

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc508at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

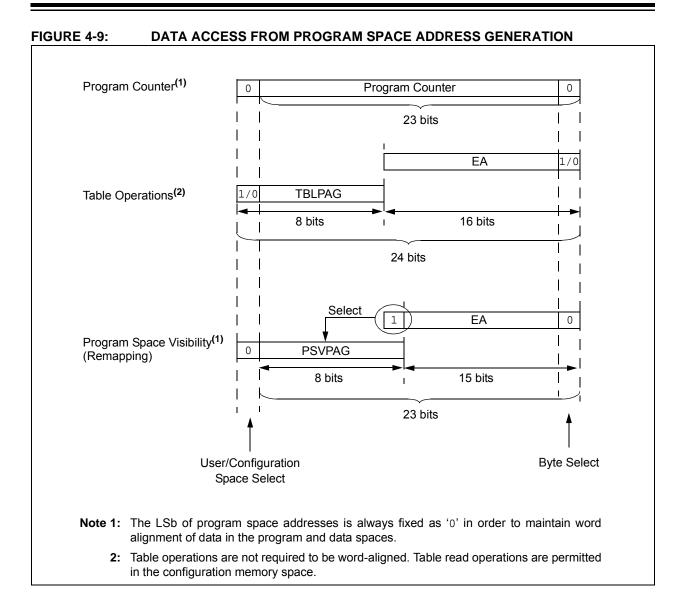

Pin Name	Pin Type	Buffer Type	Description				
RA0-RA7	I/O	ST	PORTA is a bidirectional I/O port.				
RA9-RA10	I/O	ST					
RA12-RA15	I/O	ST					
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.				
RC1-RC4	I/O	ST	PORTC is a bidirectional I/O port.				
RC12-RC15	I/O	ST					
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.				
RE0-RE9	I/O	ST	PORTE is a bidirectional I/O port.				
RF0-RF8	I/O	ST	PORTF is a bidirectional I/O port.				
RF12-RF13							
RG0-RG3	I/O	ST	PORTG is a bidirectional I/O port.				
RG6-RG9	I/O	ST					
RG12-RG15	I/O	ST					
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.				
SDI1	1	ST	SPI1 data in.				
SDO1	Ō	_	SPI1 data out.				
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.				
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.				
SDI2	I	ST	SPI2 data in.				
SDO2	0	—	SPI2 data out.				
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.				
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.				
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.				
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.				
SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.				
SOSCO	0	_	32.768 kHz low-power oscillator crystal output.				
TMC	I	ST	JTAG Test mode select pin.				
		ST	JTAG test clock input pin.				
TMS TCK	I						
TCK TDI	I	ST	JTAG test data input pin.				
TCK TDI	 0	ST —	JTAG test data input pin. JTAG test data output pin.				
TCK TDI TDO	 0 	ST — ST					
		— ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input.				
TCK TDI TDO T1CK		ST	JTAG test data output pin. Timer1 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T4CK		— ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK		— ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK		U ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK		U ST ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK		U ST ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input.				
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS		U ST ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send.				
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK <u>J1CTS</u> J1RTS J1RTS J1RX	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 receive.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 transmit.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 transmit. UART2 clear to send.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS U2RTS	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS U2RTS U2RTS U2RX	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send. UART2 ready to send. UART2 receive.				
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RX U1RX U1RX U1TX U2CTS U2RX U2RX U2TX			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 receive. UART2 transmit.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 transmit. Positive supply for peripheral logic and I/O pins.				
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1RX U2CTS U2RX U2RX U2TX		 ST ST ST ST ST ST ST ST ST ST ST 	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 receive. UART2 transmit.				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

							<u> </u>											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
YMODSRT	004C								YS<15:1>								0	xxxx
YMODEND	004E		YE<15:1> 1 xx							xxxx								
XBREV	0050	BREN	EN XB<14:0> xxx								xxxx							
DISICNT	0052	_	_		Disable Interrupts Counter Register					xxxx								
BSRAM	0750	_	_	_	_	_	_	_	_	_	_	_	_	_	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	-	_	_	_	_	_	_	_	_	_	_	_	_	IW_SSR	IR_SSR	RL_SSR	0000
			- ·															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0					
WR	WREN	WRERR	_	_	_	_						
bit 15					•		bit					
	D 444 o(1)			D 444 o(1)	D # 44 o(1)	D # 4 (a (1)	D (1)					
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾					
	ERASE		—		NVMOF	><3:0> ⁽²⁾						
bit 7							bit					
Legend:		SO = Settable	e Only bit									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	WR: Write Co	ontrol bit										
			v program o	r erase operatio	on. The operation	on is self-timed	and the hit i					
		by hardware on										
	0 = Program	or erase opera	ition is compl	ete and inactive	е							
bit 14	WREN: Write	e Enable bit										
		lash program/e										
		ash program/er	-	ns								
bit 13	WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set											
					r termination ha	is occurred (bit	is set					
		ically on any se gram or erase o	•	,	1							
bit 12-7		nted: Read as '	-		y							
bit 6	ERASE: Erase/Program Enable bit											
bit 0	1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command											
					P<3:0> on the n							
bit 5-4			-	,								
bit 3-0	Unimplemented: Read as '0' NVMOP<3:0>: NVM Operation Select bits ⁽²⁾											
	If ERASE = 1:											
	1111 = Memory bulk erase operation											
	1110 = Reserved											
	1101 = Erase General Segment											
	1100 = Erase Secure Segment 1011 = Reserved											
	1011 = Reserved 0011 = No operation											
		ory page erase	operation									
	0001 = No operation											
	0000 = Erase a single Configuration register byte											
	If ERASE = 0:											
	1111 = No oj											
	1110 = Reserved 1101 = No operation											
	1101 = No o 1100 = No o											
	1011 = Rese											
		ory word progra	am operation									
	0010 = No o											
		ory row program		aiotor buto								
	0000 = Progi	ram a single Co	miguration re	egister byte								
Note 1: The	ese bits can onl	ly be reset on F	OR.									

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The interrupt controller for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXMCX06A/X08A/X10A CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address. The dsPIC33FJXXXMCX06A/X08A/X10A family of devices implement up to 67 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXMCX06A/X08A/X10A device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)

- bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 T7IF: Timer7 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source, do the following:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are									
	initialized such that all user interrup									
	sources are assigned to priority level 4.									

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST/	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			STB	<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			STE	3<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			pit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = B		x = Bit is unkr	nown							

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y						
_		COSC<2:0>				NOSC<2:0>(2)							
bit 15							bit						
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0						
CLKLOCK		LOCK	—	CF	_	LPOSCEN	OSWEN						
bit 7	·			·			bit						
Legend:		y = Value se	t from Configu	ration bits on F	POR								
R = Readabl	e bit	W = Writable	e bit	U = Unimple	mented bit, rea	d as '0'							
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 15	Unimplemen	ted: Read as	' 0'										
bit 14-12	COSC<2:0>:	Current Oscil	lator Selectior	h bits (read-only	y)								
		C oscillator (F			, ,								
	110 = Fast R	C oscillator (F	RC) with Divid										
		101 = Low-Power RC oscillator (LPRC) 100 = Secondary oscillator (Sosc)											
		011 = Primary oscillator (XT, HS, EC) with PLL											
	010 = Prima r	010 = Primary oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL)											
		•	,	de-by-N and P	LL (FRCDIVN +	PLL)							
bit 11		000 = Fast RC oscillator (FRC) Unimplemented: Read as '0'											
bit 10-8	-	New Oscillato		+c(2)									
	111 = Fast RC oscillator (FRC) with Divide-by-N 110 = Fast RC oscillator (FRC) with Divide-by-16												
		ower RC oscil		-									
		dary oscillator											
		y oscillator (X v oscillator (X											
	010 = Primary oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL)												
	000 = Fast R	C oscillator (F	RC)										
bit 7		Clock Lock En											
					are locked. If (FCKSM0 = 0), t	hen clock an						
		figurations ma			tions may be m	odified							
bit 6		ited: Read as		nou, comgula		camea							
bit 5	-	ock Status bit											
				tart-up timer is	satisfied								
	0 = Indicates	s that PLL is o	ut of lock, star	t-up timer is in	progress or PL	L is disabled							
bit 4	Unimplemen	ted: Read as	'0'										
bit 3	CF: Clock Fa	il Detect bit (re	ead/clear by a	pplication)									
		as detected clo											
	0 = FSCM has	as not detecte	a clock failure										
	/rites to this regis				Section 7. "Osc	:illator " (DS701	86) in the						
	IsPIC33F/PIC24	•											
	irect clock switch his applies to cloo		• • •										
	nis applies to ciu												

