

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc508a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 26.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 23.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

IADLE	4-0.				IAF													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period I	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	_	_	_	—	—	—	TGATE	TCKP	S<1:0>	—	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tim	er3 Holding	Register (fo	or 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period I	Register 2								FFFF
PR3	010E								Period I	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	_	_	_	—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116		Timer5 Holding Register (for 32-bit operations only)									xxxx						
TMR5	0118		Timer5 Register 0000															
PR4	011A								Period I	Register 4								FFFF
PR5	011C								Period I	Register 5								FFFF
T4CON	011E	TON	_	TSIDL		_		—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	_	0000
T5CON	0120	TON	_	TSIDL		_		—	—	—	TGATE	TCKP	S<1:0>	—		TCS	_	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						7	Timer7 Holdi	ing Register	(for 32-bit o	perations on	ly)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period I	Register 6								FFFF
PR7	012A								Period I	Register 7								FFFF
T6CON	012C	TON	—	TSIDL				—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T7CON	012E	TON	—	TSIDL	_			—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132						7	Timer9 Holdi	ing Register	(for 32-bit o	perations on	ly)						xxxx
TMR9	0134	Timer9 Register 01									0000							
PR8	0136	Period Register 8 FF									FFFF							
PR9	0138								Period I	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	_	_	—	—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T9CON	013C	TON	_	TSIDL				_	_	_	TGATE	TCKP	S<1:0>	_		TCS	_	0000

TABLE 4-6: TIMER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: QEI REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
QEI1CON	01E0	CNTERR	_	QEISIDL	INDX	UPDN	C	EIM<2:0)>	SWPAB	PCDOUT	TQGATE	TQCKP	S<1:0>	POSRES	TQCS	UPDN_SRC	0000 0000 0000 0000
DFLT1CON	01E2	_	_	_		-	IMV<	<1:0>	CEID	QEOUT		QECK<2:0>		_	_	-	_	0000 0000 0000 0000
POS1CNT	01E4								Po	sition Cou	nter<15:0>							0000 0000 0000 0000
MAX1CNT	01E6		Maximum Count<15:0>								1111 1111 1111 1111							

Legend: u = uninitialized bit, — = unimplemented, read as '0'

TABLE 4-11: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	—	—	_	-	—	_	_				I2C1 Rece	ive Register				0000
I2C1TRN	0202	_	_	_	_	_	_	I2C1 Transmit Register 0							OOFF			
I2C1BRG	0204	_	_	_	_	_	_	_	Baud Rate Generator Register 0							0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_		I2C1 Address Register 00							0000		
I2C1MSK	020C	_	_	_	_	_	_	I2C1 Address Mask Register 00							0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	—	_	_	—	—	_	-	-	I2C2 Receive Register							0000	
I2C2TRN	0212	_	_	_	_	_	_	_	_	I2C2 Transmit Register							OOFF	
I2C2BRG	0214	_	_	_	_	_	_	_				Baud Ra	te Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	_	_			I2C2 Address Register 0							0000	
I2C2MSK	021C	_	_		_	_	_			I2C2 Address Mask Register 0/						0000		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJXXXMCX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJXXXMCX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full, 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-38 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-38: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>					
Instruction Access	User	0		PC<22:1>		0					
(Code Execution)			0xxx xxxx x	xxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>						
(Byte/Word Read/Write)		0	xxx xxxx	XXXX XX	xx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>							
		1	xxx xxxx	xxxx xxxx xxxx xxxx							
Program Space Visibility	User	0	PSVPAG<7	<7:0> Data EA<14:0> ⁽¹⁾							
(Block Remap/Read)		0	XXXX XXXX	2	XXX XXXX XXXX XXXX						

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

6.0 RESET

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode and Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Refer to the specific peripheral or CPU Note: section of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits except for the POR bit (RCON<0>), which is set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

The status bits in the RCON register Note: should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source
Number	Number			
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	PWM – PWM Period Match
66	58	0x000088	0x000188	QEI – Position Counter Compare
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	FLTA – MCPWM Fault A
72	64	0x000094	0x000194	FLTB – MCPWM Fault B
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-	0x0001A4-	Reserved
		0x0000FE	0x0001FE	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x000008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IF	DMA4IF		OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	T6IF: Timer6	Interrupt Flag	Status bit				
	1 = Interrupt r	equest has oc	curred				
bit 14		equest has no	t occurred ata Transfer (`omplete Inter	runt Elag Status	bit	
Dit 14	1 = Interrupt r	equest has oc	curred		lupt hag otatus	DIL	
	0 = Interrupt r	equest has no	toccurred				
bit 13	Unimplemen	ted: Read as '	0'				
bit 12	OC8IF: Outpu	ut Compare Ch	annel 8 Interr	upt Flag Status	s bit		
	1 = Interrupt r	equest has oc	curred				
bit 11		It Compare Ch	annel 7 Interri	unt Elan Status	s hit		
Sit II	1 = Interrupt r	request has oc	curred	upt i lug olulu.	5 51		
	0 = Interrupt r	equest has no	t occurred				
bit 10	OC6IF: Outpu	ut Compare Ch	annel 6 Interr	upt Flag Status	s bit		
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	curred t occurred				
bit 9	OC5IF: Outpu	ut Compare Ch	annel 5 Interr	upt Flag Status	s bit		
	1 = Interrupt r	equest has oc	curred				
hit 9		equest has no	t occurred	Jag Status bit			
DILO	1 = Interrupt r	equest has oc	curred	Tay Status Dit			
	0 = Interrupt r	equest has no	t occurred				
bit 7	IC5IF: Input C	Capture Chann	el 5 Interrupt F	lag Status bit			
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	curred t occurred				
bit 6	IC4IF: Input C	Capture Chann	el 4 Interrupt F	-lag Status bit			
	1 = Interrupt r	equest has oc	curred	0			
	0 = Interrupt r	equest has no	t occurred				
bit 5	IC3IF: Input C	Capture Chann	el 3 Interrupt F	-lag Status bit			
	1 = Interrupt r 0 = Interrupt r	equest has oc equest has no	curred t occurred				
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer C	Complete Interi	rupt Flag Status	bit	
	1 = Interrupt r	equest has oc	curred				
hit 3		Event Interru	t Elag Statue	bit			
DIL J	1 = Interrupt r	request has on	curred	DIL			
	0 = Interrupt r	equest has no	t occurred				

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled

0 = Interrupt request not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8
bit 7	OC/MD	OCOND	OCSIND	0C4IVID	OCSIVID	OCZIVID	DC TVID
Dit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	IC8MD: Input	t Capture 8 Moo	lule Disable bit	t			
	1 = Input Cap	oture 8 module i	s disabled				
bit 14			s enableu Julo Disablo bit				
DIL 14	1 = Input Car	oture 7 module i	s disabled				
	0 = Input Cap	oture 7 module i	s enabled				
bit 13	IC6MD: Input	t Capture 6 Moo	lule Disable bit	t			
	1 = Input Cap	oture 6 module i	s disabled				
hit 10		Conture 5 Module I	s enabled Iulo Dischlo bit				
DIL 12	1 = Input Car	ture 5 module i	s disabled				
	0 = Input Cap	oture 5 module i	s enabled				
bit 11	IC4MD: Input	t Capture 4 Moo	lule Disable bit	t			
	1 = Input Cap	oture 4 module i	s disabled				
hit 10		ture 4 module i	s enabled Iulo Dischlo bit				
	1 = Input Car	ture 3 module i	s disabled				
	0 = Input Cap	oture 3 module i	s enabled				
bit 9	IC2MD: Input	t Capture 2 Moo	lule Disable bit	t			
	1 = Input Cap	oture 2 module i	s disabled				
h :+ 0		oture 2 module i	s enabled				
DIL 8	1 = Input Car	ture 1 module i	s disabled				
	0 = Input Cap	oture 1 module i	s enabled				
bit 7	OC8MD: Out	put Compare 8	Module Disabl	e bit			
	1 = Output C	ompare 8 modu	le is disabled				
h it C		ompare 8 modu	le is enabled	a h:t			
DILO		put Compare 4 omnare 7 modu	INIOQUIE DISADI le is disabled	e dit			
	0 = Output Co	ompare 7 modu	le is enabled				
bit 5	OC6MD: Out	put Compare 6	Module Disabl	e bit			
	1 = Output C	ompare 6 modu	le is disabled				
hit 1		ompare 6 modu	Nodule Disch	o hit			
UIL 4		omnare 5 modu	iviouule Disabl	e bil			
	0 = Output Co	ompare 5 modu	le is enabled				
	•	-					

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

REGISTER	10-3: PMD	3: PERIPHER	AL MODUL	E DISABLE C	ONTROL R	EGISTER 3	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD			—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—		—	I2C2MD	AD2MD ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14 bit 13 bit 12	T9MD: Timer 1 = Timer9 m 0 = Timer9 m T8MD: Timer 1 = Timer8 m 0 = Timer8 m T7MD: Timer 1 = Timer7 m 0 = Timer7 m T6MD: Timer 1 = Timer6 m 0 = Timer6 m	9 Module Disat nodule is disable nodule is enable 8 Module Disat nodule is disable nodule is enable 7 Module Disat nodule is enable 6 Module Disat nodule is enable	ole bit ed ole bit ed ole bit ed ole bit ed ole bit ed				
bit 11-2	Unimplemer	nted: Read as ')')				
bit 1	12C2MD: 12C 1 = 12C2 mod 0 = 12C2 mod	2 Module Disat dule is disabled dule is enabled	ble bit				
bit 0	AD2MD: AD2 1 = AD2 mod 0 = AD2 mod	2 Module Disab lule is disabled lule is enabled	le bit ⁽¹⁾				

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

16.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- Eight PWM I/O pins with four duty cycle generators
- · Up to 16-bit resolution
- 'On-the-fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

REGISTER 16-14: PxDC3: PWMx DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PDC3<15:0>: PWM Duty Cycle #3 Value bits

REGISTER 16-15: PxDC4: PWMx DUTY CYCLE REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PDC4<15:8>								
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PDC4<7:0>								
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-0 PDC4<15:0>: PWM Duty Cycle #4 Value bits

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I^2C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence.
	0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

REGISTER 2	21-6: CilNTF	F: ECAN™ IN	ITERRUPT	FLAG REGIS	STER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
	<u> </u>	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	
IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF	
bit 7							bit 0	
R = Readable	bit	W = Writable	bit		mented hit read	1 as 'O'		
-n = Value at F		$(1)^{2} = \text{Rit is set}$		$0^{\circ} = \text{Bit is cle}$	Pared	x = Rit is unkr	nwn	
		1 Dit lo oo					Iowii	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13	TXBO: Trans	mitter in Error	State Bus Off	bit				
	1 = Transmitte	er is in Bus Of	state					
h# 40		er is not in Bus	S Offisiate	aive bit				
DIT 12	1 = Transmitte	nitter in Error : er is in Rus Pa	State Bus Pas ssive state	ssive dit				
	0 = Transmitte	er is not in Bus	Passive stat	e				
bit 11	RXBP: Recei	ver in Error Sta	ate Bus Passi	ve bit				
	1 = Receiver	is in Bus Pass	ive state					
hit 10		IS NOT IN BUS P	assive state	na hit				
	1 = Transmitte	er is in Error W	arning state	ng bit				
	0 = Transmitte	er is not in Erro	or Warning state	ate				
bit 9	RXWAR: Rec	eiver in Error	State Warning	ı bit				
	1 = Receiver	is in Error War	ning state					
hit 9	0 = Receiver	is not in Error	warning state	: Stato Warning	, bit			
DILO	1 = Transmitte	er or receiver i	s in Error Wa	rning state	j Dit			
	0 = Transmitte	er or receiver i	s not in Error	Warning state				
bit 7	IVRIF: Invalid	Message Rec	eived Interru	ot Flag bit				
	1 = Interrupt r	request has oc	curred					
bit 6		Wake-up Activ	ity Interrunt F	lag hit				
bit 0	1 = Interrupt r	request has oc	curred					
	0 = Interrupt r	request has no	t occurred					
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CilN	TF<13:8> regist	er)		
	1 = Interrupt r	request has oc	curred					
L:1 4	0 = Interrupt r	request has no	t occurred					
DIT 4		Almost Full In	0 torrunt Elog h	.;+				
DIL S	1 = Interrupt r	request has oc	curred	ni				
	0 = Interrupt request has occurred							
bit 2	RBOVIF: RX	Buffer Overflo	w Interrupt Fla	ag bit				
	1 = Interrupt r	request has oc	curred					
hit 1		request has not	t occurred					
DILI	1 = Interrupt r	request has oc	ag bit curred					
	0 = Interrupt r	request has no	t occurred					
bit 0	TBIF: TX Buf	fer Interrupt Fla	ag bit					
	1 = Interrupt r	request has oc	curred					
	0 = Interrupt r	request has no	t occurred					

© 2009-2012 Microchip Technology Inc.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - $f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	ARACTER	ISTICS	Standard Operat (unless otherwis Operating temper	ing Con se stated ature	ditions 3) -40°C ≤ -40°C ≤	: 3.0V to TA ≤ +8 TA ≤ +12	3.6V 5°C for In 5°C for E	dustrial xtended
Param.	Symbol	Characteris	stic ⁽¹⁾	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.40	-	2.55	V	Vdd
Note 4. Developmentary are far dealers suidened only and are not tested in manufacturing								

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	<pre>≤ IA ≤ +125°C for Extended Conditions</pre>
		Program Flash Memory					
D130	Eр	Cell Endurance	10,000	—	—	E/W	—
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D134	TRETD	Characteristic Retention	20	—		Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	—	10	—	mA	—
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, see Note 2
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +150°C, see Note 2
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, see Note 2
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +150°C, see Note 2
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, see Note 2
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +150°C, see Note 2

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standar (unless Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	_
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	—
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—		20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	_	ns	—
OS41	TckF	CLKO Fall Time ⁽³⁾		5.2	_	ns	_
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V, TA = +25°C

TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is preliminary. This parameter is characterized, but not tested in manufacturing.

TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time		6 Тсү	_	ns	—
TQ31	ΤουΗ	Quadrature Input High Time		6 TCY	—	ns	—
TQ35	TQUIN	Quadrature Input Period		12 TCY	—	ns	—
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	—	ns	—
TQ40	TQUFL	Filter Time to Recognize Lov with Digital Filter	V	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder Interface (QEI)"** (DS70208) in the "*dsPIC33F/PIC24H Family Reference Manual*".

APPENDIX A: MIGRATING FROM dsPIC33FJXXXMCX06/ X08/X10 DEVICES TO dsPIC33FJXXXMCX06A/ X08A/X10A DEVICES

The dsPIC33FJXXXMCX06A/X08A/X10A devices were designed to enhance the dsPIC33FJXXXMCX06/ X08/X10 families of devices.

In general, the dsPIC33FJXXXMCX06A/X08A/X10A devices are backward-compatible with dsPIC33FJXXXMCX06/X08/X10 devices; however, manufacturing differences may cause dsPIC33FJXXXMCX06A/X08A/X10A devices to behave differently from dsPIC33FJXXXMCX06/X08/X10 devices. Therefore, complete system test and characterization is recommended if dsPIC33FJXXXMCX06A/X08A/X10A devices are used to replace dsPIC33FJXXXMCX06/X08/X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable Configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2

Revision C (March 2011)

This revision includes typographical and formatting changes throughout the data sheet text. In addition, all instances of VDDCORE have been removed.

All other major changes are referenced by their respective section in the following table.

TABLE B-2:	MAJOR	SECTION	UPDATES
		02011011	0. 0/1100

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the title of Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)".
	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 "Oscillator Value Conditions on Device Start-up ".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): • TMR1 • TMR2 • TMR3 • TMR4 • TMR5 • TMR6 • TMR7 • TMR8 • TMR9
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1).
	Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3).
	Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the VREFL references in the ADC1 module block diagram (see Figure 22-1).
Section 23.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 23.1 "Configuration Bits" .
	Added the column "RTSP Effects" to the Configuration Bits Descriptions (see Table 23-2).