

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc706a-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXMCX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXMCX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum 'C' compiler efficiency. For most instructions, the dsPIC33FJXXXMCX06A/X08A/X10A devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1 and the programmer's model for the dsPIC33FJXXXMCX06A/X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes, and is split into two blocks referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers but may be used as general purpose RAM.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers, and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0	
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ⁽⁴⁾	DA	DC	
bit 15							bit 8	
		(0)						
R/W-0	(3) R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	C	
bit 7							bit 0	
Legend:			1.11					
C = Clear	able bit	R = Readable			mented bit, read	las '0'		
S = Setta	ble bit	W = Writable	bit	-n = Value at	POR			
'1' = Bit is	set	'0' = Bit is cle	ared	x = Bit is unk	nown			
L:1 1 F			. Otatua hit					
DIT 15		lator A Overflow	N Status Dit					
	1 = Accumula 0 = Accumula 0	ator A has not o	overflowed					
bit 14	OB: Accumu	lator B Overflow	v Status bit					
	1 = Accumula	ator B overflow	ed					
	0 = Accumula	ator B has not o	overflowed					
bit 13	SA: Accumulator A Saturation 'Sticky' Status bit ⁽¹⁾							
	1 = Accumula 0 = Accumula	ator A is satura ator A is not sat	ted or has bee turated	en saturated at	some time			
bit 12	SB: Accumul	ator B Saturation	on 'Sticky' Stat	tus bit ⁽¹⁾				
	1 = Accumula	ator B is satura	ted or has bee	en saturated at	some time			
	0 = Accumula	ator B is not sat	turated					
bit 11	OAB: OA C	DB Combined A	ccumulator O	verflow Status	bit			
	1 = Accumula	ators A or B ha	ve overflowed	rflowed				
bit 10	0 = Neither A	Combined A		inlowed	.(4)			
DIL TO		ators A or B are	saturated or	have been sat	urated at some	time in the nast	ŧ.	
	0 = Neither A	ccumulator A c	or B are satura	ited		time in the past		
bit 9	DA: DO Loop	Active bit						
	1 = DO loop ir	n progress						
	0 = DO loop n	ot in progress						
bit 8	DC: MCU AL	U Half Carry/B	orrow bit					
	1 = A carry-c	out from the 4th	low-order bit (for byte-sized	data) or 8th low-	order bit (for wo	rd-sized data)	
	0 = No carry	suit occurred	th low-order h	oit (for byte-siz	red data) or 8th	low-order bit (f	or word-sized	
	data) of t	the result occur	red				0	
Note 1:	This bit may be read	ad or cleared (I	not set).					
2:	The IPL<2:0> bits	are concatena	ted with the IP	PL<3> bit (COF	RCON<3>) to fo	rm the CPU inte	errupt priority	
	level. The value in IPL<3> = 1.	parentheses ir	ndicates the IF	PL if IPL<3> =	1. User interrup	ts are disabled	when	
3:	The IPL<2:0> Stat	us bits are read	d only when N	STDIS = 1 (IN	TCON1<15>).			

4: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.

NOTES:

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 16-Kbyte RAM

IADLE	4-0.				IAF													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period I	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	_	_	_	—	—	—	TGATE	TCKP	S<1:0>	—	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register 00									0000						
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only)									xxxx						
TMR3	010A		Timer3 Register 000								0000							
PR2	010C								Period I	Register 2								FFFF
PR3	010E								Period I	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	_	_	_	—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						٦	Timer5 Holdi	ing Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								0000
PR4	011A								Period I	Register 4								FFFF
PR5	011C								Period I	Register 5								FFFF
T4CON	011E	TON	_	TSIDL		_		—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	_	0000
T5CON	0120	TON	_	TSIDL		_		—	—	—	TGATE	TCKP	S<1:0>	—		TCS	_	0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						7	Timer7 Holdi	ing Register	(for 32-bit o	perations on	ly)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period I	Register 6								FFFF
PR7	012A								Period I	Register 7								FFFF
T6CON	012C	TON	—	TSIDL				—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T7CON	012E	TON	—	TSIDL	_			—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132						7	Timer9 Holdi	ing Register	(for 32-bit o	perations on	ly)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period I	Register 8								FFFF
PR9	0138								Period I	Register 9								FFFF
T8CON	013A	TON	—	TSIDL		—	—	—	—	—	TGATE	TCKP	S<1:0>	T32		TCS	—	0000
T9CON	013C	TON	_	TSIDL				_	_	_	TGATE	TCKP	S<1:0>	_		TCS	_	0000

TABLE 4-6: TIMER REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order; thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when the following conditions exist:

- The BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data; normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. In the event that the user
	attempts to do so, Bit-Reversed Address-
	ing will assume priority for the X WAGU,
	and X WAGU Modulo Addressing will be
	disabled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

Vector	Interrupt Request (IRQ)	IVT Address	AIVT Address	Interrupt Source
Number	Number			
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	PWM – PWM Period Match
66	58	0x000088	0x000188	QEI – Position Counter Compare
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	FLTA – MCPWM Fault A
72	64	0x000094	0x000194	FLTB – MCPWM Fault B
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4-	0x0001A4-	Reserved
		0x0000FE	0x0001FE	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x000008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
		CNIP<2:0>				—	_			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		MI2C1IP<2:0>				SI2C1IP<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	Unimplemer	nted: Read as '	0'							
bit 14-12	CNIP<2:0>: Change Notification Interrupt Priority bits									
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interru	pt source is dis	abled							
bit 11-7	Unimplemer	nted: Read as '	0'							
bit 6-4	MI2C1IP<2:0	D>: I2C1 Master	Events Inter	rupt Priority bite	5					
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interru	ipt source is dis	abled							
bit 3	Unimplemer	nted: Read as '	0'							
bit 2-0	SI2C1IP<2:0	>: I2C1 Slave E	Events Interru	pt Priority bits						
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interru	ipt source is dis	abled							

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		OC3IP<2:0>				DMA2IP<2:0>	
bit 7							bit 0
Lagand							
R = Readable	hit	W = Writable I	hit	II = I Inimple	mented hit re	ad as 'O'	
-n = Value at F	POR	'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is cle}$	eared	x = Bit is unkno	wn
				0 Ditio die			////
bit 15	Unimpleme	nted: Read as '0)'				
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits				
	111 = Interr	upt is priority 7 (ł	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0)'				
bit 10-8	OC4IP<2:0>	Output Compa 	re Channel 4	Interrupt Prior	rity bits		
	⊥⊥⊥ = Intern	upt is priority 7 (r	lignest priori	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '()'				
bit 6-4	OC3IP<2:0>	: Output Compa	re Channel 3	Interrupt Prior	itv bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)	,		
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as '0)'				
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tra	nsfer Complete	e Interrupt Pric	prity bits	
	111 = Intern	upt is priority 7 (r	highest priorit	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1	ahled				
	555 - int o n		20100				

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A oscillator system provides the following:

- · Various external and internal oscillator options as clock sources
- · An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- · The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- · Programmable clock postscaler for system power savings
- · A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- · Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

Note 1: See Figure 9-2 for PLL details.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 MΩ must be connected.
- 3: The term, FP refers to the clock source for all the peripherals, while Fcy refers to the clock source for the CPU. Throughout this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

REGISTER 16-14: PxDC3: PWMx DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			PDC	3<15:8>						
bit 15	bit 15 bit 8									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PDC3<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown			

bit 15-0 PDC3<15:0>: PWM Duty Cycle #3 Value bits

REGISTER 16-15: PxDC4: PWMx DUTY CYCLE REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC4	4<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown

bit 15-0 PDC4<15:0>: PWM Duty Cycle #4 Value bits

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	FRMPOL		—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
_	_	—	—			FRMDLY				
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						d as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit							
	1 = Framed SPIx support enabled (\overline{SSx} pin used as frame Sync pulse input/output)									
	0 = Framed S	SPIx support dis	sabled							
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	ntrol bit						
	1 = Frame Sync pulse input (slave)									
hit 13	EPMPOL · Er	ame Sync Puls								
bit 15	1 = Frame Sv	ine Sync i uis inc nuise is acti	ive-high							
	0 = Frame Sy	nc pulse is act	ive-low							
bit 12-2	Unimplemen	ted: Read as '	0'							
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Select	bit						
	1 = Frame Sy	nc pulse coinci	ides with first	bit clock						
	0 = Frame Sy	nc pulse prece	des first bit cl	ock						
bit 0	Unimplemen	ted: This bit m	ust not be set	to '1' by the us	ser application.					

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXMCX06A/X08A/X10A device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-Deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 20-1. The UART module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

R/W	/-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F	=15MSK<1:0>	F14MSK<	1:0>	F13MS	SK<1:0>	F12MSK	<1:0>
bit 15							bit 8
r							
R/W	/-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F	-11MSK<1:0>	F10MSK<	1:0>	F9MS	K<1:0>	F8MSK	<1:0>
bit 7							bit 0
·							
Legend							
R = Rea		vv = vvritable bit			hented bit, rea		
-n = vai	ue at POR	" = Bit is set		U = BIt Is clea	ared	x = Bit is unkno	wn
bit 15 1.	4 E15MGK -1.0	Nock Source fr	or Eiltor 15	hit			
DIL 15-14	+ FISWSK<1.0	d: do not use		DI			
	10 = Accepta	nce Mask 2 regist	ers contair	n mask			
	01 = Accepta	nce Mask 1 regist	ers contair	n mask			
	00 = Accepta	nce Mask 0 regist	ers contair	n mask			
bit 13-12	2 F14MSK<1:0	>: Mask Source for	or Filter 14	bit			
	11 = Reserve	d; do not use	ana aantain				
	10 = Accepta	nce Mask 2 regist ince Mask 1 regist	ers contair ers contair	n mask			
	00 = Accepta	nce Mask 0 regist	ers contair	n mask			
bit 11-1(F13MSK<1:0	>: Mask Source fo	or Filter 13	bit			
	11 = Reserve	d; do not use					
	10 = Accepta	nce Mask 2 regist	ers contair	n mask			
	01 = Accepta	nce Mask 1 regist	ers contair	n mask N mask			
hit 9-8		Nesk Source fo	or Filter 12	hit			
	11 = Reserve	ed; do not use		Sit			
	10 = Accepta	nce Mask 2 regist	ers contair	n mask			
	01 = Accepta	nce Mask 1 regist	ers contair	n mask			
h:+ 7 C		nce Mask 0 regist		n mask			
DIL 7-0	11 = Reserve	>: Mask Source it		DIL			
	10 = Accepta	nce Mask 2 regist	ers contair	n mask			
	01 = Accepta	nce Mask 1 regist	ers contair	n mask			
	00 = Accepta	nce Mask 0 regist	ers contair	n mask			
bit 5-4	F10MSK<1:0	>: Mask Source for	or Filter 10	bit			
	11 = Reserve	:0; 00 NOT USE	ore contair	mask			
	01 = Accepta	ince Mask 1 regist	ers contair	n mask			
	00 = Accepta	nce Mask 0 regist	ers contair	n mask			
bit 3-2	F9MSK<1:0>	: Mask Source for	r Filter 9 bit	t			
	11 = Reserve	d; do not use					
	10 = Accepta	nce Mask 2 regist	ers contair	n mask N mask			
	00 = Accepta	ince Mask 0 regist	ers contair	n mask			
bit 1-0	F8MSK<1:0>	: Mask Source for	Filter 8 bit	t			
	11 = Reserve	d; do not use					
	10 = Accepta	nce Mask 2 regist	ers contair	n mask			
	01 = Accepta	nce Mask 1 regist	ers contair	n mask			
	00 = Accepta	nce mask 0 regist	ers contair	I INASK			

REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	t	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	±, WREG	WREG = Rotate Right through Carry Ma	1	1	C,N,Z
66	DDVG	RRC	Ws,Wa	f = Detete Dight (No Corry) f	1	1	
00	RRNC	RRNC	I f NDEC	WPEC = Pototo Right (No Carry) f	1	1	N,Z
		RRINC	I, WREG	WREG - Rolate Right (No Carry) Wa	1	1	N,Z
07	~~~	RRINC	ws,wa	Stars Assumulates	1	1	IN,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
69	0.7	SAC.R	ACC, #SIIT4, Wdo	Store Rounded Accumulator	1	1	
60	CETM	CETTM	ms,WILL		1	1	U,IN,∠
09	SEIM	SEIM	L		1	1	None
		OFTM CFTM	WREG	Will - UNITIT	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB,
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units Conditions					
Idle Current (II	DLE): Core Of	f, Clock On E	Base Current	(1)				
DC40d	3	25	mA	-40°C				
DC40a	3	25	mA	+25°C				
DC40b	3	25	mA	+85°C	3.3V	10 MIPS		
DC40c	3	25	mA	+125°C				
DC41d	4	25	mA	-40°C				
DC41a	5	5 25 mA +25°		+25°C	2.2)/ 16			
DC41b	6	25	mA	+85°C	3.3V	TO MIES		
DC41c	6	25	mA	+125°C				
DC42d	8	25	mA	-40°C				
DC42a	9	25	mA	+25°C	2 2)/	20 MIPS		
DC42b	10	25	mA	+85°C	3.3 V			
DC42c	10	25	mA	+125°C				
DC43a	15	25	mA	+25°C				
DC43d	15	25	mA	-40°C	2 2)/			
DC43b	15	25	mA	+85°C	3.3V	30 WIF 3		
DC43c	15	25	mA	+125°C				
DC44d	16	25	mA	-40°C				
DC44a	16	25	mA	+25°C	2 2)/			
DC44b	16	25	mA	+85°C	3.3V	40 WIFS		
DC44c	16	25	mA	+125°C	<u> </u>			

TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- · JTAG is disabled
- **2:** These parameters are characterized but not tested in manufacturing.
- **3:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-19: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

27.1 High Temperature DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33FJXXXMCX06A/X08A/X10A		
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 26-11 for the minimum and maximum BOR values.

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ - TA)/θJ	A	W

TABLE 27-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Parameter No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
Operating V	Operating Voltage									
HDC10	Supply Voltage									
	Vdd	_	3.0	3.3	3.6	V	-40°C to +150°C			

TABLE 27-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Parameter No.	Typical	Мах	Units	its Conditions				
Power-Down	Power-Down Current (IPD)							
HDC60e 250 2000			μA	+150°C 3.3V Base Power-Down Current ^(1,3)				
Note 1. Base IDD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and								

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7505

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11