

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc510at-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.2.5 X AND Y DATA SPACES

The core has two data spaces: X and Y. These data spaces can be considered either separate (for some DSP instructions) or as one unified, linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJXXXMCX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory location is part of Y data RAM and is in the DMA RAM space, and is accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX10A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	—	—	_	_	—	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_		CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX08A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	—	_	—	_	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX06A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_		_	—	—	CN21IE	CN20IE		CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_			_	_		_	_	CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IADLE 4	-19.	DIVIA	REGIS			NTINUE	וש											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4								Р	AD<15:0>								0000
DMA5CNT	03C6	_	_	_	_	_	_					CN	<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE								S	TB<15:0>								0000
DMA6PAD	03D0								Р	AD<15:0>								0000
DMA6CNT	03D2	—	—	—	_	—						CN	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW		—	—		—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	_	—	_	—		_	—				I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								Р	AD<15:0>								0000
DMA7CNT	03DE	—	—	—	_	—						CN	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	_	_	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DS	ADR<15:0>								0000

TABLE 4-19: DMA REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXMCX06A/X08A/X10A

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source
Number	Number			
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	PWM – PWM Period Match
66	58	0x000088	0x000188	QEI – Position Counter Compare
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	FLTA – MCPWM Fault A
72	64	0x000094	0x000194	FLTB – MCPWM Fault B
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-	0x0001A4-	Reserved
		0x0000FE	0x0001FE	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x000008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		C2RXIP<2:0>		—		INT4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		INT3IP<2:0>		—		T9IP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		ʻ0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	C2RXIP<2:	0>: ECAN2 Rec	eive Data Re	ady Interrupt P	riority bits		
	⊥⊥⊥ = Inter	rupt is priority 7 (nignest prior	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1	bled				
bit 11		nupt source is dis	o'				
bit 10_8		S. External Inter	∪ runt 1 Prioriti	/ hite			
DIL 10-0	111 = Inter	runt is priority 7 (highest priori	ity interrunt)			
	•		ingricot prior	ity interrupt)			
	•						
	• 001 – Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-4	INT3IP<2:0	>: External Inter	rupt 3 Priority	/ bits			
	111 = Inter	rupt is priority 7 (highest prior	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 3	Unimpleme	ented: Read as '	0'				
bit 2-0	T9IP<2:0>:	Timer9 Interrupt	Priority bits				
	111 = Inter	rupt is priority 7 (highest prior	ity interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				

REGISTER 7-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPO	ST<1:0>	—		F	PLLPRE<4:)>	
bit 7							bit 0
Lenende			fram Canfing	ration bits on DOI			
D - Doodoblo	hit	y = value set	hit		R ntod hit ro	od oo 'O'	
		'1' = Rit is set	DIL	0° – Onimpleme	anteu bit, rea	x = Bit is unkn	014/0
	FOR	I – DILIS SEL			eu		JWII
bit 15	ROI: Recove	r on Interrupt bi	t				
	1 = Interrupt	s will clear the [DOZEN bit ar	nd the processor (clock/periph	eral clock ratio is	set to 1:1
	0 = Interrupt	s have no effect	t on the DOZ	EN bit	F - F		
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction	Select bits			
	000 = Fcy/1						
	001 = FCY/2						
	010 = FCY/4 011 = FCY/8	(default)					
	100 = Fcy/16	5					
	101 = FCY/32	2					
	110 = FCY/64 111 = FCY/12	+ 28					
bit 11	DOZEN: DO	ZE Mode Enabl	e bit ⁽¹⁾				
	1 = DOZE<2	2:0> field specifi	es the ratio b	between the perip	heral clocks	and the processo	or clocks
	0 = Process	or clock/periphe	eral clock ratio	o forced to 1:1			
bit 10-8	FRCDIV<2:0	Internal Fast	RC Oscillato	or Postscaler bits			
	000 = FRC d	livide by 1 (defa	ult)				
	001 = FRC d	livide by 2 livide by 4					
	011 = FRC d	livide by 8					
	100 = FRC d	livide by 16					
	101 = FRC d	livide by 32					
	110 = FRC d	livide by 64					
bit 7-6	PLLPOST<1	:0>: PLL VCO (Output Divide	er Select bits (also	o denoted a	s 'N2', PLL postsc	aler)
	00 = Output/	2		·		•	,
	01 = Output/	4 (default)					
	10 = Reserve	ed 8					
bit 5		u ted: Read as 'i	ר י				
bit 4-0	PI I PRF<4.	>: PLI Phase I	Detector Inni	it Divider bits (als	o denoted a	is 'N1' PLL presc	aler)
Sit 1 0	00000 = Inp	ut/2 (default)					
	00001 = Inp	ut/3					
	•						
	•						
	• 11111 = Inni	ut/33					

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	_	_	_	_	_		PLLDIV<8>	
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLD	V<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-9	Unimplemer	ted: Read as '	כ'					
bit 8-0	PLLDIV<8:0:	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)		
	000000000	= 2						
	00000001	= 3						
	000000010:	= 4						
	•							
	000110000	= 50 (default)						
	•							
	•							
	•							
	111111111	= 513						

Note 1: This register is reset only on a Power-on Reset (POR).

R/M_0	R/M_0	R/M/_0	R/W_0	R/M_0	R/M_0	R/M_0	11-0
T5MD	T4MD	T3MD	T2MD	T1MD	OFI1MD	PWMMD	
bit 15	THND	TOME	1 ZIVID	TIME	QLINID		hit 8
Sit 10							Ditto
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		Madula Diash	1. 1. 14				
DIT 15	1 = Timers	Module Disab					
	1 = 1 mer5 m 0 = 1 Timer5 m	odule is disable	d				
bit 14	T4MD: Timer4	A Module Disab	le bit				
	1 = Timer4 mo	odule is disable	d				
	0 = Timer4 mo	odule is enable	d				
bit 13	T3MD: Timer3	3 Module Disab	le bit				
	1 = 1 mer 3 me 0 = 1 mer 3 me	odule is disable	d d				
hit 12	T2MD. Timer	2 Module Disab	u Ie hit				
511 12	1 = Timer2 mg	odule is disable	d				
	0 = Timer2 mo	odule is enable	d				
bit 11	T1MD: Timer1	I Module Disab	le bit				
	1 = Timer1 mod	odule is disable	d				
bit 10			U bla bit				
	$1 = OEI1 \mod 1$	ule is disabled					
	$0 = QEI1 \mod$	ule is enabled					
bit 9	PWMMD: PW	M Module Disa	ble bit				
	1 = PWM mod	dule is disabled					
1	0 = PWM mod	dule is enabled					
	Unimplement	ted: Read as 'C)´ 1 - 1-1				
bit /	1 = 12C1 mod	I Module Disab	le bit				
	$1 = 12C1 \mod 0$	ule is enabled					
bit 6	U2MD: UART	2 Module Disal	ole bit				
	1 = UART2 m	odule is disable	ed				
	0 = UART2 m	odule is enable	ed				
bit 5	U1MD: UART	1 Module Disal	ole bit				
	1 = UART1 m 0 = UART1 m	odule is disable odule is enable	ed ed				
bit 4	SPI2MD: SPI2	2 Module Disah	ole bit				
	1 = SPI2 mod	ule is disabled					
	0 = SPI2 mod	ule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

REGISTER 21-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							
						(0)	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP<3:0>				F10E	3P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8B	P<3:0>	
bit 7							bit 0
Leaend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit. rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F11BP<3:0> 1111 = Filter 1110 = Filter	: RX Buffer Writh hits received in hits received in	tten when Fill n RX FIFO bu n RX Buffer 1	ter 11 Hits bits Iffer 4			
	•						
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 11-8	F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14						
	•						
	•						
	• 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0						
bit 7-4	 F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • 						
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0				
bit 3-0	F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14						
	•						
	0001 = Filter 0000 = Filter	hits received ir hits received ir	n RX Buffer 1 n RX Buffer 0				

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED) (where x = 1 or 2)

- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 - 0 = Always uses channel input selects for Sample A

– • • • •			D 4 4 4 6	D 414 A	D 414 A	D 414 A		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	—	—			SAMC<4:0>(1)		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ADCS<	<7:0> (2)				
bit 7 bit 0								
Legend:								
R = Reada	ble bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	ADRC: ADC	Conversion Cloo	ck Source bit					
	1 = ADC inter	nal RC clock						
	0 = Clock der	ived from syster	n clock					
bit 14-13	Unimplemen	ted: Read as '0	,					
bit 12-8	SAMC<4:0>:	Auto-Sample Ti	ime bits ⁽¹⁾					
	11111 = 31 T	ĀD						
	•							
	• • • • • • • • • • • • • • • • • • • •	D						
	00000 = 0 TA	D						
hit 7-0 ADCS-7:0>: ADC Conversion Clock Select hits ⁽²⁾								
	11111111 = Reserved							
	•							
	•							
	•							
	01000000 =	Reserved						
	00111111 =	TCY · (ADCS<7	:0> + 1) = 64	• TCY = TAD				
	•							
	•							
	•							
	00000010 =	Tcy · (ADCS<7	:0> + 1) = 3 ·	TCY = TAD				
	00000001 =	TCY · (ADCS<7	(0> + 1) = 2	TCY = TAD				
	00000000 =	ICY · (ADCS </td <td>.0>+1)=1</td> <td>icy = IAD</td> <td></td> <td></td> <td></td>	.0>+1)=1	icy = IAD				
Note 1:	This bit is only use	ed if ADxCON1	<7:5> (SSRC	< 2:0>) = 111.				

- - 2: This bit is not used if ADxCON3<15> (ADRC) = 1.

REGISTER 22-3: ADxCON3: ADCx CONTROL REGISTER 3

TABLE 26-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μS	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	_
SY20	Twdt1	Watchdog Timer Time-out Period	_	_	_	_	See Section 23.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 26-19)
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	_	_	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

AC CHARACTERISTICS			Standar (unless Operatin	r d Opera otherwi ig tempe	nting Cor se stated rature -4	nditions d) 40°C ≤ ⁻ 40°C ≤ T	: 3.0V to 3.6V TA \leq +85°C for Industrial A \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
-		ADC Accuracy (12-Bit Mod	de) – Mea	asureme	nts with	Externa	N VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data bi	ts	bits	—
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	Q	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity	—	_	_		Guaranteed
		ADC Accuracy (12-Bit Mo	de) – Mea	asureme	ents with	Interna	I VREF+/VREF-
AD20b	Nr	Resolution	1:	2 data bi	ts	bits	
AD21b	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error		3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b		Monotonicity	—		_		Guaranteed
	-	Dynamic	c Perforn	nance (1	2-Bit Mo	de)	
AD30a	THD	Total Harmonic Distortion			-75	dB	_
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	—
AD32a	SFDR	Spurious Free Dynamic Range	80	—	_	dB	_
AD33a	FNYQ	Input Signal Bandwidth	_		250	kHz	
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	_

TABLE 26-44: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S	
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		64		
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	5.30 5.40 5.50			
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	5.30	5.40	5.50	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30 0.40 0.50		0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch E			0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

Revision C (March 2011)

This revision includes typographical and formatting changes throughout the data sheet text. In addition, all instances of VDDCORE have been removed.

All other major changes are referenced by their respective section in the following table.

TABLE B-2:	MAJOR	SECTION	UPDATES
		02011011	0. 5/1150

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the title of Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)".
	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 " Oscillator Value Conditions on Device Start-up ".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): • TMR1 • TMR2 • TMR3 • TMR4 • TMR5 • TMR6 • TMR7 • TMR8 • TMR9
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1).
	Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3).
	Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the VREFL references in the ADC1 module block diagram (see Figure 22-1).
Section 23.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 23.1 "Configuration Bits" .
	Added the column "RTSP Effects" to the Configuration Bits Descriptions (see Table 23-2).

NOTES: