111 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 14 .	RW-0 RW-0 R/W-0 R/W-0 R/W-0 F13BP<3:0> F12BP<3:0> F12BP<3:0> Dott W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 F13BP<3:0>: RX Buffer Written when Filter 14 Hits bits 1111 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 0 F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits 1111 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX Buffer 0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits 1111 = Filter hits received in RX Buffer 1 0001 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size bits x11 = No boot program Flash segment Boot space is 1K IW less VS: 110 = Standard security; boot program Flash segment starts at end of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at end of VS, ends at 0007FEh Boot space is 4K IW less VS: 101 = Standard security; boot program Flash segment starts at end of VS, ends at 0017FEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh 000 = Standard security; boot program Flash segment starts at end of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at end of VS, ends at 003FFEh
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection bits 11 = No boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection bit 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 23-2: CONFIGURATION BITS DESCRIPTION

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	15 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

NOTES:

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN NOM MAX		
Number of Leads	N	100		
Lead Pitch	е	0.50 BSC		
Overall Height	А	-	—	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E	16.00 BSC		
Overall Length	D	16.00 BSC		
Molded Package Width	E1	14.00 BSC		
Molded Package Length	D1	14.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B