

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc510a-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256MC710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 14. "Motor Control PWM" (DS70187)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70208)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit[™] (I2C[™])" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If the MPLAB ICD 3 or REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by the MPLAB ICD 3 or REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When the MPLAB ICD 3 or REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

IADLE 4	-19.	DIVIA	REGIS			NTINUE	וש											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4	4 PAD<15:0>													0000			
DMA5CNT	03C6	_	CNT<9:0>									0000						
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE	STB<15:0>									0000							
DMA6PAD	03D0	PAD<15:0>										0000						
DMA6CNT	03D2	—	—	—	_	—						CN	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW		—	—		—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	_	—	_	—		_	—				I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								Р	AD<15:0>								0000
DMA7CNT	03DE	—	—	—	_	—						CN	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	_	_	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4	DSADR<15:0> 0000										0000						

TABLE 4-19: DMA REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXMCX06A/X08A/X10A

TABLE 4-22:	ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED)
--------------------	---

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C		SID<10:3>					SID<2:0> — EXIDE — EID<17:16>							7:16>	xxxx		
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470		SID<10:3>					SID<2:0> — EXIDE — EID<17:16>						7:16>	xxxx			
C1RXF12EID	0472				EID<	:15:8>				EID<7:0>								xxxx
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						7:16>	xxxx	
C1RXF14EID	047A	EID<15:8>						EID<7:0>						xxxx				
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-37: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS	Bit-Reversed Address							
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal			
0	0	0	0	0	0	0	0	0	0			
0	0	0	1	1	1	0	0	0	8			
0	0	1	0	2	0	1	0	0	4			
0	0	1	1	3	1	1	0	0	12			
0	1	0	0	4	0	0	1	0	2			
0	1	0	1	5	1	0	1	0	10			
0	1	1	0	6	0	1	1	0	6			
0	1	1	1	7	1	1	1	0	14			
1	0	0	0	8	0	0	0	1	1			
1	0	0	1	9	1	0	0	1	9			
1	0	1	0	10	0	1	0	1	5			
1	0	1	1	11	1	1	0	1	13			
1	1	0	0	12	0	0	1	1	3			
1	1	0	1	13	1	0	1	1	11			
1	1	1	0	14	0	1	1	1	7			
1	1	1	1	15	1	1	1	1	15			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	U2TXIF: UAF	RT2 Transmitte	r Interrupt Fla	g Status bit			
	1 = Interrupt i	request has oc	curred				
	0 = Interrupt i	request has no	toccurred	o			
bit 14	U2RXIF: UAF	RI2 Receiver In	nterrupt Flag	Status bit			
	1 = Interrupt	request has oc	t occurred				
bit 13	INT2IF: Exter	nal Interrupt 2	Flag Status b	it			
	1 = Interrupt i	request has oc	curred				
	0 = Interrupt i	request has no	t occurred				
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
	1 = Interrupt i	request has oc	curred				
		request has no	t occurred				
bit 11	14IF: Timer4	Interrupt Flag	Status bit				
	1 = Interrupt i 0 = Interrupt i	request has oc request has no	currea t occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt i	request has oc	curred	1 0			
	0 = Interrupt i	request has no	t occurred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Statu	s bit		
	1 = Interrupt i	request has oc	curred				
h it 0		request has no	t occurred			L.:.	
DIL 8		A Channel 2 D		Jompiele inten	rupt Flag Status	DIL	
	0 = Interrupt i	request has no	t occurred				
bit 7	IC8IF: Input C	Capture Chann	el 8 Interrupt	Flag Status bit			
	1 = Interrupt i	request has oc	curred	-			
	0 = Interrupt i	request has no	t occurred				
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt	Flag Status bit			
	1 = Interrupt i	request has oc	curred				
h # C		request has no			- hit		
DIT 5	ADZIF: ADC2		omplete inter	rupt Flag Statu	IS DI		
	1 = Interrupt i 0 = Interrupt i	request has oc	t occurred				
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status b	it			
-	1 = Interrupt i	request has oc	curred				
	0 = Interrupt i	request has no	t occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

bit 1	SI2C2IE: I2C2 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

- bit 0 T7IE: Timer7 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI1EIP<2:0>		—		T3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as ')'				
bit 14-12	U1RXIP<2:	0>: UART1 Rece	iver Interrupt	t Priority bits			
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as 'o)'				
bit 10-8	SPI1IP<2:0	>: SPI1 Event Int	errupt Priorit	y bits			
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as ')'				
bit 6-4	SPI1EIP<2:	:0>: SPI1 Error Ir	terrupt Priori	ity bits			
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as ')'				
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits				
	111 = Interi	rupt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interi	rupt is priority 1					
	000 = Interi	rupt source is dis	abled				

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	IRQSEL6(2)	IRQSEL5(2)	IRQSEL4(2)	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
	_	—	_		LSTCH	H<3:0>	
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-12	Unimplement	ted: Read as ')'				
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active b	pits			
	1111 = No DN	MA transfer has	s occurred sin	ice system Res	set		
	1110-1000 =	Reserved		appol 7			
	0111 = Last d	lata transfer wa	as by DMA Cr as by DMA Ch	nannel 6			
	0101 = Last d	lata transfer wa	as by DMA Ch	nannel 5			
	0100 = Last d	lata transfer wa	as by DMA Ch	nannel 4			
	0011 = Last d	lata transfer wa	as by DMA Ch as by DMA Ch	nannel 3			
	00010 = Last d	lata transfer wa	as by DMA Cr as by DMA Cr	nannel 1			
	0000 = Last d	lata transfer wa	as by DMA Ch	nannel 0			
bit 7	PPST7: Chan	inel 7 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA7STE 0 = DMA7STA	B register select A register select	ted ted				
bit 6	PPST6: Chan	inel 6 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA6STE	3 register selec	ted				
	0 = DMA6STA	A register selec	ted				
bit 5	PPST5: Chan	inel 5 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA5STE	B register selec	ted				
bit 4	0 - DIVIASSTA	nol 4 Ding Dor	ueu na Modo Statu	ic Elog bit			
DIL 4	1 = DMA4STE	R register selec	iy Moue Slalu Itad	is Flag bit			
	0 = DMA4STA	A register selec	ted				
bit 3	PPST3: Chan	inel 3 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA3STE	3 register selec	ted	C C			
	0 = DMA3STA	A register selec	ted				
bit 2	PPST2: Chan	inel 2 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA2STE 0 = DMA2STA	B register selec A register selec	ted ted				
bit 1	PPST1: Chan	inel 1 Ping-Por	ig Mode Statu	is Flag bit			
	1 = DMA1STE	B register selec	ted				
h : 4 O		A register selec		- F I 11			
U JIQ		inei u Ping-Por	ig iviode Statu	is Flag bit			
	$\perp = DIVIAUSTE0 = DMA0STA$	⊃ ופטוצופר selec A register selec	ted				

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD)R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<7:0>			
bit 7 bi							
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

NOTES:

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the

output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

© 2009-2012 Microchip Technology Inc.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This section describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI include the following:

- Three input channels for two phase signals and an index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-Bit Timer/Counter mode
- · Quadrature Encoder Interface interrupts

The QEI module's operating mode is determined by setting the appropriate bits, QEIM<2:0> (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on the UxRSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on the UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OFPR: Deceive Ruffer Overrup Error Status bit (read/clear only)
	1 = Receive buffer has overflowed
	$0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the UxRSR to the empty state.$
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 21-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7BP<3:0>				F6BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F5BF	P<3:0>			F4B	P<3:0>			
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
L									
bit 15-12	F7BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 7 Hits bits ıffer 4					
	•								
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0						
bit 11-8	F6BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 6 Hits bits ıffer 4					
	•								
	•								
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0						
bit 7-4	F5BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Writt r hits received ir r hits received ir	en when Filte n RX FIFO bu n RX Buffer 1	er 5 Hits bits ıffer 4					
	•								
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0						
bit 3-0	F4BP<3:0>: 1111 = Filte 1110 = Filte •	RX Buffer Writt r hits received ir r hits received ir	en when Filte າ RX FIFO bu າ RX Buffer 1	er 4 Hits bits ıffer 4					
	•								
	0001 = Filte 0000 = Filte	r hits received ir r hits received ir	n RX Buffer 1 n RX Buffer 0						

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	lin ⁽¹⁾ Max		Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	—	ns	-	
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs	—	
			400 kHz mode	0	0.9	μS	-	
			1 MHz mode ⁽²⁾	0.2	_	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for Repeated Start	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	generated	
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS		
		1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS			
IM34	IM34 THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	—	
	Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns	-	
IM40 TAA:SCL		Output Valid	100 kHz mode	—	3500	μS	—	
		From Clock	400 kHz mode	—	1000	μs	—	
			1 MHz mode ⁽²⁾	—	400	μS	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	_	400	pF	_	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

TABLE 26-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions		
	Clock Parameters								
AD50a	Tad	ADC Clock Period	117.6	_	—	ns	—		
AD51a	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	_		
	Conversion Rate								
AD55a	tCONV	Conversion Time	—	14 Tad		—	—		
AD56a	FCNV	Throughput Rate	_		500	ksps	—		
AD57a	TSAMP	Sample Time	3.0 Tad		—	—	—		
	Timing Parameters								
AD60a	tPCS	Conversion Start from Sample Trigger ^(1,2)	2.0 Tad	—	3.0 Tad	_	—		
AD61a	tpss	Sample Start from Setting Sample (SAMP) bit ^(1,2)	2.0 Tad	_	3.0 Tad	_	_		
AD62a	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(1,2)	_	0.5 TAD	_	_	_		
AD63a	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,2,3)	_	_	20	μS			

TABLE 26-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	MIN	NOM	MAX			
Number of Leads	N		100			
Lead Pitch	е	0.50 BSC				
Overall Height	А	-	—	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	_	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	ф	0°	3.5°	7°		
Overall Width	E	16.00 BSC				
Overall Length D 16.00 BSC						
Molded Package Width	E1	14.00 BSC				
Molded Package Length	D1	14.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B