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register is reset only on a Power-on Reset (POR).

mode as a transition clock source between the two PLL modes.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
FLTBM	—	—	—	FBEN4 ⁽¹⁾	FBEN3 ⁽¹⁾	FBEN2 ⁽¹⁾	FBEN1 ⁽¹⁾				
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	hit		nented bit, read	l as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own				
					arcu		lowin				
bit 15-8	FBOVxH<4:1	>:FBOVxI <4:	1>: Fault Inpu	t B PWM Over	ride Value bits						
	5-8 FBOVxH<4:1>:FBOVxL<4:1>: Fault Input B PWM Override Value bits 1 = The PWM output pin is driven active on an external Fault input event										
					Fault input eve						
bit 7	FLTBM: Faul	t B Mode bit									
				Cycle-by-Cycle							
		• •		ol pins to the sta	ates programm	ed in FLTBCON	V<15:8>				
bit 6-4	•	ted: Read as '									
bit 3		t Input B Enabl		. –	_						
	 1 = PWM4H/PWM4L pin pair is controlled by Fault Input B 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input B 										
bit 2		t Input B Enabl			put D						
				by Fault Input	B						
				lled by Fault In							
bit 1											
	1 = PWM2H/PWM2L pin pair is controlled by Fault Input B										
				lled by Fault In	put B						
bit 0		t Input B Enabl									
				by Fault Input lled by Fault In							
	$\alpha = PWW11H/P$	21/1/1/11 nin noi	r in not contro								

REGISTER 16-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER

Note 1: Fault A pin has priority over Fault B pin, if enabled.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾					
bit 15	l					1	bit					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
SSEN ⁽³⁾	СКР	MSTEN SPRE<2:0> ⁽²⁾ PPRE<1										
bit 7							bit					
Legend:												
R = Readable		W = Writable		-	nented bit, read							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
			o.1									
bit 15-13	-	nted: Read as '										
bit 12		able SCKx Pin	·	• •								
		SPI clock is disa SPI clock is ena										
bit 11	DISSDO: Dis	sable SDOx Pin	bit									
	1 = SDOx pin is not used by module; pin functions as I/O											
	0 = SDOx pir	n is controlled b	y the module									
bit 10	MODE16: Word/Byte Communication Select bit											
	 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 											
bit 9												
DIL 9	SMP: SPIx Data Input Sample Phase bit Master mode:											
	1 = Input dat	a sampled at e										
	-	a sampled at m	iddle of data o	output time								
	<u>Slave mode:</u> SMP must be cleared when SPIx is used in Slave mode.											
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾											
		L = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)										
				on from Idle clo								
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽³⁾											
	$1 = \overline{SSx} \text{ pin used for Slave mode}$											
L:1 0	-	= SSx pin not used by module. Pin controlled by port function.										
bit 6	CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level											
			•	e state is a high								
bit 5		ster Mode Enab		C								
	1 = Master m	ode										
		loue										

- 2: Do not set both the primary and secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

