

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

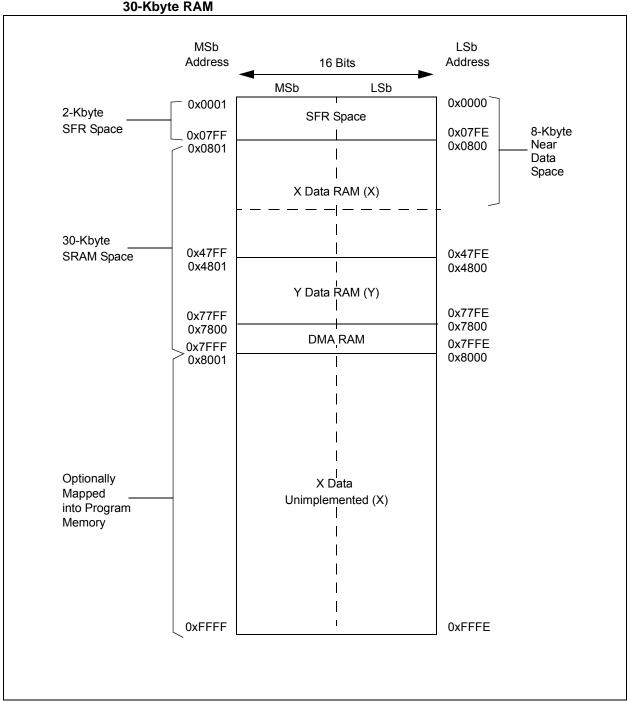
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc710a-e-pf

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_		—	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7					I		bit (
Legend:		C = Clearabl	a hit				
R = Readabl	e bit	W = Writable		-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle		'x = Bit is unk			mented bit, read		
					,		
bit 15-13	-	ted: Read as					
bit 12		tiply Unsigned	•	ol bit			
	U U	ne multiplies a ne multiplies a	0				
bit 11	•	C Loop Termina	•	_{oit} (1)			
	•	•		f current loop it	eration		
	0 = No effect	J					
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops active					
	•						
	001 = 1 DO lo	op active					
	000 = 0 DO lo	ops active					
bit 7		Saturation Ena					
		ator A saturation ator A saturation					
bit 6		Saturation Ena					
		ator B saturatio					
	0 = Accumula	ator B saturation	on disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
		ce write satura					
bit 4		ce write satura cumulator Satu		Soloct bit			
		ration (super s					
		ration (normal					
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 (2)			
		rupt priority le	U U				
1.11.0		rupt priority le					
bit 2	-	-	•	ace Enable bit			
	•	space visible i space not visit	•	се			
bit 1	-	ng Mode Sele	-				
		onventional) re		ed			
		(convergent)	-				
bit 0	•	Fractional Mu	•				
		ode enabled for I mode enable					
		i noue enable	ייסט ווחו	upiy ops			

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

NOTES:

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 30-Kbyte RAM

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV and are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data using PSV to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

© 2009-2012 Microchip Technology Inc.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
54	46	0x000070	0x000170	DMA4 – DMA Channel 4
55	47	0x000072	0x000172	T6 – Timer6
56	48	0x000074	0x000174	T7 – Timer7
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events
59	51	0x00007A	0x00017A	T8 – Timer8
60	52	0x00007C	0x00017C	T9 – Timer9
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3
62	54	0x000080	0x000180	INT4 – External Interrupt 4
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready
64	56	0x000084	0x000184	C2 – ECAN2 Event
65	57	0x000086	0x000186	PWM – PWM Period Match
66	58	0x000088	0x000188	QEI – Position Counter Compare
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	62	0x000090	0x000190	Reserved
71	63	0x000092	0x000192	FLTA – MCPWM Fault A
72	64	0x000094	0x000194	FLTB – MCPWM Fault B
73	65	0x000096	0x000196	U1E – UART1 Error
74	66	0x000098	0x000198	U2E – UART2 Error
75	67	0x00009A	0x00019A	Reserved
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request
80-125	72-117	0x0000A4- 0x0000FE	0x0001A4- 0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

REGISTER 7-12:	IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
----------------	---

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IE	DMA4IE		OC8IE	OC7IE	OC6IE	OC5IE	IC6IE
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE
bit 7	ł						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	T6IF: Timer6	Interrupt Enabl	e bit				
		request enabled					
		request not ena					
bit 14		A Channel 4 D		Complete Interi	rupt Enable bit		
		request enableo request not ena					
bit 13		ted: Read as '					
bit 12	-	ut Compare Ch		unt Enable bit			
51(12	•	request enabled					
		equest not ena					
bit 11	•	ut Compare Ch		upt Enable bit			
		request enabled request not ena					
bit 10	•	ut Compare Ch		upt Enable bit			
	1 = Interrupt r	request enabled	b				
	•	request not ena					
bit 9	1 = Interrupt r	ut Compare Ch request enableo request not ena	b	upt Enable bit			
bit 8		Capture Channe		Enable bit			
	1 = Interrupt r	request enable request not ena	d				
bit 7	IC5IE: Input C	Capture Channe	el 5 Interrupt I	Enable bit			
		request enable request not ena					
bit 6	IC4IE: Input C	Capture Channe	el 4 Interrupt I	Enable bit			
		request enableo request not ena					
bit 5	•	Capture Channe		Enable bit			
	1 = Interrupt r	request enabled request not ena	d				
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Interi	rupt Enable bit		
		request enabled request not ena					
bit 3	-	Event Interrup					
		equest enable					

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	_
bit 15			•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	FLTBIE
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-8 bit 7	•	ted: Read as '		nterrunt Enabl	e hit		
bit 7	C2TXIE: ECA	N2 Transmit D	ata Request li	nterrupt Enable	e bit		
		request enable request not ena					
bit 6	C1TXIE: ECA	N1 Transmit D	ata Request I	nterrupt Enable	e bit		
		request enable request not ena					
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	complete Enab	le Status bit		
		request enable request not ena					
bit 4	DMA6IE: DM	A Channel 6 D	ata Transfer C	complete Enab	le Status bit		
		request enable request not ena					
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	U2EIE: UART	Γ2 Error Interru	pt Enable bit				
		request enable request not ena					
bit 1	•	T1 Error Interru					
	1 = Interrupt ı	request enable request not ena	d				
bit 0	•	V Fault B Interr					
-	ו = Interrupt ו	request enable request not ena	d				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		FLTAIP<2:0>		_	—	—	
bit 15	·			·		•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-1	U-0	U-0
—		DMA5IP<2:0>					—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	FLTAIP<2:0	D>: PWM Fault A	Interrupt Pri	ority bits			
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 11-7	Unimpleme	ented: Read as '	0'				
bit 6-4	DMA5IP<2	:0>: DMA Chann	el 5 Data Tra	nsfer Complete	Interrupt Prior	rity bits	
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1					
	000 = Inter	rupt source is dis	abled				
bit 3-0	Unimpleme	ented: Read as '	0'				

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	_	TSIDL ⁽²⁾		_	_	_	_
bit 15				•			bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽¹⁾	TCKPS	<1:0> (1)	—		TCS ^(1,3)	
bit 7							bit (
Legend:	. 1. 11						
R = Readable		W = Writable	DIt	U = Unimplen			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-						
	0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Stop i	in Idle Mode bit	(2)				
				device enters Id	le mode		
	0 = Continue	module operati	on in Idle mo	ode			
bit 12-7	-	ted: Read as '					
bit 6	TGATE: Time	ery Gated Time	Accumulatio	n Enable bit ⁽¹⁾			
	When TCS =						
	This bit is ign						
	When TCS = 1 = Gated tim	<u>0:</u> ne accumulatior	enabled				
		ne accumulation					
bit 5-4	TCKPS<1:0>	: Timer3 Input	Clock Presca	ale Select bits ⁽¹⁾			
	11 = 1:256	·					
	10 = 1:64						
	01 = 1:8						
h :+ 0 0	00 = 1:1	tod. Dood oo '	、				
bit 3-2	•	ted: Read as '0 Clock Source S					
bit 1	,						
	1 = External c 0 = Internal c	clock from TyCł lock (Ecy)	C pin (on the	nsing edge)			
bit 0		ited: Read as ')'				
	P		-				
				= 1), these bits	have no effec	t on Timery operat	tion; all time
fur	nctions are set th	hrough T2CON					

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTBM	—	—	—	FBEN4 ⁽¹⁾	FBEN3 ⁽¹⁾	FBEN2 ⁽¹⁾	FBEN1 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	hit		nented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own
					arcu		lowin
bit 15-8	FBOVxH<4:1	>:FBOVxI <4:	1>: Fault Inpu	t B PWM Over	ride Value bits		
			•		ault input even	t	
					Fault input eve		
bit 7	FLTBM: Faul	t B Mode bit					
				Cycle-by-Cycle			
		• •		ol pins to the sta	ates programm	ed in FLTBCON	V<15:8>
bit 6-4	•	ted: Read as '					
bit 3		t Input B Enabl		. –	_		
				by Fault Input lled by Fault In			
bit 2		t Input B Enabl			put D		
				by Fault Input	B		
				lled by Fault In			
bit 1	FBEN2: Fault	t Input B Enabl	e bit ⁽¹⁾				
				by Fault Input			
				lled by Fault In	put B		
bit 0		t Input B Enabl					
				by Fault Input lled by Fault In			
	$\alpha = PWW11H/P$	21/1/1/11 nin noi	r in not contro				

REGISTER 16-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER

Note 1: Fault A pin has priority over Fault B pin, if enabled.

25.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

25.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

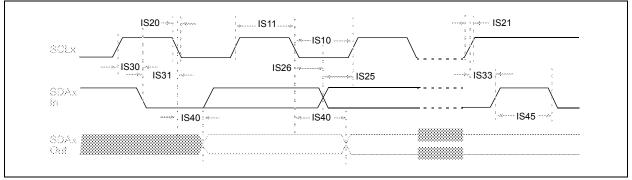
25.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction


25.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

FIGURE 26-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

AC CH	ARACTER	RISTICS	(unless oth	nerwise	ture -40°C ≤	Ta≤ -	/ to 3.6V +85°C for Industrial 125°C for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
	Device Supply											
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	—					
AD02	AVss	Module Vss Supply	Vss - 0.3	—	Vss + 0.3	V						
			Reference	ce Inpu	ts							
AD05	VREFH	Reference Voltage High	AVss + 2.5	_	AVdd	V	_					
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0					
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	—					
AD06a			0	—	0	V	Vrefh = AVdd Vrefl = AVss = 0					
AD07	Vref	Absolute Reference Voltage	2.5	_	3.6	V	Vref = Vrefh - Vrefl					
AD08	IREF	Current Drain	—	_	10	μA	ADC off					
AD08a	IAD	Operating Current		7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, see Note 1 12-bit ADC mode, see Note 1					
			Analog	g Input								
AD12	VINH	Input Voltage Range VINH	VINL	_	VREFH	\vee	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input					
AD13	VINL	Input Voltage Range Vın∟	Vrefl	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input					
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC					

TABLE 26-43: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 27-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Characteristic Min Typ Max Units Conditions							
	LPRC @ 32.768 kHz ⁽¹⁾							
HF21	LPRC	-70 ⁽²⁾	_	+70 ⁽²⁾	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C \qquad$		

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 27-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_		ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				ated)			
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_
HSP41		Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated) Operating temperature $-40^{\circ}C \le Ta \le +150^{\circ}C$ for High Temperature						•		
Param No.	Symbol	Characteristic Min Typ Max Units Conditions						
Reference Inputs								
HAD08	IREF	Current Drain		250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1	

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 27-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

-	AC TERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error	_	5	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V	
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF- ⁽¹⁾								
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
		Dynamic	Performa	nce (12-	-bit Mode	e) ⁽²⁾	•	
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	_	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 27-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

Min lode) – Measi —	Typ urement: 3	Max s with ex	Units ternal V	Conditions /REF+/VREF-(¹⁾ VINL = AVSS = VREFL = 0V,		
lode) – Measi —	1	1	1			
—	3	6	LSb	VINL = AVSS = VREFL = 0V,		
				AVDD = VREFH = 3.6V		
—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
lode) – Meas	urement	s with in	ternal V	REF+/VREF- ⁽¹⁾		
	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
nic Performa	nce (10-	bit Mode) ⁽²⁾	•		
lth —	—	400	kHz	—		
	mic Performa	Iode) – Measurement — 7 — 3 mic Performance (10- Ith —	Iode) – Measurements with in — 7 15 — 3 7 mic Performance (10-bit Mode 400	Node) – Measurements with internal V — 7 15 LSb — 3 7 LSb nic Performance (10-bit Mode) ⁽²⁾		

e 1: These parameters are characterized, but are tested at 20 ksps only.

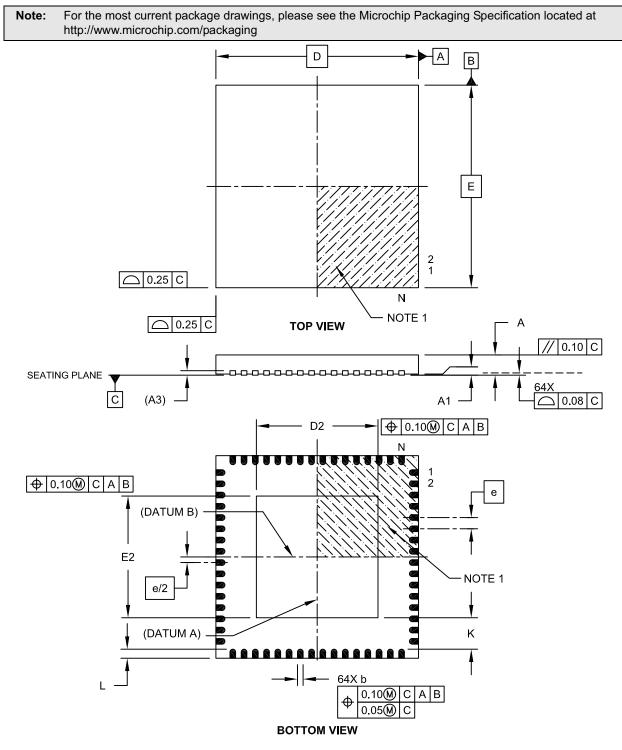
2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

CHARAG	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		Cloc	k Parame	ters			
	-	(1 - 2 - 2) + (1)					
HAD50	TAD	ADC Clock Period ⁽¹⁾	147	—	—	ns	—
HAD50	IAD		147 version R	ate		ns	_

TABLE 27-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 27-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

-	AC TERISTICS	Standard Operating Condition Operating temperature -40°C					ed)
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		Cloc	k Parame	ters			
HAD50	TAD	ADC Clock Period ⁽¹⁾	104			ns	_
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾			800	Ksps	
N	These perspectaves are characterized but not tested in manufacturing						

Note 1: These parameters are characterized but not tested in manufacturing.

29.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the Recommended Minimum Connection (see Figure 2-1).
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 22-2).
Section 23.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 23-1).
Section 26.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".
	Updated Operating MIPS vs. Voltage (see Table 26-1).
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 26-4).
	Updated the notes in the following tables:
	Table 26-5
	Table 26-6
	Table 26-7
	Table 26-8
	Updated the I/O Pin Output Specifications (see Table 26-10).
	Updated the Conditions for parameter BO10 (see Table 26-11).
	Updated the Conditions for parameters D136b, D137b and D138b (TA = 150°C) (see Table 26-12).
Section 27.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings ⁽¹⁾ ".
Characteristics"	Updated the I/O Pin Output Specifications (see Table 27-6).
	Removed Table 26-7: DC Characteristics: Program Memory.

Timing Specifications	
10-Bit A/D Conversion Requirements	328
12-Bit A/D Conversion Requirements	325
CAN I/O Requirements	320
I2Cx Bus Data Requirements (Master Mode)	317
I2Cx Bus Data Requirements (Slave Mode)	319
Motor Control PWM Requirements	300
Output Compare Requirements 2	298
PLL Clock	333
QEI External Clock Requirements	303
QEI Index Pulse Requirements	302
Quadrature Decoder Requirements	301
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out	
Reset Requirements2	295
Simple OC/PWM Mode Requirements 2	299
Timer1 External Clock Requirements2	296
Timer2, Timer4, Timer6 and Timer8 External	
Clock Requirements2	297
Timer3, Timer5, Timer7 and Timer9	
External Clock Requirements2	297

U

UART Module UART1 Register Map51 UART2 Register Map51
V
Voltage Regulator (On-Chip) 264
W
Watchdog Timer (WDT) 259, 265
Programming Considerations
WWW Address
WWW, On-Line Support 11

NOTES: