

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc510a-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-13: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	—	_	_	—				UART1	Receive Re	egister				0000
U1BRG	0228							Bau	d Rate Ger	nerator Preso	aler							0000
			- ·			1 (-1 B												

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_		_	_	_	_	_				UART2	Transmit R	egister				xxxx
U2RXREG	0236	_		_	_	_	_	_				UART2	Receive R	egister				0000
U2BRG	0238							Baud	Rate Gen	erator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—	—	—	—	SPIROV	—	_	-	-	SPITBF	SPIRBF	0000
SPI1CON1	0242	—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	—	SPISIDL	—	_	—	-	_	—	SPIROV	—		—	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Tran	smit and Re	ceive Buffer	r Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22:	ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED)
--------------------	---

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF12EID	0472				EID<	:15:8>				EID<7:0>								xxxx
C1RXF13SID	0474				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:10						7:16>	xxxx	
C1RXF13EID	0476				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF14SID	0478				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16						7:16>	xxxx	
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C	SID<10:3>						SID<2:0> — EXIDE — EID<17:16					7:16>	xxxx				
C1RXF15EID	047E	EID<15:8>						EID<7:0>						xxxx				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- 1. In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXMCX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and

three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or 'rows') of 64 instructions (192 bytes) at a time or by single program memory word; the user can erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTE	R 6-1: RCON			GISTER ⁽¹⁾			
R/W-0) R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAP	R IOPUWR	—	_	—	_	_	VREGS ⁽³⁾
bit 15							bit 8
LAIR bit 7	SWR	SWDTEN,	VUIO	SLEEF	IDLE	DUK	
DIL 7							
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	1 = A Trap Co 0 = A Trap Co	onflict Reset ha	s occurred s not occurre	d			
bit 14		aal Opcode or	Uninitialized	~ W Access Rese	et Flag bit		
	1 = An illega	al opcode detec	tion, an illeg	gal address mo	ode or uninitia	lized W regist	er used as an
	Address	Pointer caused	a Reset				
1.1.40.0	0 = An illega	l opcode or unir	Nitialized W H	leset has not of	ccurred		
bit 13-9	Unimplemen	ited: Read as ')'	O (3)			
DIT 8		age Regulator :	standby Durir	ng Sleep bit			
	1 = Voltage re0 = Voltage re	egulator is activ	to Standby n	p mode node during Sle	ер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit	0	•		
	1 = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not oc	red curred			
bit 6	SWR: Softwa	are Reset (Instru	iction) Flag b	it			
	1 = A RESET	instruction has	been execute	ed			
	$0 = \mathbf{A} \text{ RESET}$	instruction has	not been exe	ecuted			
DIT 5		oπware Enable/	Disable of W				
	0 = WDT is d	isabled					
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	t			
	1 = WDT time 0 = WDT time	e-out has occuri e-out has not oc	red curred				
bit 3	SLEEP: Wak	e-up from Sleep	Flag bit				
	1 = Device ha 0 = Device ha	as been in Slee as not been in S	o mode Sleep mode				
bit 2	IDLE: Wake-	up from Idle Fla	g bit				
	1 = Device w 0 = Device w	as in Idle mode as not in Idle m	ode				
Note 1:	All of the Reset sta	atus bits may be	set or cleare	d in software. S	Setting one of th	nese bits in soft	ware does not
р.		 onfiguration hit i		rammod) the M		anablad radar	diago of the

- 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- **3:** For dsPIC33FJ256MCX06A/X08A/X10A devices, this bit is unimplemented and reads back a programmed value.

	Reset – GOTO Instruction	0x000000	
	Reset = G010 Address	0x000002	
	Reserved	0X000004	
	Oscillator Fail Trap Vector	-	
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014 —	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
_	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
rio	~		
L L	~		
de	~		
õ	Interrupt Vector 116	0x0000FC	
ral	Interrupt Vector 117	0x0000FE -	
atu	Reserved	0x000100	
Z	Reserved	0x000102	
sing	Reserved		
sas	Oscillator Fail Trap Vector	1	
CLE	Address Error Trap Vector		
De	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector	1	
	Reserved		
	Reserved	1	
	Interrupt Vector 0	0x000114 —	1
	Interrupt Vector 1	1	
	~	1	
	~	1	
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	(((())))
	Interrupt Vector 53	0x00017F	
	Interrupt Vector 54	0x000180	
	~		
	~	-	
	~		
	Interrupt Vector 116	1	
	Interrupt Vector 117	0x0001FF	
▼	Start of Code	0x000200	
-		01000200	

TABLE 7-1:		T VECTORS		
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – ADC 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OCo – Output Compare 6
51	43	0x00006A	UXUUU16A	OC7 – Output Compare /
52	44			Decominad
53	45	0X00006E	0X00016E	Reserved

