

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	91
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s12xet256mal

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-8. MC9S12XEA256/MC9S12XEA128 80-pin QFP Package Pin Assignment

NOTE

SPECIAL BOND-OUT TO PROVIDE ACCESS TO EXTRA ADC CHANNELS IN 80QFP. WARNING: NOT PIN-COMPATIBLE WITH REST OF FAMILY. THE MC9S12XET256 AND MC9S12XEG128 USE THE STANDARD 80QFP BOND-OUT, COMPATIBLE WITH OTHER FAMILY MEMBERS.

1.2.3.67 PP0 / KWP0 / PWM0 / MISO1 / TIMIOC0- Port P I/O Pin 0

PP0 is a general-purpose input or output pin. It can be configured as a keypad wakeup input. It can be configured as pulse width modulator (PWM) channel 0 output, TIM channel 0 or as the master input (during master mode) or slave output (during slave mode) pin MISO of the serial peripheral interface 1 (SPI1).

1.2.3.68 PR[7:0] / TIMIOC[7:0] — Port R I/O Pins [7:0]

PR[7:0] are general-purpose input or output pins. They can be configured as input capture or output compare pins IOC[7:0] of the standard timer (TIM).

1.2.3.69 PS7 / SS0 — Port S I/O Pin 7

PS7 is a general-purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the serial peripheral interface 0 (SPI0).

1.2.3.70 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general-purpose input or output pin. It can be configured as the serial clock pin SCK of the serial peripheral interface 0 (SPI0).

1.2.3.71 PS5 / MOSI0 — Port S I/O Pin 5

PS5 is a general-purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the serial peripheral interface 0 (SPI0).

1.2.3.72 PS4 / MISO0 — Port S I/O Pin 4

PS4 is a general-purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MOSI of the serial peripheral interface 0 (SPI0).

1.2.3.73 PS3 / TXD1 — Port S I/O Pin 3

PS3 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial communication interface 1 (SCI1).

1.2.3.74 PS2 / RXD1 — Port S I/O Pin 2

PS2 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial communication interface 1 (SCI1).

1.2.3.75 PS1 / TXD0 — Port S I/O Pin 1

PS1 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial communication interface 0 (SCI0).

ter 2 Port Integration Module (S12XEPIMV1)

Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
0x0378 PTF	R W	PTF7	PTF6	PTF5	PTF4	PTF3	PTF2	PTF1	PTF0		
0x0379 PTIF	R W	PTIF7	PTIF6	PTIF5	PTIF4	PTIF3	PTIF2	PTIF1	PTIF0		
0x037A DDRF	R W	DDRF7	DDRF6	DDRF5	DDRF4	DDRF3	DDRF2	DDRF1	DDRF0		
0x037B RDRF	R W	RDRF7	RDRF6	RDRF5	RDRF4	RDRF3	RDRF2	RDRF1	RDRF0		
0x037C PERF	R W	PERF7	PERF6	PERF5	PERF4	PERF3	PERF2	PERF1	PERF0		
0x037D PPSF	R W	PPSF7	PPSF6	PPSF5	PPSF4	PPSF3	PPSF2	PPSF1	PPSF0		
0x037E Reserved	R W	0	0	0	0	0	0	0	0		
0x037F PTFRR	R W	0	0	PTFRR5	PTFRR4	PTFRR3	PTFRR2	PTFRR1	PTFRR0		
		= Unimplemented or Reserved									

2.3.2 Register Descriptions

The following table summarizes the effect of the various configuration bits, i.e. data direction (DDR), output level (IO), reduced drive (RDR), pull enable (PE), pull select (PS) on the pin function and pull device activity.

The configuration bit PS is used for two purposes:

- 1. Configure the sensitive interrupt edge (rising or falling), if interrupt is enabled.
- 2. Select either a pull-up or pull-down device if PE is active.

ter 5 External Bus Interface (S12XEBIV4)

• Table 'Example 2b: Emulation Expanded Mode Timing $V_{DD5} = 5.0 \text{ V}$ (EWAIT disabled)' (this also includes examples for alternative settings of 2 and 3 additional stretch cycles)

Timing considerations:

• If no stretch cycle is added, the timing is the same as in Emulation Single-Chip Mode.

Chapter 10 XGATE (S12XGATEV3)

Table 10-1. Revision History

Revision Number	Revision Date	Sections Affected	Description of Changes
V03.22	06 Oct 2005		- Internal updates
V03.23	14 Dec 2005	10.9.2/10-463	- Updated code example
V03.24	17 Jan 2006		- Internal updates

10.1 Introduction

The XGATE module is a peripheral co-processor that allows autonomous data transfers between the MCU's peripherals and the internal memories. It has a built in RISC core that is able to pre-process the transferred data and perform complex communication protocols.

The XGATE module is intended to increase the MCU's data throughput by lowering the S12X_CPU's interrupt load.

Figure 10-1 gives an overview on the XGATE architecture.

This document describes the functionality of the XGATE module, including:

- XGATE registers (Section 10.3, "Memory Map and Register Definition")
- XGATE RISC core (Section 10.4.1, "XGATE RISC Core")
- Hardware semaphores (Section 10.4.4, "Semaphores")
- Interrupt handling (Section 10.5, "Interrupts")
- Debug features (Section 10.6, "Debug Mode")
- Security (Section 10.7, "Security")
- Instruction set (Section 10.8, "Instruction Set")

10.1.1 Glossary of Terms

XGATE Request

A service request from a peripheral module which is directed to the XGATE by the S12X_INT module (see Figure 10-1). Each XGATE request attempts to activate a XGATE channel at a certain priority level.

XGATE Channel

The resources in the XGATE module (i.e. Channel ID number, Priority level, Service Request Vector, Interrupt Flag) which are associated with a particular XGATE Request.

Read: Anytime

Write: In Debug Mode¹

Table 10-3. XGCHID Field Descriptions

Field	Description
6–0 XGCHID[6:0]	Request Identifier — ID of the currently active channel

10.3.1.3 XGATE Channel Priority Level (XGCHPL)

The XGATE Channel Priority Level Register (Figure 10-5) shows the priority level of the current thread. In debug mode this register can be used to select a priority level when launching a thread (see Section 10.6.1, "Debug Features").

Module Base +0x0003

Figure 10-5. XGATE Channel Priority Level Register (XGCHPL)

Read: Anytime

Write: In Debug Mode¹

Table 10-4. XGCHPL Field Descriptions

Field	Description
2-0 XGCHPL[2:0]	Priority Level— Priority level of the currently active channel

10.3.1.4 XGATE Initial Stack Pointer Select Register (XGISPSEL)

The XGATE Initial Stack Pointer Select Register (Figure 10-6) determines the register which is mapped to address "Module Base +0x0006". A value of zero selects the Vector Base Register (XGVBR). Setting

1. Refer to Section 10.6.1, "Debug Features"

Logical AND

Operation

AND

RS1 & RS2 \Rightarrow RD

RD & IMM16 \Rightarrow RD (translates to ANDL RD, #IMM16[7:0]; ANDH RD, #IMM16[15:8])

Performs a bit wise logical AND of two 16 bit values and stores the result in the destination register RD.

NOTE

When using immediate addressing mode (AND RD, #IMM16), the Z-flag of the first instruction (ANDL RD, #IMM16[7:0]) is not considered by the second instruction (ANDH RD, #IMM16[15:8]). \Rightarrow Don't rely on the Z-Flag.

CCR Effects

- N: Set if bit 15 of the result is set; cleared otherwise.
- Z: Set if the result is \$0000; cleared otherwise. Refer to ANDH instruction for #IMM16 operations.
- V: 0; cleared.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode	Machine Code							Cycles			
AND RD, RS1, RS2	TRI	0	0	0	1	0	RD	RS1	RS2	0	0	Р
AND RD, #IMM16	IMM8	1	0	0	0	0	RD	IMM16[7:0]			Р	
	IMM8	1	0	0	0	1	RD	IM	IM16[15:8]			Р

BLT

Branch if Lower than Zero

BLT

Operation

If N \wedge V = 1, then PC + $(REL9 \ll 1) \Rightarrow PC$

Branch instruction to compare signed numbers.

Branch if RS1 < RS2:

SUB R0,RS1,RS2 BLT REL9

CCR Effects

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode	Machine Code					
BLT REL9	REL9	0 0 1 1 0 1 1 REL9	PP/P				

Figure 16-33. Identifier Register 3 — Standard Mapping

16.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received. The number of bytes to be transmitted or received is determined by the data length code in the corresponding DLR register.

