

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc506a-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Special MCU Features

The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB), and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic, which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).

- 2. Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).
- 3. Bit 39 Catastrophic Overflow:

The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- 1. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation"**). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

4.2 Data Address Space

The dsPIC33FJXXXMCX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE 4-37: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS	Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		T4IP<2:0>		_		OC4IP<2:0>				
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		OC3IP<2:0>				DMA2IP<2:0>				
bit 7							bit 0			
Lagand										
R = Readable	hit	W = Writable I	hit	II = I Inimple	mented hit re	ad as 'O'				
-n = Value at F	POR	'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is cle}$	eared	x = Bit is unkno	wn			
				0 Ditio dit			////			
bit 15	Unimpleme	nted: Read as '0)'							
bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits										
	111 = Interr	upt is priority 7 (ł	nighest priorit	ty interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								
	000 = Interr	upt source is disa	abled							
bit 11	Unimpleme	nted: Read as '0)'							
bit 10-8	OC4IP<2:0>	Output Compa 	re Channel 4	Interrupt Prior	rity bits					
	111 = Intern •	upt is priority 7 (r	lignest priori	ty interrupt)						
	•									
	•									
	001 = Intern	upt is priority 1 upt source is disa	abled							
bit 7	Unimpleme	nted: Read as '()'							
bit 6-4	OC3IP<2:0>	: Output Compa	re Channel 3	Interrupt Prior	itv bits					
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)	,					
	•									
	•									
	001 = Interr	upt is priority 1								
	000 = Interr	upt source is disa	abled							
bit 3	Unimpleme	nted: Read as '0)'							
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tra	nsfer Complete	e Interrupt Pric	prity bits				
	111 = Intern	upt is priority 7 (r	highest priorit	ty interrupt)						
	•									
	•									
	001 = Intern	upt is priority 1	ahled							
	555 - int o n		20100							

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

	P 4	.			D 44/							
0-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y					
		COSC<2:0>		—		NOSC<2:0>(-)	1.11.0					
DIT 15							DIT 8					
R/W-0) U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0					
CLKLO	СК —	LOCK	_	CF		LPOSCEN	OSWEN					
bit 7							bit 0					
Legend:		y = Value set f	rom Configur	ation bits on P	OR							
R = Reada	able bit	W = Writable I	oit	U = Unimplei	mented bit, rea	id as '0'						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimpleme	nted: Read as 'd)'									
bit 14-12	COSC<2:0>	: Current Oscilla	tor Selection	bits (read-only	')							
510 11 12	111 = Fast F	RC oscillator (FR	C) with Divid	e-hv-N	/							
	110 = Fast F	RC oscillator (FR	C) with Divid	e-by-16								
	101 = Low-F	Power RC oscilla	tor (LPRC)	<i>c </i>								
	100 = Seco r	ndary oscillator (Sosc)									
	011 = Prima	ry oscillator (XT,	HS, EC) with	1 PLL								
	010 = Prima	010 = Primary oscillator (XT, HS, EC)										
	001 = Fast F 000 = Fast F	001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL) 000 = Fast RC oscillator (FRC)										
bit 11	Unimpleme	nted: Read as 'd)'									
bit 10-8	NOSC<2:0>	: New Oscillator	Selection bits	_S (2)								
	111 = Fast F	RC oscillator (FR	C) with Divid	e-by-N								
	110 = Fast F	RC oscillator (FR	C) with Divid	e-by-16								
	101 = Low-F	Power RC oscilla	tor (LPRC)									
	100 = Secor	idary oscillator (SOSC)									
	011 - Fiina 010 = Prima	ry oscillator (XT,	HS EC) with	IFLL								
	001 = Fast F	RC Oscillator (FF	RC) with Divid	le-by-N and Pl	L (FRCDIVN	+ PLL)						
	000 = Fast F	RC oscillator (FR	C)	- ,	, -	,						
bit 7	CLKLOCK:	Clock Lock Enat	ole bit									
	1 = If(FCKS)	SM0 = 1), then cl	ock and PLL	configurations	are locked. If	(FCKSM0 = 0), th	nen clock and					
	PLL con	figurations may	be modified.			م مانان م ما						
bit 6		nd PLL selection	s are not lock	ked; configurat	ions may be m	loaifiea						
bit 5		Lock Status bit (, road only)									
DIL 5	1 - Indicato	s that PLL is in l	neau-only)	art un timor is	satisfied							
	0 = Indicate	s that PLL is out	of lock, start	-up timer is in i	progress or PL	L is disabled						
bit 4	Unimpleme	nted: Read as '()'		5							
bit 3	CF: Clock Fa	CF: Clock Fail Detect bit (read/clear by application)										
-	1 = FSCM h	as detected cloc	k failure	/								
	0 = FSCM h	as not detected	clock failure									
Note 1	Writes to this roai	star require an u	nlock sequer	nce Refer to C	ection 7 "Oo	cillator" (D9704)	R6) in the					
NOLE I.	"dsPIC33F/PIC24	H Family Refere	ence Manual"	for details.								
2:	Direct clock switch This applies to clo	nes between any ock switches in ei	primary oscil	lator mode with . In these insta	n PLL and FRC nces, the appli	PLL modes are n cation must switch	ot permitted. to FRC					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register is reset only on a Power-on Reset (POR).