TABLE 7-1: INTERRUPT VECTORS

© 2009-2012 Microchip Technology Inc.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI		—	_		_	—
bit 15	-					•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ALTIVT: Enab	ole Alternate Inf	terrupt Vector	Table bit			
	1 = Use Alter	nate Interrupt V	ector Table				
bit 14		struction Status	e hit				
Dit 14	1 = 177 inst	ruction is active	2				
	0 = DISI inst	ruction is not a	ctive				
bit 13-5	Unimplemen	ted: Read as '	כ'				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt o	on negative edg	ge				
	0 = Interrupt o	on positive edge	е				
bit 3	INT3EP: Exte	ernal Interrupt 3	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of $0 = $ Interrupt of $0 =$	on negative edg	ge				
hit 2	INT2EP: Exte	anal Interrunt 2	Edge Detect	Polarity Selec	t bit		
Dit Z	1 = Interrupt (on negative edg	ne				
	0 = Interrupt of	on positive edge	e				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge				
	0 = Interrupt o	on positive edge	е				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt o	on negative edg	ge				
		on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

bit 2	C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	<pre>SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled</pre>

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—		DMA1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>				U1TXIP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimpleme	nted: Read as '	0'				
bit 10-8	DMA1IP<2:	0>: DMA Chann	el 1 Data Tra	Insfer Complete	e Interrupt Priori	ty bits	
	111 = Interre	upt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	AD1IP<2:0>	ADC1 Conversion	sion Complet	te Interrupt Prio	rity bits		
	111 = Interre	upt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	U1TXIP<2:0	>: UART1 Trans	smitter Interr	upt Priority bits			
	111 = Interr	upt is priority 7 (highest priori	ity interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1					
	000 = Interr	upt source is dis	abled				

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70205) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports the following features:

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation, do the following:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers that can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support the following features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers. Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation, do the following:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contain the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contain the least significant word.

To configure any of the timers for individual 16-bit operation, do the following:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1, and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

NOTES:

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	—	_	PMOD4	PMOD3	PMOD2	PMOD1			
bit 15							bit 8			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
PEN4H ⁽¹⁾	PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	PEN4L ⁽¹⁾	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown			
bit 15-12	Unimplemen	ted: Read as '	0'							
bit 11-8	PMOD<4:1>:	PWM I/O Pair	Mode bits							
	1 = PWM I/O	pin pair is in th	e Independer	t PWM Output	t mode					
	0 = PWM I/O	pin pair is in th	e Complemer	ntary Output m	ode					
bit 7-4	PEN4H:PEN ²	1H: PWMxH I/0	D Enable bits ⁽	1)						
	1 = PWMxH p	oin is enabled f	or PWM outpu	ut .						
	0 = PWMxH pin is disabled; I/O pin becomes general purpose I/O									
bit 3-0	bit 3-0 PEN4L:PEN1L: PWMxL I/O Enable bits ⁽¹⁾									
	1 = PWMxL pin is enabled for PWM output									
	0 = PWMxL p	oin is disabled;	I/O pin becom	nes general pu	rpose I/O					
	not condition of	the DENixLi en		dananda an th			uration bit in			

REGISTER 16-5: PWMxCON1: PWMx CONTROL REGISTER 1

Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	_	—	—	—	—		
bit 15				•			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTS4A	DTS4I	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15-8	Unimplemen	ted: Read as 'd)'						
bit 7	DTS4A: Dead	d-Time Select fo	or PWM4 Sigr	nal Going Activ	ve bit				
	1 = Dead time	e provided from	Unit B						
	0 = Dead time	e provided from	Unit A						
bit 6	DTS4I: Dead-	-Time Select for	r PWM4 Signa	al Going Inacti	ve bit				
	1 = Dead time	e provided from	Unit B						
hit E		e provided ironi d Time Select fr		al Caina Aati	va hit				
DIL 5	1 = Dead time	a provided from	l Init B	ial Going Activ	e bit				
	0 = Dead time	e provided from	Unit A						
bit 4	DTS3I: Dead-	-Time Select for	r PWM3 Signa	al Going Inacti	ve bit				
	1 = Dead time	e provided from	Unit B	U					
	0 = Dead time	e provided from	Unit A						
bit 3	DTS2A: Dead	d-Time Select fo	or PWM2 Sigr	nal Going Activ	ve bit				
	1 = Dead time	e provided from	Unit B						
	0 = Dead time	e provided from	Unit A						
bit 2	DTS2I: Dead	-Time Select for	r PWM2 Signa	al Going Inacti	ve bit				
	1 = Dead time provided from Unit B								
bit 1		d Time Select fo	DINLA	al Coing Activ	ve bit				
DIT I	1 = Dead time	e provided from	Unit R	ial Going Activ					
	0 = Dead time	e provided from	Unit A						
bit 0	DTS1I: Dead-	-Time Select for	r PWM1 Signa	al Going Inacti	ve bit				
	1 = Dead time	e provided from	Unit B	-					
	0 = Dead time	e provided from	Unit A						

REGISTER 16-8: PxDTCON2: PWMx DEAD-TIME CONTROL REGISTER 2

REGISTER 16-11: PXOVDCON: PWMx OVERRIDE CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L
bit 7	•						bit 0
Legend.							

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 POVDxH<4:1>:POVDxL<4:1>: PWM Output Override bits

1 = Output on PWMx I/O pin is controlled by the PWM generator

0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit

bit 7-0 POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output bits

1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared

0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL		—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
_	—	—	—			FRMDLY					
bit 7 bit 0											
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit								
	1 = Framed S	Plx support en	abled (SSx pi	in used as fram	ne Sync pulse i	nput/output)					
	0 = Framed S	SPIx support dis	sabled								
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	ntrol bit							
	1 = Frame Sy	nc pulse input	(slave)								
hit 13	EPMPOL · Er	ame Sync Puls									
bit 15	1 = Frame Sv	ine Sync i uis inc nuise is acti	ive-high								
	0 = Frame Sy	nc pulse is act	ive-low								
bit 12-2	Unimplemen	ted: Read as '	0'								
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit										
	1 = Frame Sync pulse coincides with first bit clock										
	0 = Frame Sy	nc pulse prece	des first bit cl	ock							
bit 0	Unimplemen	ted: This bit m	ust not be set	to '1' by the us	ser application.						

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BF	P<3:0>			F10E	3P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit. rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F11BP<3:0> 1111 = Filter 1110 = Filter	: RX Buffer Writ hits received ir hits received ir	tten when Fill n RX FIFO bu n RX Buffer 1	ter 11 Hits bits iffer 4			
	•						
	•						
	0001 = Filter 0000 = Filter	hits received in hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F10BP<3:0> 1111 = Filter 1110 = Filter	: RX Buffer Writh hits received in hits received in	tten when Fil n RX FIFO bu n RX Buffer 1	ter 10 Hits bits iffer 4			
	•						
	•						
	• 0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 7-4	F9BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received in hits received in	en when Filte n RX FIFO bu n RX Buffer 1	er 9 Hits bits Iffer 4			
	•						
	0001 = Filter 0000 = Filter	hits received in hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F8BP<3:0>: 1111 = Filter 1110 = Filter	RX Buffer Writt hits received in hits received in	en when Filte n RX FIFO bu n RX Buffer 1	er 8 Hits bits Iffer 4			
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0				

FIGURE 26-12: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 26-30: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating ter	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No. Symbol Characteristic			C ⁽¹⁾	Max	Units	Conditions		
TQ50	TqiL	Filter Time to Recognize with Digital Filter	Low	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)		
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated	to Position index)	3 TCY	_	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device	Supply	y			
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss-0.3	—	Vss + 0.3	V	_	
		-	Referen	ce Inpu	its			
AD05	VREFH	Reference Voltage High	AVss + 2.5	—	AVDD	V	_	
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0	
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	—	
AD06a			0		0	V	Vrefh = AVdd Vrefl = AVss = 0	
AD07	VREF	Absolute Reference Voltage	2.5	_	3.6	V	VREF = VREFH - VREFL	
AD08	IREF	Current Drain	_		10	μA	ADC off	
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, see Note 1 12-bit ADC mode, see Note 1	
			Analo	g Input				
AD12	VINH	Input Voltage Range VINH	VINL		VREFH	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range VINL	VREFL	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC	

TABLE 26-43: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 27-14: ADC MODULE SPECIFICATIONS

A CHARAC	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No. Symbol		Characteristic	Min	Тур	Max	Units	Conditions		
Reference Inputs									
HAD08	IREF	Current Drain	_	250	600 50	μA	ADC operating, See Note 1		
					50	μΛ	ADC OII, SEE NOLE I		

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 27-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature									
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions				
	ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾										
AD23a	Gerr	Gain Error	_	5	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with in	ternal V	/REF+/VREF- ⁽¹⁾				
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
	Dynamic Performance (12-bit Mode) ⁽²⁾										
HAD33a	Fnyq	Input Signal Bandwidth		_	200	kHz	_				

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 27-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	AD	C Accuracy (12-bit Mode)	– Measu	rements	s with ex	ternal V	REF+/VREF- ⁽¹⁾		
AD23b	Gerr	Gain Error	_	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	AD	C Accuracy (12-bit Mode)	– Measu	irement	s with int	ernal V	REF+/VREF- ⁽¹⁾		
AD23b	Gerr	Gain Error		7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error		3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
Dynamic Performance (10-bit Mode) ⁽²⁾									
HAD33b	Fnyq	Input Signal Bandwidth		—	400	kHz	—		
Noto 1	Those para	motors are characterized b	ut are to	tod at 2	0 kene on	hv	•		

e 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.