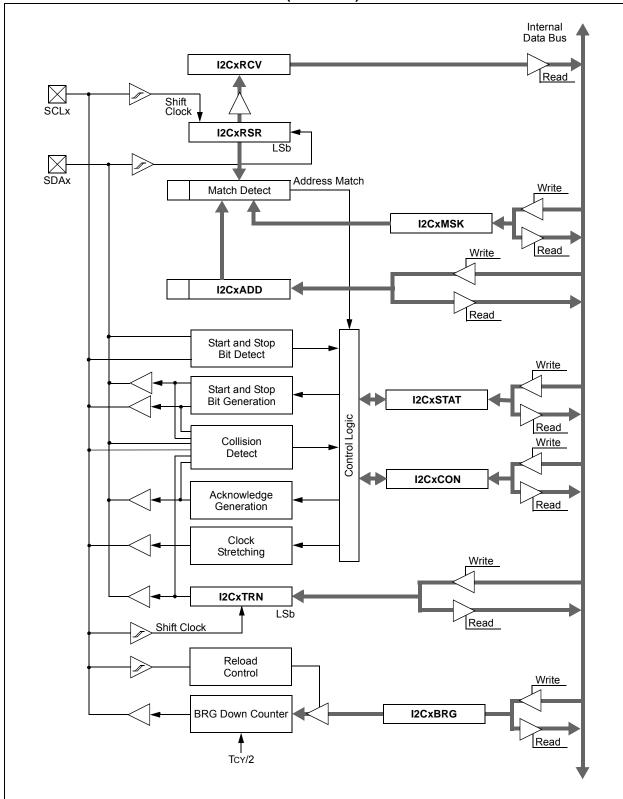


FIGURE 19-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

REGISTER 22-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH ^(1,2)
--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
bit 15			•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
bit 7			·	•		•	bit 0
							DILU

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

CSS<31:16>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 22-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set			bit	U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown					
Legend:									
bit 7			•	•			bit 0		
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 15							bit 8		
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8		
							-		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		

bit 15-0

CSS<15:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan 0 = Skip ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREF.
 - **2:** CSSx = ANx, where x = 0 through 15.

23.0 SPECIAL FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "CodeGuard™ Security" 23. (DS70199), Section 24. "Programming and Diagnostics" (DS70207) and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

dsPIC33FJXXXMCX06A/X08A/X10A devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

23.1 Configuration Bits

dsPIC33FJXXXMCX06A/X08A/X10A devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) of the "*dsPIC33F/PIC24H Family Reference Manual*", for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 23-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 23-2.

Note that address, 0xF80000, is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFF) which can only be accessed using table reads and table writes.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS	<1:0>	—	—		BSS<2:0>		BWRP
0xF80002	FSS	RSS	<1:0>	—	—		SSS<2:0>		SWRP
0xF80004	FGS	_	_	—	_	—	GSS1	GSS0	GWRP
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	—	—	—	FNC	SC<2:0>	
0xF80008	FOSC	FCKS	M<1:0>	—	_	—	OSCIOFNC	POSCM	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	PLLKEN ⁽³⁾	WDTPRE		WDTPOST<	<3:0>	
0xF8000C	FPOR	PWMPIN	HPOL	LPOL	_	_	FPW	/RT<2:0>	
0xF8000E	FICD	Rese	rved ⁽¹⁾	JTAGEN	_	—	—	ICS<	:1:0>
0xF80010	FUID0		User Unit ID Byte 0						
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3			L	Iser Unit ID	Byte 3			

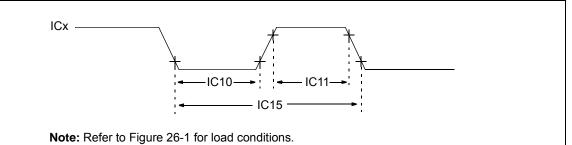
TABLE 23-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, reads as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

- **2:** When read, this bit returns the current programmed value.
- **3:** This bit is unimplemented on dsPIC33FJ64MCX06A/X08A/X10A and dsPIC33FJ128MCX06A/X08A/X10A devices and reads as '0'.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11	
DI60b	ІІСН	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	


TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 26-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

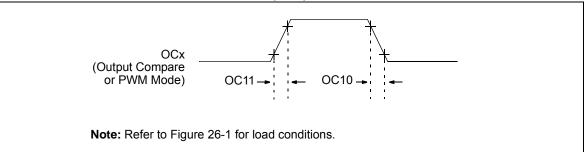


TABLE 26-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol Character		ristic ⁽¹⁾	Min	Мах	Units	Conditions		
IC10	0 TccL ICx Input Low Time No		No prescaler	0.5 Tcy + 20	_	ns	—		
			With prescaler	10	_	ns			
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20	_	ns	—		
			With prescaler	10	_	ns			
IC15	TccP	ICx Input Period	•	(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 26-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter D032		
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See parameter D031		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-26: CAN MODULE I/O TIMING CHARACTERISTICS

TABLE 26-42: ECAN™ TECHNOLOGY MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—	—	_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120		_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic	Min.	Тур ⁽¹⁾	Max.	Units	Conditions		
		Cloc	k Parame	ters					
AD50b	TAD	ADC Clock Period	76			ns	—		
AD51b	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—		
		Con	version F	late					
AD55b	tCONV	Conversion Time	_	12 Tad	_	_	—		
AD56b	FCNV	Throughput Rate	—	—	1.1	Msps	—		
AD57b	TSAMP	Sample Time	2 Tad	—	—	_	—		
		Timir	g Param	eters					
AD60b	tPCS	Conversion Start from Sample Trigger ^(1,2)	2.0 TAD	_	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61b	tpss	Sample Start from Setting Sample (SAMP) bit ^(1,2)	2.0 Tad	—	3.0 Tad				
AD62b	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(1,2)	—	0.5 Tad	—	—	_		
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,3)	—	_	20	μS	—		

TABLE 26-47: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

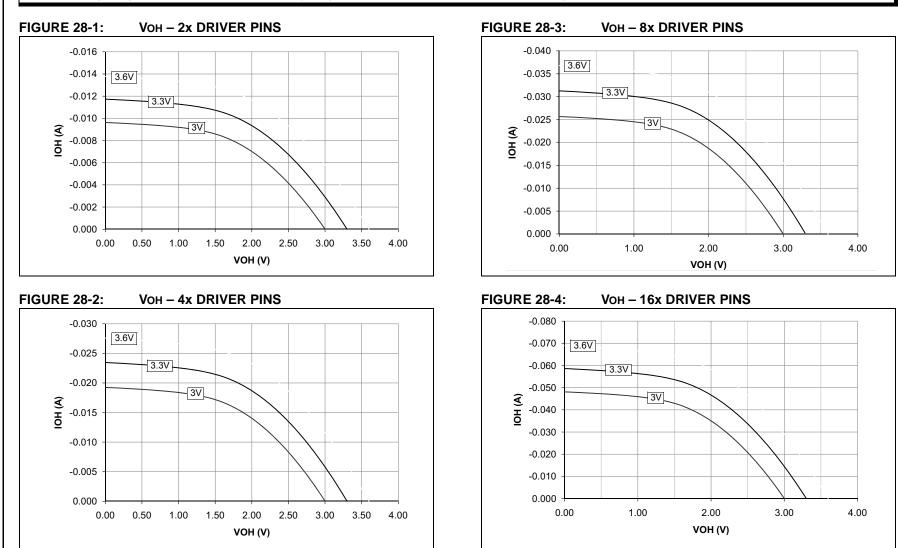

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 26-48: DMA READ/WRITE TIMING REQUIREMENTS

АС СНА	ARACTERISTICS	(unless o	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic		Тур	Max.	Units	Conditions			
DM1a	DMA Read/Write Cycle Time	—	_	2 TCY	ns	This characteristic applies to dsPIC33FJ256MCX06A/X08A/X10A devices only.			
DM1b DMA Read/Write Cycle Time		—	—	1 Tcy	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256MCX06A/X08A/X10A.			

28.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

APPENDIX A: MIGRATING FROM dsPIC33FJXXXMCX06/ X08/X10 DEVICES TO dsPIC33FJXXXMCX06A/ X08A/X10A DEVICES

The dsPIC33FJXXXMCX06A/X08A/X10A devices were designed to enhance the dsPIC33FJXXXMCX06/ X08/X10 families of devices.

In general, the dsPIC33FJXXXMCX06A/X08A/X10A devices are backward-compatible with dsPIC33FJXXXMCX06/X08/X10 devices; however, manufacturing differences may cause dsPIC33FJXXXMCX06A/X08A/X10A devices to behave differently from dsPIC33FJXXXMCX06/X08/X10 devices. Therefore, complete system test and characterization is recommended if dsPIC33FJXXXMCX06A/X08A/X10A devices are used to replace dsPIC33FJXXXMCX06/X08/X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable Configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2