mode as a transition clock source between the two PLL modes.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>				
bit 15							bit 8			
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PLLPO	ST<1:0>	—		F	PLLPRE<4:)>				
bit 7							bit 0			
Lenende			fram Canfing	ration bits on DOI						
D - Doodoblo	hit	y = value set	hit	allon us off FOR						
		'1' = Rit is set	DIL	0° – Onimpleme	od	x = Bit is unkn	014/D			
	FOR	I – DILIS SEL	U = DILIS SEL U = DILIS CIERIEO X = BIT IS UF							
bit 15	ROI: Recove	r on Interrupt bi	t							
	1 = Interrupt	s will clear the [DOZEN bit ar	nd the processor (clock/periph	eral clock ratio is	set to 1:1			
	0 = Interrupt	s have no effect	t on the DOZ	EN bit	F - F					
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction	Select bits						
	000 = Fcy/1									
	001 = FCY/2									
	010 = FCY/4 011 = FCY/8	(default)								
	100 = Fcy/16	5								
	101 = FCY/32	2								
	110 = FCY/64 111 = FCY/12	+ 28								
bit 11	DOZEN: DO	ZE Mode Enabl	e bit ⁽¹⁾							
	1 = DOZE<2	2:0> field specifi	es the ratio b	between the perip	heral clocks	and the processo	or clocks			
	0 = Process	or clock/periphe	eral clock ratio	o forced to 1:1						
bit 10-8	FRCDIV<2:0	Internal Fast	RC Oscillato	or Postscaler bits						
	000 = FRC d	livide by 1 (defa	ult)							
	001 = FRC d	livide by 2 livide by 4								
	011 = FRC d	livide by 8								
	100 = FRC d	livide by 16								
	101 = FRC d	livide by 32								
	110 = FRC d	livide by 64								
bit 7-6	PLLPOST<1	:0>: PLL VCO (Output Divide	er Select bits (also	o denoted a	s 'N2', PLL postsc	aler)			
	00 = Output/	2		·		•	,			
	01 = Output/	4 (default)								
	10 = Reserve	ed 8								
bit 5		u ted: Read as 'i	ר י							
bit 4-0	PI I PRF<4.	>: PLI Phase I	Detector Inni	it Divider bits (als	o denoted a	is 'N1' PLL presc	aler)			
Sit 1 0	00000 = Inp	ut/2 (default)								
	00001 = Inp	ut/3								
	•									
	•									
	• 11111 = Inni	ut/33								

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

NOTES:

22.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

22.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported.
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

A block diagram of the ADC is shown in Figure 22-1.

22.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on ADC module (ADxCON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit
 - b) Select ADC interrupt priority

22.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM Buffer Pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	<1:0>				
bit 15	·					•	bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0, HC,HS	R/C-0, HC, HS				
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE				
bit 7							bit 0				
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit	C= Clear	able bit				
R = Readable	bit	W = Writable b	it	U = Unimple	mented bit, rea	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15 ADON: ADC Operating Mode bit											
	1 = ADC model = ADC is or	dule is operating ff									
bit 14	Unimplemented: Read as '0'										
bit 13	ADSIDL: Stor	o in Idle Mode bi	t								
	1 = Discontin	nue module oper	ation when dev	vice enters Idle	e mode						
	0 = Continue module operation in Idle mode										
bit 12	ADDMABM:	ADDMABM: DMA Buffer Build Mode bit									
	1 = DMA buff	fers are written ir	the order of co	nversion. The	module will pro	vide an address	s to the DMA				
	channel t	hat is the same	as the address	used for the n	ion-DMA stand-	-alone butter de a scatter/gat	ther address				
	to the DN	IA channel, bas	ed on the index	of the analog	input and the s	ize of the DMA	buffer				
bit 11	Unimplemen	ted: Read as '0'									
bit 10	AD12B: 10-B	it or 12-Bit Oper	ation Mode bit								
	1 = 12-bit, 1- 0 = 10-bit, 4-	channel ADC op channel ADC op	peration peration								
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits								
	For 10-Bit Op	eration:									
	11 = Signed f	ractional (Dout al (Dout = dddd	= sddd dddd	dd00 0000,	where $s = .NO$	I.d<9>)					
	01 = Signed i	nteger (DOUT =	ssss sssd da	idd dddd, wh	nere s = .NOT.d	<9>)					
	00 = Integer (DOUT = 0000 0	0dd dddd dd	dd)							
	For 12-Bit Op	eration:		1111 0000							
	11 = Signed f 10 = Fraction	ractional (DOUT al (Dout = dddd	= saaa aaaa I dddd dddd	aaaa 0000, '	where s = .NO	1.0<11>)					
	01 = Signed I	nteger (Dou⊤ =	ssss sddd do	ddd dddd, wl	nere s = .NOT.d	l<11>)					
	00 = Integer (DOUT = 0000 d	ddd dddd dd	dd)							
bit 7-5	SSRC<2:0>:	Sample Clock S	ource Select bit	ts							
	111 = Interna	al counter ends s	ampling and st	arts conversio	n (auto-convert	:)					
	101 = Reserv	/ed									
	100 = GP tim	er (Timer5 for A	DC1, Timer3 fo	r ADC2) comp	oare ends samp	ling and starts	conversion				
	011 = MPWN	I interval ends s	ampling and sta		n Daro ondo como	ling and starts	convorsion				
	010 - Gr (mer) (mer) for ADC1, mere for ADC2 (compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion										
	000 = Clearir	ng sample bit en	ds sampling an	d starts conve	rsion						
bit 4	Unimplemen	ted: Read as '0'									

REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)

Bit Field	Register	RTSP Effect	Description
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-Speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register.)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	FWDT	Immediate	PLL Lock Enable bit 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDT- POST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1

TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 26-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteris	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions		
BO10	VBOR	BOR Event on VDD Trans	2.40	-	2.55	V	Vdd		
Nata 4									

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	RACTER	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +425^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	<pre>≤ IA ≤ +125°C for Extended Conditions</pre>	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	—	E/W	—	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	—		Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	—	10	—	mA	—	
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, see Note 2	
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +150°C, see Note 2	
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, see Note 2	
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +150°C, see Note 2	
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, see Note 2	
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +150°C, see Note 2	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le Ta \le +125^{\circ}C$ for Extended								
Param.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)	

AC CHA	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscP	Maximum SCK Frequency			15	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	_	—		ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_	—		ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—		

TABLE 26-33: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-20: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

AC CH	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$							
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions				
	Clock Parameters										
AD50b	TAD	ADC Clock Period	76	—		ns	—				
AD51b	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—				
	Conversion Rate										
AD55b	tCONV	Conversion Time	_	12 Tad			—				
AD56b	FCNV	Throughput Rate	_		1.1	Msps	—				
AD57b	TSAMP	Sample Time	2 Tad				—				
		Timin	g Param	eters							
AD60b	tPCS	Conversion Start from Sample Trigger ^(1,2)	2.0 TAD	_	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected				
AD61b	tPSS	Sample Start from Setting Sample (SAMP) bit ^(1,2)	2.0 Tad	—	3.0 Tad		—				
AD62b	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(1,2)	—	0.5 TAD	_	_	_				
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,3)	—	_	20	μS	—				

TABLE 26-47: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 26-48: DMA READ/WRITE TIMING REQUIREMENTS

АС СН/	ARACTERISTICS	Standard (unless of Operating	Operati otherwise tempera	ng Cond e stated) ature -4 -4	itions: : 0°C ≤ T 0°C ≤ T4	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended	
Param No.	Characteristic	Min. Typ Max. Units Conditions					
DM1a	DMA Read/Write Cycle Time	_		2 Tcy	ns	This characteristic applies to dsPIC33FJ256MCX06A/X08A/X10A devices only.	
DM1b	DMA Read/Write Cycle Time	—	—	1 Тсү	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256MCX06A/X08A/X10A.	

TABLE 27-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Characteristic Min Typ Max Units Conditions					
	LPRC @ 32.768 kHz ⁽¹⁾					
HF21	LPRC $-70^{(2)}$ — $+70^{(2)}$ % $-40^{\circ}C \le TA \le +150^{\circ}C$ —					

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 27-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28			ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

29.1 Package Marking Information (Continued)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1mm)

Legend	: XXX Y YY WW NNN (63) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

INDEX

1	۱.
r	۰.
-	-

A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC1 Register Map	
ADC2 Register Map	
Alternate Vector Interrupt Table (AIVT)	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Barrel Shifter	33
Bit-Reversed Addressing	66
Example	67
Implementation	
Sequence Table (16-Entry)	67
Block Diagrams	
16-Bit Timer1 Module	165
A/D Module	246
Connections for On-Chip Voltage Regulator	264
Device Clock (Oscillator)	143
Device Clock (PLL)	145
DSP Engine	30
dsPIC33F	
dsPIC33F CPU Core	
ECAN Technology	218
I ² C Module	204
Input Capture	173
Output Compare	175
Programmer's Model	
PWM Module	180
Quadrature Encoder Interface	193
Reset System	
Shared Port Structure	161
SPI Module	197
Timer2 (16-Bit)	169
Timer2/3 (32-Bit)	168
Top Level System Architecture Using Dedicated	
Transaction Bus	134
UART Module	211
Watchdog Timer (WDT)	265
Brown-out Reset (BOR)	264
С	
C Compilers	
	276
Clock Switching	270
Enabling	151
Soquence	151
Codo Examples	101
Erasing a Program Memory Page	76
Initiating a Programming Sequence	
Loading Write Buffers	

Code Protection	259, 266
CodeGuard Security	259, 266
Configuration Bits	259
Configuration Register Map	259
Configuring Analog Port Pins CPU	162
Control Register	
CPU Clocking System	144
PLL	144
Selection	144
Sources	144
Customer Change Notification Service	369
Customer Notification Service	369
Customer Support	369
D	
Data Accumulators and Adder/Subtracter	31
Data Space Write Saturation	33
Overflow and Saturation	31
Round Logic	32
Write Back	32
Data Address Space	37
Alignment	37
Memory Map for dsPIC33FJXXXMCX06A/X0	8A/X10A
Devices with 16-Kbyte RAM	39

Graphs and Tables 339 Doze Current (IDOZE)..... 285, 331 High Temperature...... 330 I/O Pin Input Specifications 286 Operating Current (IDD) 282 Operating MIPS vs. Voltage 330 Program Memory...... 289 Temperature and Voltage...... 330

DMA Register Map53DMAC Registers135DMAXCNT135DMAxCON135DMAxPAD135DMAxREQ135DMAxSTA135DMAxSTB135DSP Engine29Multiplier31

DC and AC Characteristics

DMA Module