

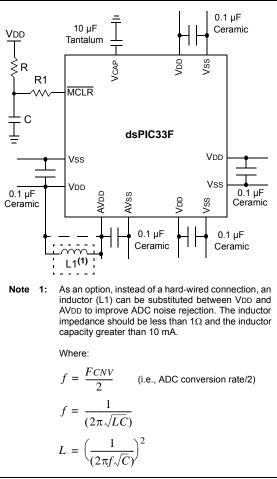
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc710at-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

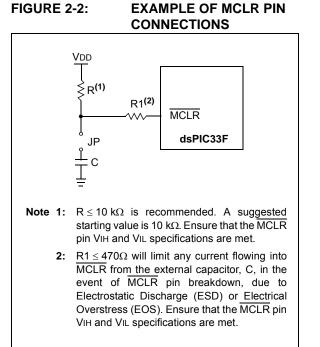
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 26.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 23.2 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

TABLE 4-25:ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1FOR dsPIC33FJXXXMC708A/710A DEVICES (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		-	EXIDE	—	EID<1	7:16>	xxxx
C2RXF11EID	056E				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF12SID	0570				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF12EID	0572				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C2RXF13EID	0576				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF15SID	057C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF15EID	057E				EID<	15:8>							EID<	<7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	-	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA ⁽²⁾	06C0	ODCA15	ODCA14	—	—	-		-	-	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order; thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when the following conditions exist:

- The BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data; normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed Addressing should not be enabled
	together. In the event that the user
	attempts to do so, Bit-Reversed Address-
	ing will assume priority for the X WAGU,
	and X WAGU Modulo Addressing will be
	disabled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

; Set up NVMCO	N for row programming operations	3	
MOV	#0x4001, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Set up a poi	nter to the first program memory	/ loc	ation to be written
; program memo	ry selected, and writes enabled		
MOV	#0x0000, W0	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	#0x6000, W0	;	An example program memory address
; Perform the	TBLWT instructions to write the	latc	hes
; 0th_program_	word		
MOV	#LOW_WORD_0, W2	;	
MOV	#HIGH_BYTE_0, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 1st_program_	word		
MOV	#LOW_WORD_1, W2	;	
MOV	#HIGH_BYTE_1, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 2nd_program	_word		
	#LOW_WORD_2, W2	;	
	<pre>#HIGH_BYTE_2, W3</pre>	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
•			
•			
•			
; 63rd_program	—		
MOV	#LOW_WORD_31, W2	;	
MOV	#HIGH_BYTE_31, W3	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – ADC 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1: INTERRUPT VECTORS

© 2009-2012 Microchip Technology Inc.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF
bit 7					I		bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	T6IF: Timer6	Interrupt Flag	Status bit				
		request has oc request has no					
bit 14		•		Complete Interi	rupt Flag Status	bit	
		request has oc request has no		·			
bit 13		ted: Read as '					
bit 12	OC8IF: Outpu	ut Compare Ch	annel 8 Interr	upt Flag Status	s bit		
		request has oc request has no					
bit 11	OC7IF: Outpu	ut Compare Ch	annel 7 Interr	upt Flag Status	s bit		
		request has oc					
		request has no					
bit 10	•	ut Compare Ch		upt Flag Status	s bit		
		request has oc request has no					
bit 9	-	ut Compare Ch		upt Flag Status	s bit		
		request has oc request has no					
bit 8	•	Capture Chann		-lag Status hit			
bit o	1 = Interrupt	request has oc request has no	curred	lag Status bit			
bit 7	•	Capture Chann		-lao Status bit			
	•	request has oc	•				
		request has no					
bit 6	IC4IF: Input C	Capture Chann	el 4 Interrupt I	-lag Status bit			
		request has oc					
bit 5	-	request has no Capture Chann		- Elaa Status hit			
bit 5	1 = Interrupt	request has oc request has no	curred	ay status bit			
bit 4	•	•		omnlete Inter	rupt Flag Status	hit	
	1 = Interrupt	request has oc request has no	curred		apting Status	JA	
bit 3	-	l Event Interrup		bit			
Sit U		request has oc	-				
		request has no					

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXMCX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXMCX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXMCX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has the following features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports and peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the following events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

10.2.2 IDLE MODE

Idle mode has the following features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of the following events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

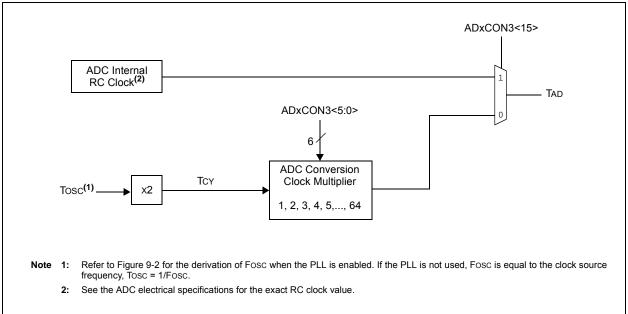
The Peripheral Module Disable registers (PMD) provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 16-4: PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTDIR ⁽¹⁾			S	EVTCMP<14:8	>(2)		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTCM	/IP<7:0> (2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	SEVTDIR: S	Special Event Trig	gger Time Ba	se Direction bit	(1)		
	1 = A Specia	al Event Trigger v	will occur whe	en the PWM tim	ie base is cour	ting downward	S
		al Event Trigger v			ie base is cour	iting upwards	
bit 14-0	SEVTCMP<	: 14:0>: Special E	vent Compa	re Value bits ⁽²⁾			


Note 1: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the Special Event Trigger.

2: SEVTCMP<14:0> is compared with PTMR<14:0> to generate the Special Event Trigger.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		_			_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
	—	—		—		FRMDLY	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15		ned SPIx Supp					
bit 15	1 = Framed S	Plx support en	abled (SSx p	in used as fram	e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S	Plx support en Plx support dis	abled (SSx p sabled		e Sync pulse ir	nput/output)	
bit 15 bit 14	1 = Framed S 0 = Framed S SPIFSD: Frar	Plx support en Plx support dis ne Sync Pulse	abled (SSx p sabled Direction Cor		e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input	abled (SSx p sabled Direction Cor (slave)		e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse	abled (SSx p sabled Direction Coi (slave) tt (master)		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low		e Sync pulse ir	nput/output)	
bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low 0'	ntrol bit	e Sync pulse ir	nput/output)	
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy 0 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as ' me Sync Pulse nc pulse coinci	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first	trol bit bit bit clock	e Sync pulse ir	nput/output)	
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as 'u me Sync Pulse nc pulse coinci nc pulse prece	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first cdes first bit cl	trol bit bit bit clock		nput/output)	

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	 Boot Segment Program Flash Code Protection Size bits x11 = No boot program Flash segment Boot space is 1K IW less VS: 110 = Standard security; boot program Flash segment starts at end of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at end of VS, ends at 0007FEh Boot space is 4K IW less VS: 101 = Standard security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = Standard security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = Standard security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at end of VS, ends at 003FFEh
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection bits 11 = No boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection bit 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 23-2: CONFIGURATION BITS DESCRIPTION

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size bits
			(FOR 128K and 256K DEVICES)
			x11 = No secure program Flash segment
			<u>Secure space is 8K IW less BS:</u> 110 = Standard security; secure program Flash segment starts at end of BS, ends at 0x003FFE
			010 = High security; secure program Flash segment starts at end of BS, ends at 0x003FFE
			Secure space is 16K IW less BS:
			101 = Standard security; secure program Flash segment starts at end of BS, ends at 0x007FFE
			001 = High security; secure program Flash segment starts at end of BS, ends at 0x007FFE
			Secure space is 32K IW less BS:
			100 = Standard security; secure program Flash segment starts at end of BS, ends at 0x00FFFE
			000 = High security; secure program Flash segment starts at end of BS, ends at 0x00FFFE
			(FOR 64K DEVICES)
			x11 = No Secure program Flash segment
			Secure space is 4K IW less BS: 110 = Standard security; secure program Flash segment starts at end of
			BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at end of BS, ends at 0x001FFE
			Secure space is 8K IW less BS: 101 = Standard security; secure program Flash segment starts at end of
			BS, ends at 0x003FFE
			001 = High security; secure program Flash segment starts at end of BS, ends at 0x003FFE
			Secure space is 16K IW less BS:
			100 = Standard security; secure program Flash segment starts at end of BS, ends at 007FFEh
			000 = High security; secure program Flash segment starts at end of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection bits 11 = No secure RAM defined
			10 = Secure RAM is 256 bytes less BS RAM
			01 = Secure RAM is 2048 bytes less BS RAM 00 = Secure RAM is 4096 bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits 11 = User program memory is not code-protected
			 10 = Standard security; general program Flash segment starts at end of SS, ends at EOM
			0x = High security; general program Flash segment starts at end of SS, ends at EOM

TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltage	9						
DC10	Supply V	oltage						
	Vdd	—	3.0		3.6	V	—	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V	—	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	Vss	V	_	
DC17	SVDD	V DD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	_	V/ms	0-3.0V in 0.1s	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 26-38:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Op (unless othe Operating ter	erwise st	ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units				Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	_	-	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	—
SP51	TssH2doZ	SSx	10	—	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—		ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Charact	eristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	—
			400 kHz mode	Tcy/2 (BRG + 1)		μS	_
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	_
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40	—	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2	—	μS	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	_
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	_
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	μs	—
		From Clock	400 kHz mode	—	1000	μS	—
			1 MHz mode ⁽²⁾	—	400	μs	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	0.5		μS	transmission can start
IM50	Св	Bus Capacitive L	bading	—	400	pF	—
IM51	TPGD	Pulse Gobbler De	elav	65	390	ns	See Note 3

TABLE 26-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

АС СНА		STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Indust} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic		Min Max		Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS	_	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	_	
	Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs	_	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	_	μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μS	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	—	
		Setup Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	—	
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—	
	From Clock	400 kHz mode	0	1000	ns	1		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5		μs	can start	
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	_	

TABLE 26-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

IPC13 (Interrupt Priority Control 13)	125
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	129
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	118
IPC7 (Interrupt Priority Control 7)	119
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	121
NVMCOM (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 2)	
PMD3 (Peripheral Module Disable Control 3)	
PWMxCON1 (PWMx Control 1)	
PWMxCON2 (PWMx Control 2)	
PxDC1 (PWMx Duty Cycle 1)	
PxDC2 (PWMx Duty Cycle 2)	
PxDC3 (PWMx Duty Cycle 3)	
PxDC4 (PWMx Duty Cycle 4)	192
PxDTCON1 (PWMx Dead-Time Control 1)	186
PxDTCON2 (PWMx Dead-Time Control 2)	187
PxFLTACON (PWMx Fault A Control)	188
PxFLTBCON (PWMx Fault B Control)	189
PxOVDCON (PWMx Override Control)	190
PxSECMP (PWMx Special Event Compare)	
PxTCON (PWMx Time Base Control)	
PxTMR (PWMx Timer Count Value)	
PxTPER (PWMx Time Base Period)	
QEIxCON (QEIx Control)	
RCON (Reset Control)	
SPIxCON1 (SPIx Control 1)	200
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	
SR (CPU Status)	
T1CON (Timer1 Control)	166
TxCON (T2CON, T4CON, T6CON or	
T8CON Control)	170
TyCON (T3CON, T5CON, T7CON or	
T9CON Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	215
Reset	00
Clock Source Selection	
Special Function Register States	
Times	
Reset Sequence	
Resets	
Revision History	500

S

Serial Peripheral Interface (SPI)	197
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	63
Special Features of the CPU	259
SPI Module	
SPI1 Register Map	51
SPI2 Register Map	51
Symbols Used in Opcode Descriptions	
System Control	
Register Map	62

т

•	
Temperature and Voltage Specifications	
AC	333
Timer1	165
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	167
Timing Characteristics	
CLKO and I/O	293
Timing Diagrams	
10-Bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 0,	
SSRC<2:0> = 000)	326
10-Bit A/D Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	
12-Bit A/D Conversion (ASAM = 0, SSRC = 000)	
CAN I/O	320
External Clock	291
I2Cx Bus Data (Master Mode)	316
I2Cx Bus Data (Slave Mode)	318
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	318
Input Capture (CAPx)	298
Motor Control PWM	
Motor Control PWM Fault	300
OC/PWM	299
Output Compare (OCx)	298
QEA/QEB Input	301
QEI Module Index Pulse	302
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	294
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock	
TimerQ (QEI Module) External Clock	303
Timing Requirements	
ADC Conversion (10-bit mode)	
ADC Conversion (12-bit Mode)	337
CLKO and I/O	293
External Clock	291
Input Capture	298
SPIx Master Mode (CKE = 0)	334
SPIx Module Master Mode (CKE = 1)	334
SPIx Module Slave Mode (CKE = 0)	335
SPIx Module Slave Mode (CKE = 1)	335

Timing Specifications	
10-Bit A/D Conversion Requirements	328
12-Bit A/D Conversion Requirements	325
CAN I/O Requirements	320
I2Cx Bus Data Requirements (Master Mode)	317
I2Cx Bus Data Requirements (Slave Mode)	319
Motor Control PWM Requirements	300
Output Compare Requirements 2	298
PLL Clock	333
QEI External Clock Requirements	303
QEI Index Pulse Requirements	302
Quadrature Decoder Requirements	301
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out	
Reset Requirements2	295
Simple OC/PWM Mode Requirements 2	299
Timer1 External Clock Requirements2	296
Timer2, Timer4, Timer6 and Timer8 External	
Clock Requirements2	297
Timer3, Timer5, Timer7 and Timer9	
External Clock Requirements2	297

U

UART Module UART1 Register Map51 UART2 Register Map51
V
Voltage Regulator (On-Chip) 264
W
Watchdog Timer (WDT) 259, 265
Programming Considerations
WWW Address
WWW, On-Line Support 11

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7505

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11