

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc510at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

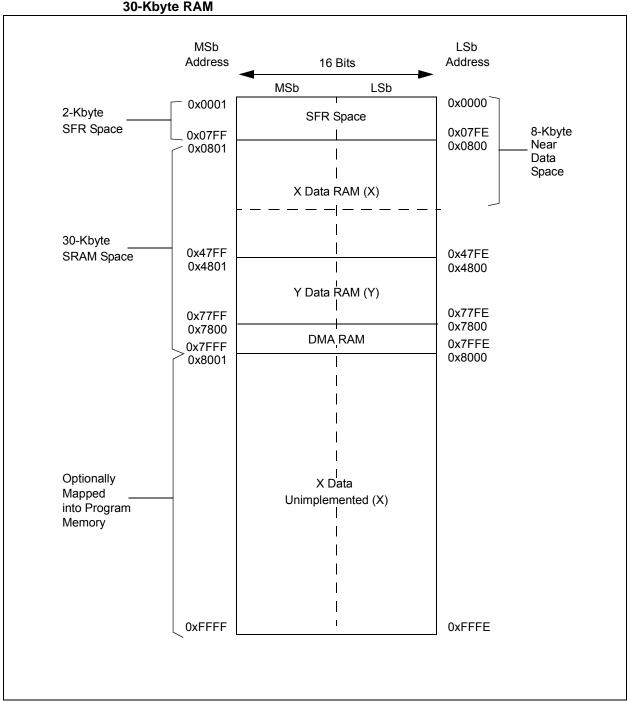
The dsPIC33FJXXXMCX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXMCX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum 'C' compiler efficiency. For most instructions, the dsPIC33FJXXXMCX06A/X08A/X10A devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

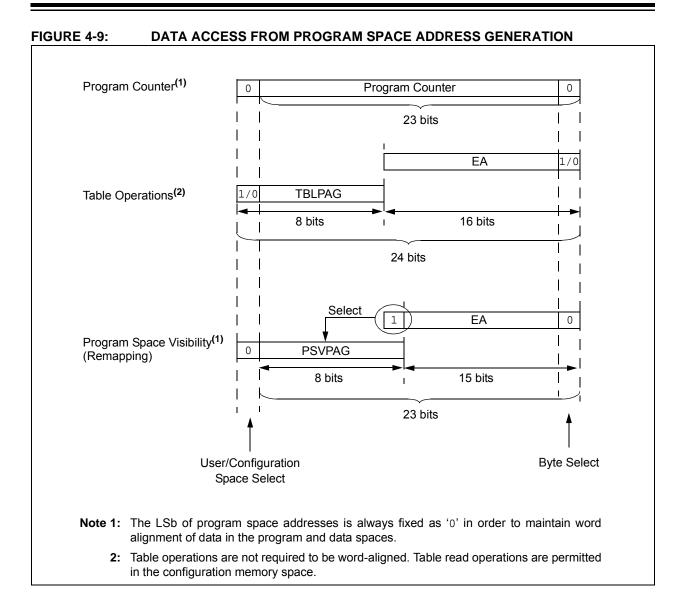
A block diagram of the CPU is shown in Figure 3-1 and the programmer's model for the dsPIC33FJXXXMCX06A/X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes, and is split into two blocks referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.


Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space.


The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers but may be used as general purpose RAM.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers, and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 30-Kbyte RAM

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

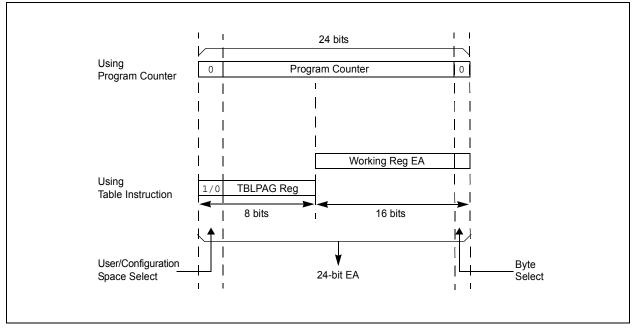
Flash memory can be programmed in two ways:

- 1. In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXMCX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and

three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or 'rows') of 64 instructions (192 bytes) at a time or by single program memory word; the user can erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	_	—	—		—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:								
R = Readable		W = Writable		-	nented bit, read			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15		ole Alternate In	•	lable bit				
		nate Interrupt \ lard (default) v						
bit 14		struction Statu						
		ruction is activ						
	0 = DISI inst	ruction is not a	ictive					
bit 13-5	Unimplemen	ted: Read as '	0'					
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Select	bit			
		on negative ed						
	-	on positive edg						
bit 3		•	•	Polarity Select	bit			
		on negative ed on positive edg						
bit 2	-			Polarity Select	bit			
SIT Z	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge							
	0 = Interrupt on positive edge							
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit							
	1 = Interrupt on negative edge							
	•	on positive edg						
bit 0				Polarity Select	bit			
		on negative ed						

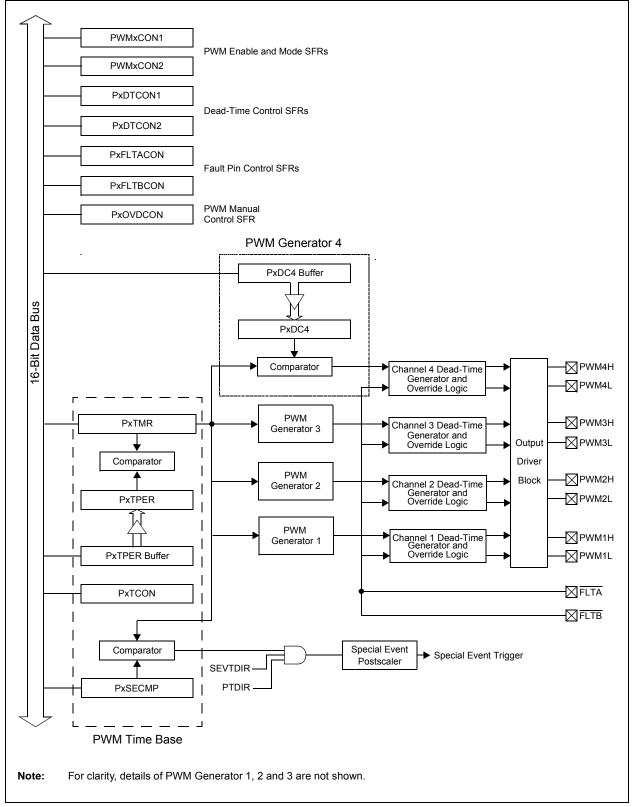
REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INT0IF	
bit 7	L.						bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	Unimplemen	ted: Read as	ʻ0'					
bit 14	-		ata Transfer C	omplete Interro	upt Flag Status	s bit		
		request has oc						
	•	request has no						
bit 13			Complete Interr	upt Flag Status	s bit			
		request has oc request has no						
bit 12	U1TXIF: UART1 Transmitter Interrupt Flag Status bit							
		request has oc						
	-	request has no						
bit 11			nterrupt Flag S	Status bit				
		request has oc request has no						
bit 10	•	•	ot Flag Status b	oit				
		request has oc						
	-	request has no						
bit 9			pt Flag Status I	bit				
		request has oc request has no						
bit 8	•	Interrupt Flag						
		request has oc						
	•	request has no						
bit 7		Interrupt Flag						
		request has oc request has no						
bit 6	-	-		upt Flag Status	bit			
		OC2IF: Output Compare Channel 2 Interrupt Flag Status bit 1 = Interrupt request has occurred						
	•	request has no						
bit 5		-	el 2 Interrupt F	lag Status bit				
		request has oc request has no						
bit 4	-	-	ata Transfer C	omplete Interri	upt Flag Status	s bit		
		request has oc						
	-	request has no						
bit 3		Interrupt Flag request has or						

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF
bit 7					I		bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	T6IF: Timer6	Interrupt Flag	Status bit				
		request has oc request has no					
bit 14		•		Complete Interi	rupt Flag Status	bit	
		request has oc request has no		·			
bit 13		ted: Read as '					
bit 12	OC8IF: Outpu	ut Compare Ch	annel 8 Interr	upt Flag Status	s bit		
		request has oc request has no					
bit 11	OC7IF: Outpu	ut Compare Ch	annel 7 Interr	upt Flag Status	s bit		
		request has oc					
		request has no					
bit 10	•	ut Compare Ch		upt Flag Status	s bit		
		request has oc request has no					
bit 9	-	ut Compare Ch		upt Flag Status	s bit		
		request has oc request has no					
bit 8	•	Capture Chann		-lag Status hit			
bit o	1 = Interrupt	request has oc request has no	curred	lag Status bit			
bit 7	•	Capture Chann		-lao Status bit			
	•	request has oc	•				
		request has no					
bit 6	IC4IF: Input C	Capture Chann	el 4 Interrupt I	-lag Status bit			
		request has oc					
bit 5	-	request has no Capture Chappe		- Elaa Status hit			
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred						
bit 4	•	•		omnlete Inter	rupt Flag Status	hit	
	1 = Interrupt	request has oc request has no	curred		apting Status	JA	
bit 3	-	l Event Interrup		bit			
Sit U		request has oc	-				
		request has no					

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	_	TSIDL ⁽²⁾		_	_	_	_
bit 15				•			bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽¹⁾	TCKPS	<1:0> (1)	—		TCS ^(1,3)	
bit 7							bit (
Legend:	. 1. 11						
R = Readable		W = Writable	DIt	U = Unimplen			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-						
	0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Stop i	in Idle Mode bit	(2)				
				device enters Id	le mode		
	0 = Continue	module operati	on in Idle mo	ode			
bit 12-7	-	ted: Read as '					
bit 6	TGATE: Time	ery Gated Time	Accumulatio	n Enable bit ⁽¹⁾			
	When TCS =						
	This bit is ign						
	When TCS = 1 = Gated tim	<u>0:</u> ne accumulatior	enabled				
		ne accumulation					
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Presca	ale Select bits ⁽¹⁾			
	11 = 1:256	·					
	10 = 1:64						
	01 = 1:8						
h :+ 0 0	00 = 1:1	tod. Dood oo '	、				
bit 3-2	•	ted: Read as '0 Clock Source S					
bit 1	,						
	1 = External c 0 = Internal c	clock from TyCł lock (Ecy)	C pin (on the	nsing edge)			
bit 0		ited: Read as ')'				
	P		-				
				= 1), these bits	have no effec	t on Timery operat	tion; all time
fur	nctions are set th	hrough T2CON					

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge
	0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED) (where x = 1 or 2)

- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 - 0 = Always uses channel input selects for Sample A

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

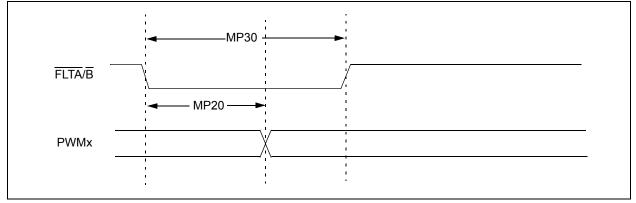
25.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

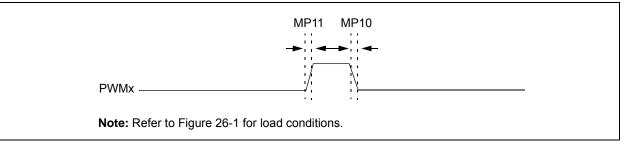
- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code


MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

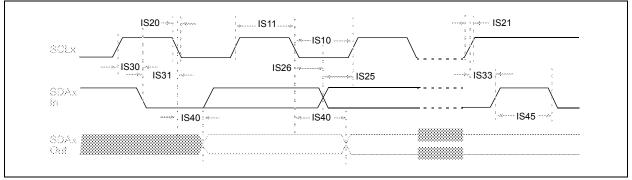
DC CH4	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}$ $-40^{\circ}C \le TA \le +125$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL \leq 3 mA, VDD = 3.3V		
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	Iol \leq 6 mA, VDD = 3.3V		
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	IOL \leq 10 mA, VDD = 3.3V		
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$IOL \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
DO20 Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	$IOL \ge -6 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	IoL ≥ -10 mA, VDD = 3.3V		
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1		
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1		
DO20A Voh1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	v	IOH ≥ -11 mA, VDD = 3.3V See Note 1			
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage 8x Source Driver Pins - OSC2,	1.5	_	_		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -16 \mbox{ mA, VDD} = 3.3 V \\ \mbox{See } Note \ 1 \end{array}$		
		CLKO, RC15	2.0	_	_	v	IOH ≥ -12 mA, VDD = 3.3V See Note 1		
			3.0	_			IOH ≥ -4 mA, VDD = 3.3V See Note 1		


TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 26-9: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 26-10: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS


TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless	rd Opera otherwis ng tempe	se stateo rature	1) -40°C ≤ ⊺	3.0V to 3.6V $FA \le +85^{\circ}C$ for Industrial $FA \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions			Conditions	
MP10	TFPWM	PWM Output Fall Time	_	—	—	ns	See parameter D032
MP11	TRPWM	PWM Output Rise Time	_	—	—	ns	See parameter D031
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—	—	50	ns	_
MP30	Tfh	Minimum Pulse Width	50	_	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

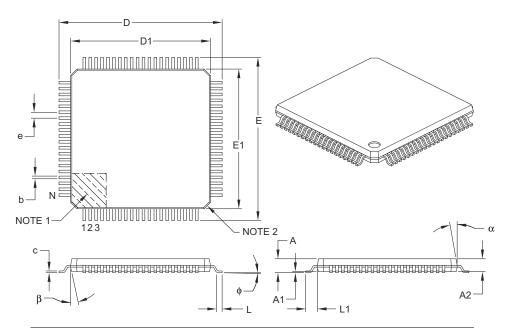

АС СНА		STICS		Standard Op (unless othe Operating ten	rwise st	ated) e -40°	ns: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	—
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	_
		Setup Time	400 kHz mode	100		ns	
		1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs	_
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	—
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μs	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	—
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—
		From Clock	400 kHz mode	0	1000	ns	1
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free
			400 kHz mode	1.3		μS	before a new transmission
			1 MHz mode ⁽¹⁾	0.5		μs	can start
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	_

TABLE 26-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		80	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		14.00 BSC	
Overall Length	D		14.00 BSC	
Molded Package Width	E1		12.00 BSC	
Molded Package Length	D1	12.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

INDEX

1	•
r	٩.
-	-

A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	290, 333
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	290, 333
ADC Module	
ADC1 Register Map	
ADC2 Register Map	
Alternate Vector Interrupt Table (AIVT)	85
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Barrel Shifter	33
Bit-Reversed Addressing	66
Example	
Implementation	
Sequence Table (16-Entry)	67
Block Diagrams	
16-Bit Timer1 Module	165
A/D Module	246
Connections for On-Chip Voltage Regulator	264
Device Clock (Oscillator)	
Device Clock (PLL)	
DSP Engine	
dsPIC33F	
dsPIC33F CPU Core	
ECAN Technology	
I ² C Module	204
Input Capture	173
Output Compare	175
Programmer's Model	
PWM Module	
Quadrature Encoder Interface	193
Reset System	
Shared Port Structure	161
SPI Module	197
Timer2 (16-Bit)	169
Timer2/3 (32-Bit)	
Top Level System Architecture Using Dedicated	
Transaction Bus	134
UART Module	211
Watchdog Timer (WDT)	265
Brown-out Reset (BOR)	264
С	
C Compilers	
MPLAB C18	276
Clock Switching	
Enabling	
Sequence Code Examples	101
Erasing a Program Memory Page	76
Initiating a Programming Sequence	
Loading Write Buffers	

Code Protection	259, 266
CodeGuard Security	259, 266
Configuration Bits	259
Configuration Register Map	
Configuring Analog Port Pins	162
Control Register	
CPU Clocking System	
PLL	144
Selection	144
Sources	144
Customer Change Notification Service	369
Customer Notification Service	369
Customer Support	369
D	
Data Accumulators and Adder/Subtracter	31
Data Space Write Saturation	33
Overflow and Saturation	31
Round Logic	32
Write Back	32
Data Address Space	37
Alignment	37
Memory Map for dsPIC33FJXXXMCX06A/X08	A/X10A
Devices with 16-Kbyte RAM	39

Graphs and Tables 339 Doze Current (IDOZE)...... 285, 331 High Temperature...... 330 I/O Pin Input Specifications 286 Operating Current (IDD) 282 Operating MIPS vs. Voltage 330 Program Memory...... 289 Temperature and Voltage...... 330

DMA Register Map53DMAC Registers135DMAXCNT135DMAxCON135DMAxPAD135DMAxREQ135DMAxSTA135DMAxSTB135DSP Engine29Multiplier31

DC and AC Characteristics

DMA Module

Pinout I/O Descriptions (table)	15
Register Map	62
POR and Long Oscillator Start-up Times	84
PORTA	
Register Map	60
PORTB	
Register Map	60
PORTC	
Register Map	61
PORTD	
Register Map	61
PORTE	
Register Map	61
PORTF	
Register Map	61
PORTG	
Register Map	62
Power-Saving Features1	
Clock Frequency and Switching1	53
Program Address Space	
Construction	68
Data Access from Program Memory Using	
Program Space Visibility	71
Data Access from Program Memory Using	
Table Instructions	
Data Access from, Address Generation	
Memory Map	35
Table Read High Instructions	
TBLRDH	70
Table Read Low Instructions	
TBLRDL	
Visibility Operation	71
Program Memory	~~
Interrupt Vector	
Organization	
Reset Vector	30

Q

Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface (QEI) M	odule
Register Map	

R

Reader Response	370
Registers	
ADxCHS0 (ADCx Input Channel 0 Select)	256
ADxCHS123 (ADCx Input	
Channel 1, 2, 3 Select)	255
ADxCON1 (ADCx Control 1)	249
ADxCON2 (ADCx Control 2)	251
ADxCON3 (ADCx Control 3)	253
ADxCON4 (ADCx Control 4)	254
ADxCSSH (ADCx Input Scan Select High)	257
ADxCSSL (ADCx Input Scan Select Low)	
ADxPCFGH (ADCx Port Configuration High)	258
ADxPCFGL (ADCx Port Configuration Low)	258
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	231
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	232
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	233
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	234
CiCFG1 (ECAN Baud Rate Configuration 1)	228
CiCFG2 (ECAN Baud Rate Configuration 2)	229
CiCTRL1 (ECAN Control 1)	220
CiCTRL2 (ECAN Control 2)	
CiEC (ECAN Transmit/Receive Error Count)	227
. , , , , , , , , , , , , , , , , , , ,	

CIFCTRL (ECAN FIFO Control)	
CiFEN1 (ECAN Acceptance Filter Enable)	230
CiFIFO (ECAN FIFO Status)	224
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)	
	230
CiFMSKSEL2 (ECAN Filter 15-8 Mask	
Selection)	237
CiINTE (ECAN Interrupt Enable)	
CilNTF (ECAN Interrupt Flag)	225
CiRXFnEID (ECAN Acceptance Filter n	
Extended Identifier)	235
CiRXFnSID (ECAN Acceptance Filter n	
	00F
Standard Identifier)	
CiRXFUL1 (ECAN Receive Buffer Full 1)	239
CiRXFUL2 (ECAN Receive Buffer Full 2)	239
CiRXMnEID (ECAN Acceptance Filter	
	~~~
Mask n Extended Identifier)	238
CiRXMnSID (ECAN Acceptance Filter Mask n	
Standard Identifier)	238
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	240
CiTRBnDLC (ECAN Buffer n Data	
Length Control)	243
CiTRBnDm (ECAN Buffer n Data Field Byte m)	
CiTRBnEID (ECAN Buffer n Extended Identifier)	242
CiTRBnSID (ECAN Buffer n Standard Identifier)	242
CiTRBnSTAT (ECAN Receive Buffer n Status)	
CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code)	
CLKDIV (Clock Divisor)	148
CORCON (Core Control)	
DFLTxCON (Digital Filter x Control)	196
DMACS0 (DMA Controller Status 0)	139
DMACS1 (DMA Controller Status 1)	141
DMAxCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	135
DMAxPAD (DMA Channel x	
Peripheral Address)	138
DMAxREQ (DMA Channel x IRQ Select)	
	150
DMAxSTA (DMA Channel x RAM Start	
Address Offset A)	137
DMAxSTB (DMA Channel x RAM Start	
Address Offset B)	137
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	206
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON (Input Capture x Control)	
IEC0 (Interrupt Enable Control 0)	103
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	111
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	100
IFS4 (Interrupt Flag Status 4)	
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	93
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2)	
INTCON1 (Interrupt Control 1)	130
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG (Interrupt Control and Status)	
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG (Interrupt Control and Status) IPC0 (Interrupt Priority Control 0)	112
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG (Interrupt Control and Status) IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1)	112 113
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG (Interrupt Control and Status) IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10)	112 113 122
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG (Interrupt Control and Status) IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10) IPC11 (Interrupt Priority Control 11)	112 113 122 123
INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2) INTTREG (Interrupt Control and Status) IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC10 (Interrupt Priority Control 10)	112 113 122 123