

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc506a-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31	I	Analog	Analog input channels.
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	 0	ST/CMOS —	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0	—	ECAN1 bus transmit pin.
C2RX	I	ST	ECAN2 bus receive pin.
C2TX	0	—	ECAN2 bus transmit pin.
PGED1	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	I	ST	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2		ST	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	1/0	SI	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	1	SI	Clock input pin for Programming/Debugging Communication Channel 3.
IC1-IC8	I	ST	Capture Inputs 1 through 8.
INDX QEA		ST ST	Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/
			gate input in Timer mode.
QEB	I	ST	Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/
UPDN	Ο	CMOS	Position up/down counter direction state.
INT0	I	ST	External Interrupt 0.
INT1	I	ST	External Interrupt 1.
INT2	I	ST	External Interrupt 2.
INT3	I	ST	External Interrupt 3.
INT4	I	ST	External Interrupt 4.
FLTA	I	ST	PWM Fault A input.
FLTB	I	ST	PWM Fault B input.
PWM1L	0	—	PWM1 low output.
PWM1H	0	_	PWM1 high output.
PWM2L	0	—	PWM2 low output.
PWM2H	0	—	PWM2 high output.
PWW3L	0	_	PWM3 IOW OUTPUT.
PWWJ	0	_	PWM3 high output
PWM4H	0		PWM4 high output
	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device
	1	ST	Compare Fault A input (for Compare Chappels 1, 2, 3 and 4)
OCEB		ST	Compare Fault B input (for Compare Channels 5, 6, 7 and 8)
0C1-0C8	Ö	_	Compare outputs 1 through 8.
0901	1	ST/CMOS	Oscillator crystal input ST huffer when configured in PC mode:
OSC2	I/O		CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
			mode. Optionally functions as CLKO in RC and EC modes.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output Ana ST = Schmitt Trigger input with CMOS levels O =

Analog = Analog input ls O = Output

3.3 Special MCU Features

The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

TABLE 4-9: 8-OUTPUT PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	—	PTSIDL	—	—	—	—	—		PTOP	S<3:0>		PTCKF	'S<1:0>	PTMO	D<1:0>	0000 0000 0000 0000
P1TMR	01C2	PTDIR						F	PWM Time	r Count Val	lue Registe	er						0000 0000 0000 0000
P1TPER	01C4	—						I	PWM Time	Base Peri	od Registe	er						0000 0000 0000 0000
P1SECMP	01C6	SEVTDIR						PW	/M Special	Event Com	Event Compare Register							0000 0000 0000 0000
PWM1CON1	01C8	_	_	_	_	PMOD4	PMOD3	PMOD2	PMOD1	PEN4H	PEN3H	PEN2H	PEN1H	PEN4L	PEN3L	PEN2L	PEN1L	0000 0000 1111 1111
PWM1CON2	01CA	_	_	_	_		SEVOF	°S<3:0>		_	_	· IUE OSYNC UDI					UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS	6<1:0>			DTB	<5:0>			DTAPS	S<1:0>			DTA	<5:0>			0000 0000 0000 0000
P1DTCON2	01CE	_	_	_	_	_	_	_	_	DTS4A	DTS4I	DTS3A	DTS3I	DTS2A DTS2I DTS1A DTS1			DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	_	_	_	FAEN4	FAEN3	FAEN2	FAEN1	0000 0000 0000 0000
P1FLTBCON	01D2	FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM	_	_	_	FBEN4	FBEN3	FBEN2	FBEN1	0000 0000 0000 0000
P10VDCON	01D4	POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 0000 0000
P1DC1	01D6							PW	I Duty Cyc	le #1 Regi	ster							0000 0000 0000 0000
P1DC2	01D8	PWM Duty Cycle #2 Register												0000 0000 0000 0000				
P1DC3	01DA	PWM Duty Cycle #3 Register													0000 0000 0000 0000			
P1DC4	01DC							PW	I Duty Cyc	le #4 Regi	ster							0000 0000 0000 0000

Legend: u = uninitialized bit, - = unimplemented, read as '0'

All

TABLE 4-23: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33FJXXXMC708A/710A DEVICES File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 2 Bit 11

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset
C2CTRL1	0500	_	_	CSIDL	ABAT	_	RI	EQOP<2:0	>	OPN	MODE<2:0	>		CANCAP	_	_	WIN	0480
C2CTRL2	0502	—	—	—	—	—	_		—	_	—	—		C	ONCNT<4:0)>		0000
C2VEC	0504	—	—	—		FI	LHIT<4:0>			_				ICODE<6:	0>			0000
C2FCTRL	0506	C	DMABS<2:0	>	_	—	_	_	—	—	—	—		FSA<4:0>				0000
C2FIFO	0508	—	—			FBP<	5:0>			_	—			FNRE	3<5:0>			0000
C2INTF	050A	—	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	- FIFOIF RBOVIF RBIF TBIF				0000	
C2INTE	050C	—	_	—	_	—	_	_	—	IVRIE	WAKIE	ERRIE	—	- FIFOIE RBOVIE RBIE TBIE				0000
C2EC	050E				TERRCN	T<7:0>							RERRCI	NT<7:0>				0000
C2CFG1	0510	—	—	—	—	—	_		—	SJW<	1:0>			BRP	<5:0>			0000
C2CFG2	0512	—	WAKFIL	—	—	—	SE	G2PH<2:0)>	SEG2PHTS	SAM	SI	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	K<1:0>	F6MS	K<1:0>	F5MSI	< <1:0>	F4MS	K<1:0>	F3MSK-	<1:0>	F2MS	<1:0> F1MSK<1:0> F0MSK<1:0>				0000	
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	<1:0> F9MSK<1:0> F8MSK<1:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33FJXXXMC708A/710A DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	e definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	TX1PRI<1:0> TXEN0 TX TX TX TX ABAT0 LARB0 ERR0 F		TX REQ0	RTREN0	TX0PR	l<1:0>	0000			
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PR	l<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PR	l<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PRI<1:0>		TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PR	l<1:0>	xxxx
C2RXD	0540	ECAN2 Recieved Data Word xxxx												xxxx				
C2TXD	0542							EC	CAN2 Trans	mit Data We	ord							xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25:ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1FOR dsPIC33FJXXXMC708A/710A DEVICES (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF11EID	056E				EID<	15:8>							EID<7:0>					xxxx
C2RXF12SID	0570				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF12EID	0572				EID<	15:8>					EID<7:0>						xxxx	
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		_	- EXIDE - EID<17:16>				xxxx
C2RXF13EID	0576				EID<	15:8>							EID	<7:0>				xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF15SID	057C				SID<	10:3>					SID<2:0>		_	EXIDE		EID<	17:16>	xxxx
C2RXF15EID	057E				EID<	15:8>					EID<7:0>						xxxx	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14		_	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA ⁽²⁾	06C0	ODCA15	ODCA14		_	_	—		—	—	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is as follows:

- 1. Read eight rows of program memory (512 instructions) and store it in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5 using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCC	ON for block erase operation		
MOV	#0x4042, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Init pointer	r to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TBLWTL	W0, [W0]	;	Set base address of erase block
DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		_		OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC2IP<2:0>				DMA0IP<2:0>	
bit 7							bit 0
Logondy							
R - Readable	hit	W – Writable k	nit	II – I Inimpler	mented hit re	ad as 'O'	
-n = Value at P	OR	'1' = Bit is set	JIL	0 – Onimpler 0' = Bit is cle	henieu bii, re ared	x = Bit is unkno	nwn
					arcu		
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	OC2IP<2:0>	•: Output Compa	re Channel 2	Interrupt Prior	ity bits		
	•	upt is priority 7 (r	lignest priorit	y interrupt)			
	•						
	•	unt in unionity of					
	001 = Interror 000	upt is priority 1	abled				
bit 7	Unimpleme	nted: Read as '0)'				
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	errupt Priority b	its		
	111 = Interru	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0					
bit 2-0	DMA0IP<2:0	J>: DMA Channe	el 0 Data Trai	nsfer Complete	Interrupt Pric	ority bits	
	•		lighest phone	y menupi)			
	•						
	• 001 = Interr	int is priority 1					
	000 = Interru	upt source is disa	abled				

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 IC7IP<2:0> IC8IP<2:0> _ ____ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 AD2IP<2:0> INT1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		OC3IP<2:0>				DMA2IP<2:0>	
bit 7							bit 0
Lagand							
R = Readable	hit	W = Writable I	hit	II = I Inimple	mented hit re	ad as 'O'	
-n = Value at F	POR	'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is cle}$	eared	x = Bit is unkno	wn
				0 Ditio dit			////
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (ł	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	OC4IP<2:0>	Output Compa 	re Channel 4	Interrupt Prior	rity bits		
	111 = Intern •	upt is priority 7 (r	lignest priori	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '()'				
bit 6-4	OC3IP<2:0>	: Output Compa	re Channel 3	Interrupt Prior	itv bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)	,		
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0)'				
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tra	nsfer Complete	e Interrupt Pric	prity bits	
	111 = Intern	upt is priority 7 (r	highest priorit	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1	ahled				
	555 - int o n		20100				

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

0-0	rt/VV-1	C11D-22:05	K/W-U	0-0	rt/VV-1		rt/ VV-U
		UTIPS2.02		—		UTRAIPS2:0>	L:+ 0
DIL 13							DIL 8
0-0	R/W-1		R/W-0	0-0	r./ vv- i		R/ W-U
		3F121F \2.02		_		3F12E1F \2.02	bit 0
							DIL U
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn
	-						
bit 15	Unimpleme	ented: Read as '0)'				
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Priori	ty bits			
	111 = Interr	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	C1RXIP<2:	0>: ECAN1 Rece	ive Data Rea	ady Interrupt Pr	riority bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	ented: Read as '0)'				
bit 6-4	SPI2IP<2:0	>: SPI2 Event Int	errupt Priorit	y bits			
	111 = Interr	rupt is priority 7 (r	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1	phlod				
hit 2		upt source is usa	ableu				
bit 2 0		neu. Redu as (n .: SDI2 Error In	, torrunt Priori	ty bite			
DIL 2-0	$3 \Gamma I Z \Sigma I \Gamma < Z$.	\mathbf{v} . SFIZ EIIUI III	nichest priorit	v interrunt)			
	•		iignest phone	y menupt)			
	•						
	• 001 - Interr	unt is priority 4					
	000 = Interr	upt is priority 1 upt source is disa	abled				
		,					

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

REGISTER 7-26: IPC	C11: INTERRUPT PRIORITY	CONTROL REGISTER 11
--------------------	-------------------------	----------------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T6IP<2:0>		—		DMA4IP<2:0>	
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	—		_		OC8IP<2:0>	
bit 7							bit 0
]
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			_				
bit 15	Unimpleme	nted: Read as ')'				
bit 14-12	T6IP<2:0>:	Timer6 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8	DMA4IP<2:0	0>: DMA Channe	el 4 Data Trai	nsfer Complete	Interrupt Priori	ty bits	
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 7-3	Unimpleme	nted: Read as ')'				
bit 2-0	OC8IP<2:0>	: Output Compa	re Channel 8	Interrupt Prior	ity bits		
	111 = Interru	upt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	abled				

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ıd as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CNT<	9:8> (2)
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT<7:0> ⁽²⁾							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 13. "Output Compare" (DS70209), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

dsPIC33FJXXXMCX06A/X08A/X10A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTAM	_		—	FAEN4	FAEN3	FAEN2	FAEN1
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-8	FAOVxH<4:1	>:FAOVxL<4:	1>: Fault Inpu	t A PWM Overi	ride Value bits		
	1 = The PWN	1 output pin is c	lriven active o	n an external F	ault input ever	nt	
		l output pin is c	iriven inactive	on an external	Fault input eve	ent	
bit /	FLIAM: Fault	t A Mode bit					
	1 = The Fault 0 = The Fault	: A input pin fur : A input pin late	ctions in the C	l pins to the st	mode ates programm	ed in FLTACON	l<15:8>
bit 6-4	Unimplemen	ted: Read as '	0'	•	1 0		
bit 3	FAEN4: Fault	t Input A Enable	e bit				
	1 = PWM4H/I	PWM4L pin pai	r is controlled	by Fault Input	A		
	0 = PWM4H/	PWM4L pin pai	r is not contro	lled by Fault In	put A		
bit 2	FAEN3: Fault	t Input A Enable	e bit				
	1 = PWM3H/	PWM3L pin pai	r is controlled	by Fault Input	A		
	0 = PWM3H/F	PWM3L pin pai	r is not contro	lled by Fault In	put A		
bit 1	FAEN2: Fault	t Input A Enable	e bit				
	1 = PWM2H/ 0 = PWM2H/	PWM2L pin pai PWM2L pin pai	r is controlled r is not contro	by Fault Input lled by Fault In	A put A		
bit 0	FAEN1: Fault	t Input A Enable	e bit				
	1 = PWM1H/	PWM1L pin pai	r is controlled	by Fault Input	A		
	0 = PWM1H/	PWM1L pin pai	r is not contro	lled by Fault In	put A		

REGISTER 16-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXMCX06A/X08A/X10A device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-Deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 20-1. The UART module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	ⁿ Symbol Characteristic Min. Typ Max. Units		Units	Conditions						
		ADC Accuracy (10-Bit Mode	e) – Meas	urement	ts with E	xternal	VREF+/VREF-			
AD20c	Nr	Resolution	1(0 data bi	ts	bits				
AD21c	INL	Integral Nonlinearity	-1.5	-	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD22c	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD23c	Gerr	Gain Error	-	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24c	EOFF	Offset Error	-	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD25c	—	Monotonicity	—	—	—	_	Guaranteed			
		ADC Accuracy (10-Bit Mode	e) – Meas) – Measurements with Internal VREF+/VREF-						
AD20d	Nr	Resolution	1(0 data bi	ts	bits	_			
AD21d	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD22d	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD23d	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD24d	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD25d	—	Monotonicity	—	—		-	Guaranteed			
		Dynamic I	Performa	nce (10-	Bit Mod	e)				
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	_			
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	—			
AD32b	SFDR	Spurious Free Dynamic Range	72	_	_	dB	_			
AD33b	Fnyq	Input Signal Bandwidth	_	_	550	kHz	—			
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits	—			

TABLE 26-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

AC CH	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
		Cloc	k Parame	ters					
AD50b	TAD	ADC Clock Period	76	—		ns	—		
AD51b	tRC	ADC Internal RC Oscillator Period	—	250	-	ns	—		
	Conversion Rate								
AD55b	tCONV	Conversion Time	_	12 Tad			—		
AD56b	FCNV	Throughput Rate	_		1.1	Msps	—		
AD57b	TSAMP	Sample Time	2 Tad				—		
		Timin	g Paramo	eters					
AD60b	tPCS	Conversion Start from Sample Trigger ^(1,2)	2.0 TAD	_	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61b	tPSS	Sample Start from Setting Sample (SAMP) bit ^(1,2)	2.0 Tad	—	3.0 Tad		—		
AD62b	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(1,2)		0.5 TAD	_	_	_		
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,3)		—	20	μS	—		

TABLE 26-47: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 26-48: DMA READ/WRITE TIMING REQUIREMENTS

АС СН/	ARACTERISTICS	Standard (unless of Operating	Operati otherwise tempera	ng Cond e stated) ature -4 -4	itions: : 0°C ≤ T 0°C ≤ T4	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended		
Param No.	Characteristic	Min. Typ Max. Units Conditions						
DM1a	DMA Read/Write Cycle Time	_		2 TCY	ns	This characteristic applies to dsPIC33FJ256MCX06A/X08A/X10A devices only.		
DM1b	DMA Read/Write Cycle Time	—	— — 1 Tcy ns			This characteristic applies to all devices with the exception of the dsPIC33FJ256MCX06A/X08A/X10A.		

DC CHAI	RACTERI	ISTICS	Standa (unles Operat	ard Ope s other ting tem	rating C wise sta perature	Conditio Ited) e -40°(Temp	ns: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for High perature	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL ≤ 1.8 mA, VDD = 3.3V See Note 1	
HDO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IoL ≤ 3.6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	Io∟ ≤ 6 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	Io∟ ≥ -1.8 mA, VDD = 3.3V See Note 1	
HDO20	Vон	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	IOL ≥ -3 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	—	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1	
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1	
			3.0	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -1.4 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See Note 1} \end{array}$	
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -3.9 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See Note 1} \end{array}$	
HDO20A	Voн1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5				$IOH \ge -7.5 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ See Note 1	
		IRC15	2.0	_	_	V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1	
			3.0	—	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	

TABLE 27-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

29.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2