Module Base + 0x00X4 to Module Base + 0x00XB

_	7	6	5	4	3	2	1	0
R W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Reset:	x	x	x	x	x	x	x	x

Figure 16-34. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

Table 16-33.	DSR0-DSR7	Register F	Field De	escriptions
		nogiotoi i	iona B	2001.10110

Field	Description
7-0 DB[7:0]	Data bits 7-0

Syntax	Description
SYNC_SEG	System expects transitions to occur on the CAN bus during this period.
Transmit Point	A node in transmit mode transfers a new value to the CAN bus at this point.
Sample Point	A node in receive mode samples the CAN bus at this point. If the three samples per bit option is selected, then this point marks the position of the third sample.

Table 16-36. Time Segment Syntax

The synchronization jump width (see the Bosch CAN 2.0A/B specification for details) can be programmed in a range of 1 to 4 time quanta by setting the SJW parameter.

The SYNC_SEG, TSEG1, TSEG2, and SJW parameters are set by programming the MSCAN bus timing registers (CANBTR0, CANBTR1) (see Section 16.3.2.3, "MSCAN Bus Timing Register 0 (CANBTR0)" and Section 16.3.2.4, "MSCAN Bus Timing Register 1 (CANBTR1)").

Table 16-37 gives an overview of the Bosch CAN 2.0A/B specification compliant segment settings and the related parameter values.

NOTE

It is the user's responsibility to ensure the bit time settings are in compliance with the CAN standard.

Time Segment 1	TSEG1	Time Segment 2	TSEG2	Synchronization Jump Width	SJW
5 10	4 9	2	1	12	01
4 11	3 10	3	2	13	02
5 12	4 11	4	3	14	03
6 13	5 12	5	4	14	03
7 14	6 13	6	5	14	03
8 15	7 14	7	6	14	03
9 16	8 15	8	7	14	03

Table 16-37. Bosch CAN 2.0A/B Compliant Bit Time Segment Settings

16.4.4 Modes of Operation

16.4.4.1 Normal System Operating Modes

The MSCAN module behaves as described within this specification in all normal system operating modes. Write restrictions exist for some registers.

Chapter 18 Periodic Interrupt Timer (S12PIT24B4CV2)

Table 18-1. Revision History

Revision Number	Revision Date	Sections Affected	Description of Changes
V01.00	28 Apr 2005		- Initial Release
V01.01	05 Jul 2005	18.6/18-690	 Added application section. Removed table 1-1

18.1 Introduction

The period interrupt timer (PIT) is an array of 24-bit timers that can be used to trigger peripheral modules or raise periodic interrupts. Refer to Figure 18-1 for a simplified block diagram.

18.1.1 Glossary

Acronyms and Abbreviations					
PIT	Periodic Interrupt Timer				
ISR	Interrupt Service Routine				
CCR	Condition Code Register				
SoC	System on Chip				
micro time bases	clock periods of the 16-bit timer modulus down-counters, which are generated by the 8-bit modulus down-counters.				

18.1.2 Features

The PIT includes these features:

- Four timers implemented as modulus down-counters with independent time-out periods.
- Time-out periods selectable between 1 and 2^{24} bus clock cycles. Time-out equals m*n bus clock cycles with $1 \le m \le 256$ and $1 \le n \le 65536$.
- Timers that can be enabled individually.
- Four time-out interrupts.
- Four time-out trigger output signals available to trigger peripheral modules.
- Start of timer channels can be aligned to each other.

18.1.3 Modes of Operation

Refer to the device overview for a detailed explanation of the chip modes.

Figure 22-4. Channel 7 Output Compare/Pulse Accumulator Logic

22.2 External Signal Description

The TIM16B8CV2 module has a total of eight external pins.

22.2.1 IOC7 — Input Capture and Output Compare Channel 7 Pin

This pin serves as input capture or output compare for channel 7. This can also be configured as pulse accumulator input.

22.2.2 IOC6 — Input Capture and Output Compare Channel 6 Pin

This pin serves as input capture or output compare for channel 6.

22.2.3 IOC5 — Input Capture and Output Compare Channel 5 Pin

This pin serves as input capture or output compare for channel 5.

22.2.4 IOC4 — Input Capture and Output Compare Channel 4 Pin

This pin serves as input capture or output compare for channel 4. Pin

22.2.5 IOC3 — Input Capture and Output Compare Channel 3 Pin

This pin serves as input capture or output compare for channel 3.

22.2.6 IOC2 — Input Capture and Output Compare Channel 2 Pin

This pin serves as input capture or output compare for channel 2.

MC9S12XE-Family Reference Manual Rev. 1.25

22.3.2.11 Timer System Control Register 2 (TSCR2)

Figure 22-19. Timer System Control Register 2 (TSCR2)

Read: Anytime

Write: Anytime.

	Table 22-14. TSCH2 Field Descriptions
Field	Description
7 TOI	Timer Overflow Interrupt Enable 0 Interrupt inhibited. 1 Hardware interrupt requested when TOF flag set.
3 TCRE	 Timer Counter Reset Enable — This bit allows the timer counter to be reset by a successful output compare 7 event. This mode of operation is similar to an up-counting modulus counter. Counter reset inhibited and counter free runs. Counter reset by a successful output compare 7. Note: If TC7 = 0x0000 and TCRE = 1, TCNT will stay at 0x0000 continuously. If TC7 = 0xFFFF and TCRE = 1, TOF will never be set when TCNT is reset from 0xFFFF to 0x0000. Note: TCRE=1 and TC7!=0, the TCNT cycle period will be TC7 x "prescaler counter width" + "1 Bus Clock", for a more detail explanation please refer to Section 22.4.3, "Output Compare
2 PR[2:0]	Timer Prescaler Select — These three bits select the frequency of the timer prescaler clock derived from the Bus Clock as shown in Table 22-15.

Table 22-14. TSCR2 Field Descriptions

PR2	PR1	PR0	Timer Clock
0	0	0	Bus Clock / 1
0	0	1	Bus Clock / 2
0	1	0	Bus Clock / 4

1

0

1

0

1

Bus Clock / 8

Bus Clock / 16

Bus Clock / 32

Bus Clock / 64

Bus Clock / 128

1

0

0

1

1

0

1

1

1

Table 22-15. Timer Clock Selection

Figure 25-2. P-Flash Memory Map

MC9S12XE-Family Reference Manual Rev. 1.25

Register	Error Bit	Error Condition					
		Set if CCOBIX[2:0] < 010 at command launch					
		Set if CCOBIX[2:0] > 101 at command launch					
		Set if a Load Data Field command sequence is currently active					
		Set if command not available in current mode (see Table 25-30)					
	ACCERR	Set if an invalid global address [22:0] is supplied					
		Set if a misaligned word address is supplied (global address [0] != 0)					
FSTAT		Set if the global address [22:0] points to an area in the D-Flash EEE partition					
		Set if the requested group of words breaches the end of the D-Flash block or goes into the D-Flash EEE partition					
	FPVIOL	None					
	MGSTAT1	Set if any errors have been encountered during the verify operation					
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation					
FERSTAT	EPVIOLIF	None					

Table 25-68. Program D-Flash Command Error Handling

25.4.2.18 Erase D-Flash Sector Command

The Erase D-Flash Sector operation will erase all addresses in a sector of the D-Flash user partition.

Table 25-69. Erase D-Flash Sector Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters						
000	0x12	Global address [22:16] to identify D-Flash block					
001	Global address [15:0] anywhere within the sector to be erased. See Section 25.1.2.2 for D-Flash sector size.						

Upon clearing CCIF to launch the Erase D-Flash Sector command, the Memory Controller will erase the selected Flash sector and verify that it is erased. The CCIF flag will set after the Erase D-Flash Sector operation has completed.

27.3.2.9.1 P-Flash Protection Restrictions

The general guideline is that P-Flash protection can only be added and not removed. Table 27-23 specifies all valid transitions between P-Flash protection scenarios. Any attempt to write an invalid scenario to the FPROT register will be ignored. The contents of the FPROT register reflect the active protection scenario. See the FPHS and FPLS bit descriptions for additional restrictions.

From	To Protection Scenario ⁽¹⁾											
Scenario	0	1	2	3	4	5	6	7				
0	Х	Х	Х	Х								
1		Х		X								
2			Х	Х								
3				Х								
4				Х	Х							
5			Х	Х	Х	X						
6		Х		Х	Х		Х					
7	Х	Х	Х	Х	Х	Х	Х	Х				

Table 27-23. P-Flash Protection Scenario Transitions

1. Allowed transitions marked with X, see Figure 27-14 for a definition of the scenarios.

27.3.2.10 EEE Protection Register (EPROT)

The EPROT register defines which buffer RAM EEE partition areas are protected against writes.

Offset Module Base + 0x0009

Figure 27-15. EEE Protection Register (EPROT)

All bits in the EPROT register are readable and writable except for RNV[6:4] which are only readable. The EPOPEN and EPDIS bits can only be written to the protected state. The EPS bits can be written anytime until the EPDIS bit is cleared. If the EPOPEN bit is cleared, the state of the EPDIS and EPS bits is irrelevant.

During the reset sequence, the EPROT register is loaded from the EEE protection byte in the Flash configuration field at global address 0x7F_FF0D located in P-Flash memory (see Table 27-3) as indicated by reset condition F in Figure 27-15. To change the EEE protection that will be loaded during the reset sequence, the P-Flash sector containing the EEE protection byte must be unprotected, then the EEE protection byte must be programmed. If a double bit fault is detected while reading the P-Flash phrase

28.4.1.2.1 Define FCCOB Contents

The FCCOB parameter fields must be loaded with all required parameters for the Flash command being executed. Access to the FCCOB parameter fields is controlled via the CCOBIX bits in the FCCOBIX register (see Section 28.3.2.3).

The contents of the FCCOB parameter fields are transferred to the Memory Controller when the user clears the CCIF command completion flag in the FSTAT register (writing 1 clears the CCIF to 0). The CCIF flag will remain clear until the Flash command has completed. Upon completion, the Memory Controller will return CCIF to 1 and the FCCOB register will be used to communicate any results. The flow for a generic command write sequence is shown in Figure 28-26.

Conditions are shown in Table A-10 at ambient temperature unless otherwise noted							
Num	С	Rating	Min	Тур	Max	Unit	
1	Т	S12XCPU	—	12.76	—	mA	
2	Т	XGATE	—	24.20	—		
3	Т	Each MSCAN	—	1.05	—		
4	Т	Each SPI	—	0.22	—		
5	Т	Each SCI	—	0.28	—		
6	Т	Each IIC	—	0.40	—		
7	Т	PWM	—	0.55	—		
8	Т	ECT	—	1.16	—		
9	Т	Each ATD	—	0.82	—		
10	Т	PIT	—	0.61	—		
11	Т	RTI	—	0.17	—]	
12	Т	Overhead	—	35.56	—]	

Table A-12. Module Run Supply Currents

0x001E-0x001F Port Integration Module (PIM) Map 3 of 6

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0v001E	IBOCB	R	IBOE		0	0	0	0	0	0
UXUUTE	moon	W	II IQL							
0x001F	Reserved	R	0	0	0	0	0	0	0	0
		W								

0x0020-0x0027 Debug Module (S12XDBG) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0020	DBGC1	R W	ARM	0 TRIG	XGSBPE	BDM	DBGBRK		CO	MRV
0v0021	DRCSD	R	TBF	EXTF	0	0	0	SSF2	SSF1	SSF0
0X0021										
0x0022	DBGTCR	R W	TSOL	JRCE	TRANGE		TRC	MOD	TALIGN	
0x0023	DBGC2	R	0	0	0	0	СП	СМ	۵R	СМ
070020	DDGGE	W								
0x0024	DBGTBH	R	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0,00021	bbarbh	W								
0x0025	DBGTBL	R	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		W								
0x0026	DBGCNT	R	0				CNT			
		W								
0x0027	DBGSCRX	R	0	0	0	0	SC3	SC2	SC1	SC0
		W	0	0	0	0	MCO	MCO	MOI	MCO
0x0027	DBGMFR	R W	0	0	0	0	IVIC3	IVIC2	NICT	MCU
0.0000	DROVOTI		0							
0x0028 (1)	(COMPA/C)	w	0	NDB	TAG	BRK	RW	RWE	SRC	COMPE
0~0028		R								
(2)	(COMPB/D)	w	SZE	SZ	TAG	BRK	RW	RWE	SRC	COMPE
	(,	R	0							
0x0029	DBGXAH	w		Bit 22	21	20	19	18	17	Bit 16
	DDOXANA	R	D'1 45		10	40		10	<u> </u>	D'L O
0x002A	DBGXAM	w	Bit 15	14	13	12		10	9	Bit 8
020000		R	Dit 7	6	5	Л	2	0	4	Dit O
0X002D	DEGXAL	w	DIL /	0	5	4	3	2	I	БІГО
0x0020	рвсхрн	R	Bit 15	1/	13	12	11	10	٩	Bit 8
0,0020	DBGXBII	W	Dit 15	17	10	12		10		
0x002D	DBGXDL	R	Bit 7	6	5	4	3	2	1	Bit 0
0.00022		W	2			•		_	•	
0x002E	DBGXDHM	R	Bit 15	14	13	12	11	10	9	Bit 8
		W								
0x002F	DBGXDLM	н W	Bit 7	6	5	4	3	2	1	Bit 0

1. This represents the contents if the Comparator A or C control register is blended into this address 2. This represents the contents if the Comparator B or D control register is blended into this address

