

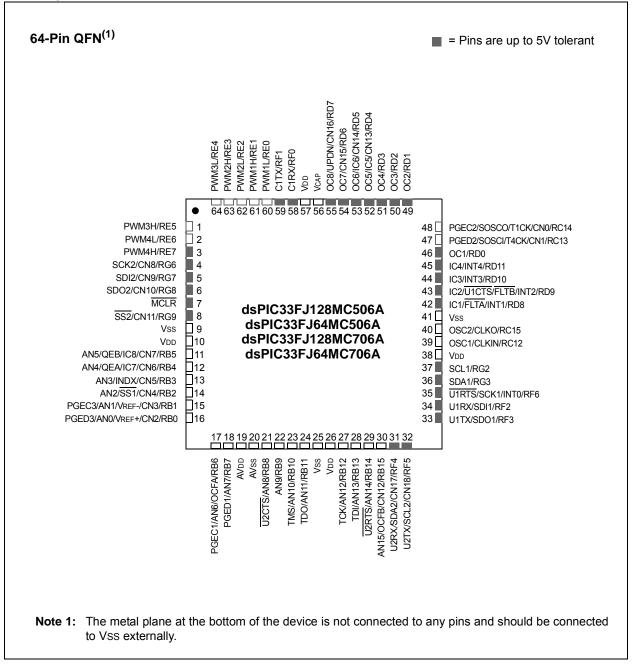
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

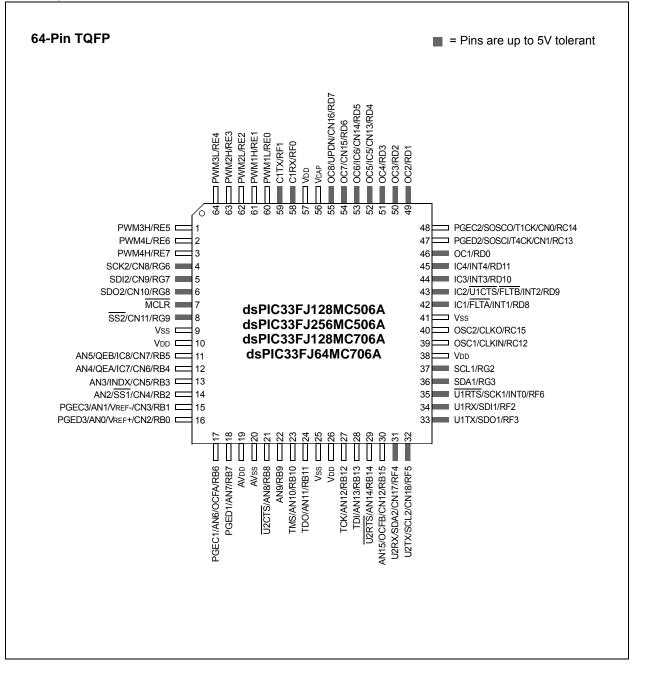
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc710a-i-pf


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

Table of Contents

dsPI	C33F Product Families	
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	19
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	73
6.0	Reset	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	133
9.0	Oscillator Configuration	
10.0	Power-Saving Features	153
	I/O Ports	
12.0	Timer1	
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	
14.0	Input Capture	
	Output Compare	
16.0	Motor Control PWM Module	
17.0		
	Serial Peripheral Interface (SPI)	
19.0	Inter-Integrated Circuit (I ² C™)	
20.0	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN Module	
22.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	
23.0	Special Features	
24.0	Instruction Set Summary	
25.0	Development Support	
26.0	Electrical Characteristics	
	High Temperature Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
	Packaging Information	
	ndix A: Migrating from dsPIC33FJXXXMCX06/X08/X10 Devices to dsPIC33FJXXXMCX06A/X08A/X10A Devices	
	ndix B: Revision History	
	(
	Nicrochip Web Site	
	omer Change Notification Service	
	omer Support	
	er Response	
Prod	uct Identification System	371

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via Email at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

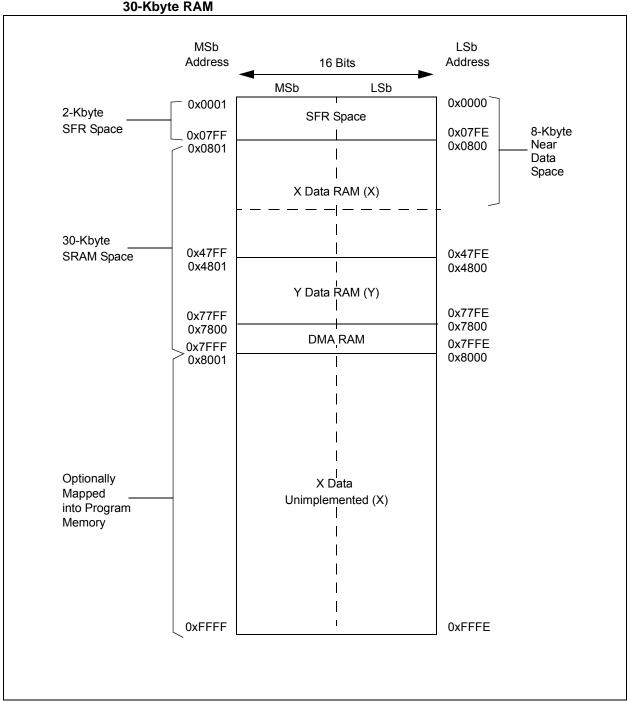
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER


R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0				
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ⁽⁴⁾	DA	DC				
bit 15							bit 8				
R/W-0 ⁽³⁾		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С				
bit 7							bit (
Legend:											
C = Cleara	ble bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'					
S = Settabl	e bit	W = Writable	bit	-n = Value at	POR						
'1' = Bit is s	set	'0' = Bit is clea	ared	x = Bit is unk	nown						
bit 15		ator A Overflov									
	1 = Accumulator A overflowed 0 = Accumulator A has not overflowed										
bit 14											
DIL 14		OB: Accumulator B Overflow Status bit 1 = Accumulator B overflowed									
		ator B has not c									
bit 13	SA: Accumul	SA: Accumulator A Saturation 'Sticky' Status bit ⁽¹⁾									
		1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated									
bit 12	SB: Accumul	SB: Accumulator B Saturation 'Sticky' Status bit ⁽¹⁾									
		ator B is saturat ator B is not sat		en saturated at	t some time						
bit 11	0AB: 0A C	OAB: OA OB Combined Accumulator Overflow Status bit									
		1 = Accumulators A or B have overflowed									
		ccumulators A			(4)						
bit 10		B Combined Ad				4 ¹	1				
		ccumulator A or			urated at some	time in the pas	t				
bit 9	-	DA: DO Loop Active bit									
		1 = DO loop in progress									
hit 0	•	ot in progress U Half Carry/Bo									
bit 8	1 = A carry-o	out from the 4th		for byte-sized	data) or 8th low-	order bit (for wo	ord-sized data				
	0 = No carry	sult occurred -out from the 4 he result occur		oit (for byte-siz	ed data) or 8th	low-order bit (for word-sized				
Note 1:	This bit may be rea	ad or cleared (r	not set).								
2:	The IPL<2:0> bits level. The value in	are concatenat	ed with the IF								
	IPL<3> = 1. The IPI <2:0> Stat	ue bite are rear									
3:	THE IPLSZUP STAT	e IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).									

4: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	111 = CPU interrupt priority level is 7 (15), user interrupts disabled
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation which affects the Z bit has set it at some time in the past
	0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** This bit may be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
 - 4: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 30-Kbyte RAM

TABLE 4-20: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	-	_	CSIDL	ABAT	—	RE	QOP<2:0	>	OPI	MODE<2:0	>	-	CANCAP	_	_	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DI	NCNT<4:0	>		0000
C1VEC	0404	_	_	— FILHIT<4:0>						_			I	CODE<6:0>	>			0000
C1FCTRL	0406	D	DMABS<2:0> —			_	—	—	—	—	—	—			FSA<4:0>			0000
C1FIFO	0408	_	F				P<5:0>			—	—		FNRB<5:0>			01		0000
C1INTF	040A	_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	—	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>				RERRCNT<7:0>					0000			
C1CFG1	0410	_	—	_	_	_	_	_	_	SJW<1	1:0>			BRP<	:5:0>			0000
C1CFG2	0412	_	WAKFIL	_	_	_	SE	G2PH<2:0	>	SEG2PHTS	SAM	SI	EG1PH<2:	:0>	Р	RSEG<2:0)>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSk	<<1:0>	F6MSI	//SK<1:0> F5MSK<1:0> F4MS			F4MSH	<1:0>	F3MSK<1:0> F2MSK<1:0> F1			F1MSK	SK<1:0> F0MSK<1:0>			0000	
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSK	(<1:0>	F8MS	K<1:0>	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E		See definition when WIN = x															
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	81<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	81<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	81<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	81<1:0>	xxxx
C1RXD	0440							EC	AN1 Receiv	ved Data W	ord							xxxx
C1TXD	0442							EC	CAN1 Trans	mit Data Wo	ord							xxxx

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (register offset)
	field is shared between both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the Data Pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 will always be directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9, and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is only available for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INT0IF				
bit 7	L.		1				bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	Unimplemen	ted: Read as	ʻ0'								
bit 14	-		ata Transfer C	omplete Interro	upt Flag Status	s bit					
		request has oc									
	•	request has no									
bit 13			Complete Interr	upt Flag Status	s bit						
	1 = Interrupt request has occurred0 = Interrupt request has not occurred										
bit 12	U1TXIF: UART1 Transmitter Interrupt Flag Status bit										
		request has oc									
	0 = Interrupt request has not occurred										
bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit 1 = Interrupt request has occurred										
		request has oc request has no									
bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	-	request has no									
bit 9	SPI1EIF: SPI1 Fault Interrupt Flag Status bit										
	 I = Interrupt request has occurred I = Interrupt request has not occurred 										
bit 8	•	Interrupt Flag									
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 7		Interrupt Flag									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 6	-	-	nannel 2 Interru	upt Flag Status	bit						
		request has oc									
	•	request has no									
bit 5	•	-	el 2 Interrupt F	lag Status bit							
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 4	-	-	ata Transfer C	omplete Interri	upt Flag Status	s bit					
		request has oc									
	-	request has no									
bit 3		Interrupt Flag									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
—	—	—	—	—		DMA1IP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		AD1IP<2:0>		—		U1TXIP<2:0>						
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15-11	Unimpleme	nted: Read as 'o	o'									
bit 10-8	DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits											
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•	•										
		upt is priority 1 upt source is dis	abled									
bit 7		nted: Read as '(
bit 6-4	AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•	•										
	•	•										
	001 = Interru	• 001 = Interrupt is priority 1										
		000 = Interrupt source is disabled										
bit 3	Unimpleme	nted: Read as '	כי									
bit 2-0	U1TXIP<2:0	>: UART1 Trans	smitter Interru	upt Priority bits								
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•											
	• 001 = Interrupt is priority 1											
		upt is priority 1 upt source is dis										

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
	_	_	_	ILR<3:0>							
oit 15		.					bit 8				
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
—				VECNUM<6:0>	>						
oit 7							bit (
₋egend: R = Readab	la hit	W = Writable	h:t		opted bit rea	ad aa (0)					
				U = Unimplem							
n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	IOWN				
oit 15-12	Unimpleme	ented: Read as the	0'								
pit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits										
	1111 = CPU interrupt priority level is 15										
	•										
	•										
	• 0001 - CDI Linterrupt priority lovel is 1										
	0001 = CPU interrupt priority level is 1 0000 = CPU interrupt priority level is 0										
oit 7	Unimpleme	ented: Read as '	0'								
oit 6-0	VECNUM<	6:0>: Vector Nun	nber of Pendir	ng Interrupt bits							
		VECNUM<6:0>: Vector Number of Pending Interrupt bits 0111111 = Interrupt vector pending is number 135									
	•		Ū								
	•										
	•	Interrupt vector	nondina in nu	mbor 0							
	0000001 = Interrupt vector pending is number 9 0000000 = Interrupt vector pending is number 8										

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "**Pin Diagrams**" section for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJXXXMCX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN Interrupt Enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the Weak Pull-up Enable bits (CNxPUE) for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	OxFF00, WO	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

16.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- Eight PWM I/O pins with four duty cycle generators
- · Up to 16-bit resolution
- 'On-the-fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

21.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

21.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set, and the TXREQ bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

21.3.4 LISTEN ONLY MODE

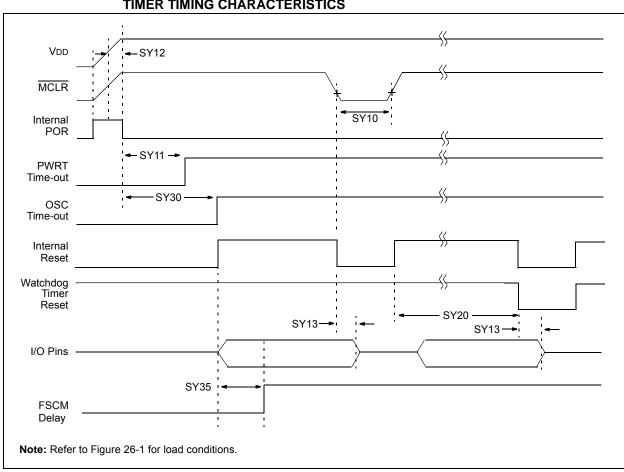
If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = 111. In this mode, the data which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.


U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0		
	_	CSIDL	ABAT	—		REQOP<2:0>			
bit 15		·		· · · · · ·			bit		
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
	OPMODE<2:0	-	_	CANCAP	_	_	WIN		
bit 7							bit		
Legend:		r = Reserved	bit						
R = Readable	bit	W = Writable	bit	U = Unimplerr	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	nown		
bit 15-14	Unimpleme	nted: Read as	'0'						
bit 13	-	p in Idle Mode I							
		-		levice enters Idl	e mode				
	0 = Continue	e module opera	tion in Idle mo	de					
bit 12	ABAT: Abor	t All Pending Tr	ansmissions b	bit					
	 1 = Signal all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted 								
bit 11	Reserved:	Do no use							
bit 10-8	REQOP<2:0>: Request Operation Mode bits								
	111 = Set Listen All Messages mode								
	110 = Reserved – do not use								
	101 = Reserved – do not use								
	100 = Set Configuration mode 011 = Set Listen Only Mode								
	010 = Set Loopback mode								
	001 = Set Disable mode								
	000 = Set Normal Operation mode								
bit 7-5	OPMODE<2:0>: Operation Mode bits								
	111 = Module is in Listen All Messages mode								
	110 = Reserved								
	101 = Reserved 100 = Module is in Configuration mode								
	011 = Module is in Listen Only mode								
	010 = Module is in Loopback mode								
	001 = Module is in Disable mode 000 = Module is in Normal Operation mode								
L:1 1			-	ue					
bit 4	Unimplemented: Read as '0'								
bit 3	CANCAP: CAN Message Receive Timer Capture Event Enable bit 1 = Enable input capture based on CAN message receive								
		CAN capture	ISEU ON CAN I	nessage receive	5				
bit 2-1		nted: Read as	ʻ0'						
bit 0	WIN: SFR M	Map Window Se	elect bit						
	1 = Use filte	r window							

REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15BP<3:0>					F14BP<3:0>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13BF	><3:0>			F12E	3P<3:0>		
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown	
bit 15-12	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	n RX FIFO bu	uffer				
	•							
	•							
		hits received ir hits received ir						
bit 11-8	1111 = Filter	: RX Buffer Wri hits received in hits received in	n RX FIFO bu	uffer				
	•							
	•							
		hits received ir hits received ir						
bit 7-4	1111 = Filter	: RX Buffer Wri hits received ir hits received ir	n RX FIFO bu	uffer				
	•							
	•							
		hits received ir hits received ir						
bit 3-0	F12BP<3:0>	: RX Buffer Wri	tten when Fil	ter 12 Hits bits				
		hits received in hits received in hits received in						
	•							
	•							
		hits received ir hits received ir						

REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	 When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'. 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS