

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Betano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc508a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Special MCU Features

The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

4.2 Data Address Space

The dsPIC33FJXXXMCX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE 4-9: 8-OUTPUT PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	- PTSIDL					_	PTOPS<3:0> PTCKPS<1:0>						PTMO	D<1:0>	0000 0000 0000 0000	
P1TMR	01C2	PTDIR		PWM Timer Count Value Register 0									0000 0000 0000 0000					
P1TPER	01C4	_						F	PWM Time	Base Perio	od Registe	r						0000 0000 0000 0000
P1SECMP	01C6	SEVTDIR						PW	M Special	Event Corr	pare Regi	ster						0000 0000 0000 0000
PWM1CON1	01C8		_	_	_	PMOD4	PMOD3	PMOD2	PMOD1	PEN4H	PEN3H	PEN2H	PEN1H	PEN4L	PEN3L	PEN2L	PEN1L	0000 0000 1111 1111
PWM1CON2	01CA		_	_	_		SEVOP	°S<3:0>		-	_	_	_	_	IUE	OSYNC	UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS	6<1:0>			DTB<	<5:0>			DTAPS<1:0> DTA<5:0>					<5:0>			0000 0000 0000 0000
P1DTCON2	01CE		_	_	_	_	_	_	_	DTS4A	DTS4I	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	_	_	_	FAEN4	FAEN3	FAEN2	FAEN1	0000 0000 0000 0000
P1FLTBCON	01D2	FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM	_	_	_	FBEN4	FBEN3	FBEN2	FBEN1	0000 0000 0000 0000
P10VDCON	01D4	POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 0000 0000
P1DC1	01D6							PW	/I Duty Cyc	le #1 Regis	ster							0000 0000 0000 0000
P1DC2	01D8		PWM Duty Cycle #2 Register										0000 0000 0000 0000					
P1DC3	01DA		PWM Duty Cycle #3 Register										0000 0000 0000 0000					
P1DC4	01DC		PWM Duty Cycle #4 Register									0000 0000 0000 0000						

Legend: u = uninitialized bit, - = unimplemented, read as '0'

TABLE 4-10: QEI REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset State	e
QEI1CON	01E0	CNTERR	—	QEISIDL	INDX	UPDN	Q	EIM<2:0)>	SWPAB	PCDOUT	TQGATE	TQCKP	S<1:0>	POSRES	TQCS	UPDN_SRC	0000	0000 000	0 0000
DFLT1CON	01E2	_	—	_	_	_	IMV<	IMV<1:0> CEID QEOUT QECK<2:0> 0						0000	0000 000	0 0000				
POS1CNT	01E4		Position Counter<15:0>									0000	0000 000	0 0000						
MAX1CNT	01E6		Maximum Count<15:0>								1111	1111 111	1 1111							

Legend: u = uninitialized bit, — = unimplemented, read as '0'

TABLE 4-11: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_		_			_		I2C1 Receive Register								0000	
I2C1TRN	0202	_	_	_	_	_	_	_	_				I2C1 Trans	mit Register				OOFF
I2C1BRG	0204	—	_	_	-		—	—		Baud Rate Generator Register						0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ss Register					0000
I2C1MSK	020C	—	_	_	_	_	—				120	1 Address	Mask Regis	ster				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	—	-	—	—	—	—	—	—	I2C2 Receive Register								0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2C2 Transı	nit Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_		Baud Rate Generator Register						0000		
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	_	_					I2C2 Addre	ss Register					0000
I2C2MSK	021C	—			—	-					120	2 Address	Mask Regis	ter				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	tion when V	WIN = x							
C1BUFPNT1	0420		F3BF	2 <3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	°<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP<3:0>			
C1BUFPNT3	0424		F11B	D<3:0>			F10B	P<3:0>		F9BP<3:0> F8BP<3:0>								0000
C1BUFPNT4	0426		F15BI	><3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>				SID<2:0> — MIDE — EID<17:16>								
C1RXM1EID	0436				EID<	:15:8>				EID<7:0>								
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442	EID<15:8> EID<7:0>											xxxx					
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>				EID<7:0>								xxxx
C1RXF3SID	044C				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>							17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>				EID<7:0>								xxxx
C1RXF4SID	0450				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>								xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>				EID<7:0>								xxxx
C1RXF8SID	0460				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>							17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>				EID<7:0>								xxxx
C1RXF9SID	0464				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>							17:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>				EID<7:0>								xxxx
C1RXF10SID	0468				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>							17:16>	xxxx
C1RXF10EID	046A	EID<15:8>									EID<7:0>							

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (register offset)
	field is shared between both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the Data Pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 will always be directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9, and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is only available for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

; Set up NVMCO	N for row programming operations	3	
MOV	#0x4001, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Set up a poi	nter to the first program memory	/ loc	ation to be written
; program memo	ry selected, and writes enabled		
MOV	#0x0000, W0	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	#0x6000, W0	;	An example program memory address
; Perform the	TBLWT instructions to write the	latc	hes
; 0th_program_	word		
MOV	#LOW_WORD_0, W2	;	
MOV	#HIGH_BYTE_0, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 1st_program_	word		
MOV	#LOW_WORD_1, W2	;	
MOV	#HIGH_BYTE_1, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 2nd_program	_word		
	#LOW_WORD_2, W2	;	
	<pre>#HIGH_BYTE_2, W3</pre>	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
•			
•			
•			
; 63rd_program	—		
MOV	#LOW_WORD_31, W2	;	
MOV	#HIGH_BYTE_31, W3	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 IC7IP<2:0> IC8IP<2:0> _ ____ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 AD2IP<2:0> INT1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	IRQSEL6 ⁽²⁾	IRQSEL5(2)	IRQSEL4 ⁽²⁾	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

9.1 CPU Clocking System

There are seven system clock options provided by the dsPIC33FJXXXMCX06A/X08A/X10A:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with Postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> bits (CLKDIV<10:8>).

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 23.1 "Configuration Bits**" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), Fosc, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJXXXMCX06A/X08A/X10A architecture.

Instruction execution speed or device operating frequency, FCY, is given by the following equation:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor, 'N1', is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL feedback divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator output, 'FIN', the PLL output, 'FOSC', is given by the following equation:

EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

NOTES:

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽¹⁾	_	TSIDL ⁽²⁾		_	_	_	_			
bit 15				•			bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
	TGATE ⁽¹⁾	TCKPS	<1:0> (1)	—		TCS ^(1,3)				
bit 7							bit (
Legend:	. 1. 11									
R = Readable		W = Writable	DIt	U = Unimplen						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15	TON: Timery	On bit ⁽¹⁾								
	1 = Starts 16-									
	0 = Stops 16-									
bit 14	Unimplemen	ted: Read as ')'							
bit 13	TSIDL: Stop i	in Idle Mode bit	(2)							
				device enters Id	le mode					
	0 = Continue	module operati	on in Idle mo	ode						
bit 12-7	-	ted: Read as '								
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾									
	When TCS =									
	This bit is ign									
	When TCS = 1 = Gated tim	<u>0:</u> ne accumulatior	enabled							
		ne accumulation								
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Presca	ale Select bits ⁽¹⁾						
	11 = 1:256	·								
	10 = 1:64									
	01 = 1:8									
h :+ 0 0	00 = 1:1	tod. Dood oo '	、							
bit 3-2	•	ted: Read as '0 Clock Source S								
bit 1	,									
	1 = External c 0 = Internal c	clock from TyCł lock (Ecy)	c pin (on the	nsing edge)						
bit 0		ited: Read as ')'							
	P		-							
				= 1), these bits	have no effec	t on Timery operat	tion; all time			
fur	nctions are set th	hrough T2CON								

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

22.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

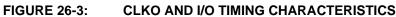
22.5 ADC Resources

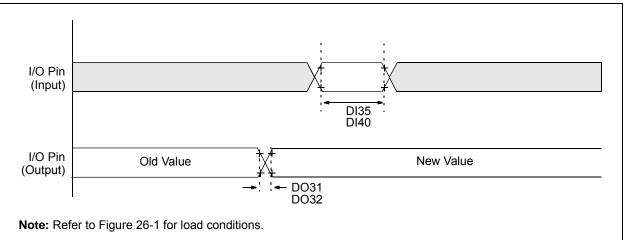
Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en546066

22.5.1 KEY RESOURCES

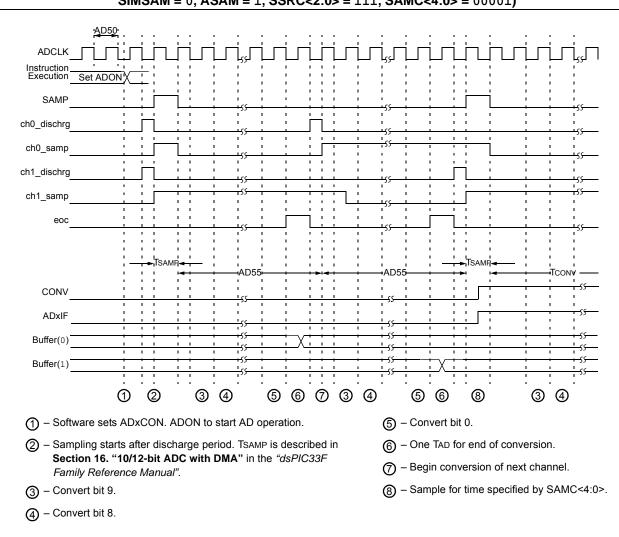
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools


DC CHA	RACTER	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O Pins	Vss	—	0.2 VDD	V	
DI15		MCLR	Vss	—	0.2 VDD	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V	
DI18		I/O Pins with I ² C™	Vss	_	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with I ² C	Vss	_	0.8 V	V	SMBus enabled
	VIH	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V	
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMBus disabled
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	—	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±1	μA	$\label{eq:VSS} \begin{split} &Vss \leq V \text{PIN} \leq V \text{DD}, \\ &\text{Pin at high-impedance,} \\ &-40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \end{split}$
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	Shared with external reference pins, -40°C \leq TA \leq +85°C
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	—	_	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	_	—	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$


TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHARACTERISTICS			Standard Ope (unless other Operating tem	wise state	ed) -40°C ≤	Ta≤ +8	5°C for I	ndustrial Extended
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DO31	TioR	Port Output Rise Time			10	25	ns	
DO32	TIOF	Port Output Fall Time	;	_	10	25	ns	_
DI35	TINP	INTx Pin High or Low Time (input)		20			ns	—
DI40	Trbp	CNx High or Low Time (input)		2		_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 26-29:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

APPENDIX B: REVISION HISTORY

Revision A (May 2009)

This is the initial released version of the document.

Revision B (October 2009)

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Digital Signal Controllers (up to 256 KB Flash and 30 KB SRAM) with Motor Control and Advanced Analog"	Added information on high temperature operation (see "Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 22-1).
Section 23.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 23.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 23-1).
Section 26.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 26-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 26-40).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 26-17).
	Updated the Internal LPRC Accuracy parameters (see Table 26-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a, AD24a, AD23b, and AD24b (see Table 26-46).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23c, AD24c, AD23d, and AD24d (see Table 26-46).
Section 27.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

Е

ECAN Module
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)55
ECAN1 Register Map (C1CTRL1.WIN = 0)
ECAN1 Register Map (C1CTRL1.WIN = 1)56
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)58
ECAN2 Register Map (C2CTRL1.WIN = 0)
ECAN Technology
Frame Types217
Modes of Operation219
Overview
Electrical Characteristics
AC
Enhanced CAN Module217
Equations
Device Operating Frequency144
Fosc Calculation144
Programming Time74
XT with PLL Mode145
Errata11

F

Flash Program Memory	73
Control Registers	
Operations	
Programming Algorithm	76
RTSP Operation	74
Table Instructions	
Flexible Configuration	
FSCM	
Delay for Crystal and PLL Clock Sources	
Device Resets	
^	

G

Getting Started with 16-Bit DSCs	19

н

High Temperature Electrical Characteristics	
I	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	
I ² C	
Operating Modes	
I ² C Module	
I2C1 Register Map	50
I2C2 Register Map	50
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	259, 266
Input Capture	
Registers	
Input Change Notification Module	
Instruction Addressing Modes	63
File Register Instructions	63
Fundamental Modes Supported	64
MAC Instructions	64
MCU Instructions	63
Move and Accumulator Instructions	64
Other Instructions	64
Instruction Set	
Overview	270
Summary	

Instruction-Based Power-Saving Modes	
Idle	
Sleep	153
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON2	
INTTREG	
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine (ISR)	
Trap Service Routine	
Interrupt Vector Table (IVT)	. 85
Interrupts Coincident with Power Save Instructions	154
J	
JTAG Boundary Scan Interface	259
	200
M	
Memory Organization	. 35
Microchip Internet Web Site	
Migration	
Modes of Operation	
Disable	219
Initialization	219
Listen All Messages	219
Listen Only	219
Loopback Mode	219
Normal Operation	219
Modulo Addressing	. 64
Applicability	
Operation Example	. 65
Start and End Address	
W Address Register Selection	
Motor Control PWM	179
Motor Control PWM Module	
8-Output Register Map	. 49
MPLAB ASM30 Assembler, Linker, Librarian	276
MPLAB Integrated Development	
Environment Software	275
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	276
Ν	

NVM Module	
Register Map	
0	
Open-Drain Configuration	
Output Compare	
Modes	176

Ρ

-	
Packaging	13
Details	15
Marking	
Peripheral Module Disable (PMD)	