

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	91
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s912xep100w1mal

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

) P	
Chapter 26	384 KByte Flash Module (S12XFTM384K2V1)953
Chapter 27	512 KByte Flash Module (S12XFTM512K3V1)1016
Chapter 28	768 KByte Flash Module (S12XFTM768K4V2)1077
Chapter 29	1024 KByte Flash Module (S12XFTM1024K5V2)1140
Appendix A	Electrical Characteristics1201
Appendix B	Package Information1258
Appendix C	PCB Layout Guidelines1260
Appendix D	Derivative Differences
Appendix E	Detailed Register Address Map
Appendix F	Ordering Information

1.2.3.43 PK[3:0] / ADDR[19:16] / IQSTAT[3:0] — Port K I/O Pins [3:0]

PK3-PK0 are general-purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address ADDR[19:16] for the external bus and carry instruction pipe information.

1.2.3.44 PL7 / TXD7 — Port L I/O Pin 7

PL7 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial communication interface 7 (SCI7).

1.2.3.45 PL6 / RXD7 — Port L I/O Pin 6

PL6 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial communication interface 7 (SCI7).

1.2.3.46 PL5 / TXD6 — Port L I/O Pin 5

PL5 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial communication interface 6 (SCI6).

1.2.3.47 PL4 / RXD6 — Port L I/O Pin 4

PL4 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial communication interface 6 (SCI6).

1.2.3.48 PL3 / TXD5 — Port L I/O Pin 3

PL3 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial communication interface 5 (SCI5).

1.2.3.49 PL2 / RXD5 — Port L I/O Pin 2

PL2 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial communication interface 5 (SCI5).

1.2.3.50 PL1 / TXD4 — Port L I/O Pin 1

PL1 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial communication interface 4 (SCI4).

1.2.3.51 PL0 / RXD4 — Port L I/O Pin 0

PL0 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial communication interface 4 (SCI4).

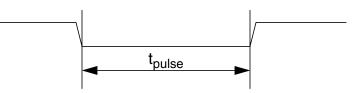


Figure 2-109. Pulse Illustration

A valid edge on an input is detected if 4 consecutive samples of a passive level are followed by 4 consecutive samples of an active level directly or indirectly.

The filters are continuously clocked by the bus clock in RUN and WAIT mode. In STOP mode the clock is generated by an RC-oscillator in the Port Integration Module. To maximize current saving the RC oscillator runs only if the following condition is true on any pin individually:

Sample count <= 4 and interrupt enabled (PIE=1) and interrupt flag not set (PIF=0)

2.5 Initialization Information

2.5.1 Port Data and Data Direction Register writes

It is not recommended to write PORTx/PTx and DDRx in a word access. When changing the register pins from inputs to outputs, the data may have extra transitions during the write access. Initialize the port data register before enabling the outputs.

ter 10 XGATE (S12XGATEV3)

Section for information on how to select priority levels for XGATE threads. Low priority threads (interrupt levels 1 to 3) can be interrupted by high priority threads (interrupt levels 4 to 7). High priority threads are not interruptible. The register content of an interrupted thread is maintained and restored by the XGATE hardware.

To signal the completion of a task the XGATE is able to send interrupts to the S12X_CPU. Each XGATE channel has its own interrupt vector. Refer to the S12X_INT Section for detailed information.

The XGATE module also provides a set of hardware semaphores which are necessary to ensure data consistency whenever RAM locations or peripherals are shared with the S12X_CPU.

The following sections describe the components of the XGATE module in further detail.

10.4.1 XGATE RISC Core

The RISC core is a 16 bit processor with an instruction set that is well suited for data transfers, bit manipulations, and simple arithmetic operations (see Section 10.8, "Instruction Set").

It is able to access the MCU's internal memories and peripherals without blocking these resources from the $S12X_CPU^1$. Whenever the $S12X_CPU$ and the RISC core access the same resource, the RISC core will be stalled until the resource becomes available again.¹

The XGATE offers a high access rate to the MCU's internal RAM. Depending on the bus load, the RISC core can perform up to two RAM accesses per S12X_CPU bus cycle.

Bus accesses to peripheral registers or flash are slower. A transfer rate of one bus access per S12X_CPU cycle can not be exceeded.

The XGATE module is intended to execute short interrupt service routines that are triggered by peripheral modules or by software.

	Register Block			F	Program Cou	unter
15	R7 (Stack Pointer)	0	15		PC	0
15	R6	0				Condition
15	R5	0				Code Register
15	R4	0				NZVC
15	R3	0				3210
15	R2	0				
15	R1(Data Pointer)	0				
15	R0 = 0	0]			

10.4.2 Programmer's Model

Figure 10-22. Programmer's Model

1. With the exception of PRR registers (see Section "S12X_MMC").

BLO

Branch if Carry Set (Same as BCS)

BLO

Operation

If C = 1, then PC + $0002 + (REL9 \le 1) \Rightarrow PC$

Branch instruction to compare unsigned numbers.

Branch if RS1 < RS2:

SUB R0,RS1,RS2 BLO REL9

CCR Effects

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode	Machine Code	Cycles
BLO REL9	REL9	0 0 1 0 0 0 1 REL9	PP/P

11.6.1 Description of Interrupt Operation

11.6.1.1 Real Time Interrupt

The S12XECRG generates a real time interrupt when the selected interrupt time period elapses. RTI interrupts are locally disabled by setting the RTIE bit to zero. The real time interrupt flag (RTIF) is set to 1 when a timeout occurs, and is cleared to 0 by writing a 1 to the RTIF bit.

The RTI continues to run during Pseudo Stop Mode if the PRE bit is set to 1. This feature can be used for periodic wakeup from Pseudo Stop if the RTI interrupt is enabled.

11.6.1.2 IPLL Lock Interrupt

The S12XECRG generates a IPLL Lock interrupt when the LOCK condition of the IPLL has changed, either from a locked state to an unlocked state or vice versa. Lock interrupts are locally disabled by setting the LOCKIE bit to zero. The IPLL Lock interrupt flag (LOCKIF) is set to1 when the LOCK condition has changed, and is cleared to 0 by writing a 1 to the LOCKIF bit.

11.6.1.3 Self Clock Mode Interrupt

The S12XECRG generates a Self Clock Mode interrupt when the SCM condition of the system has changed, either entered or exited Self Clock Mode. SCM conditions are caused by a failing clock quality check after power on reset (POR) or low voltage reset (LVR) or recovery from Full Stop Mode (PSTP = 0) or Clock Monitor failure. For details on the clock quality check refer to Section 11.4.1.4, "Clock Quality Checker". If the clock monitor is enabled (CME = 1) a loss of external clock will also cause a SCM condition (SCME = 1).

SCM interrupts are locally disabled by setting the SCMIE bit to zero. The SCM interrupt flag (SCMIF) is set to1 when the SCM condition has changed, and is cleared to 0 by writing a 1 to the SCMIF bit.

attempt to engage the bus is failed. When considering these cases, the slave service routine should test the IBAL first and the software should clear the IBAL bit if it is set.

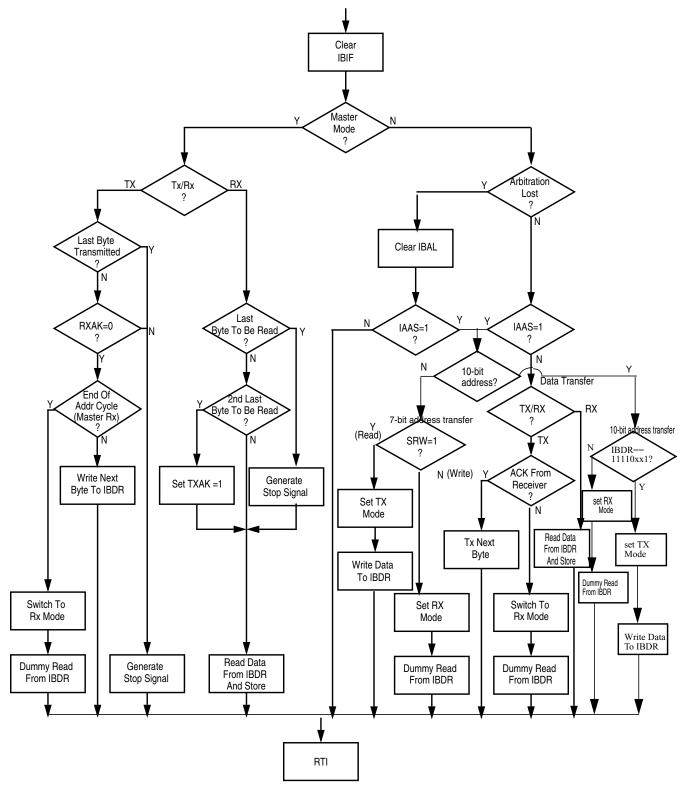


Figure 15-15. Flow-Chart of Typical IIC Interrupt Routine

MC9S12XE-Family Reference Manual Rev. 1.25

1. Read: Anytime

Write: Anytime when out of initialization mode; exceptions are read-only RXACT and SYNCH, RXFRM (which is set by the module only), and INITRQ (which is also writable in initialization mode)

NOTE

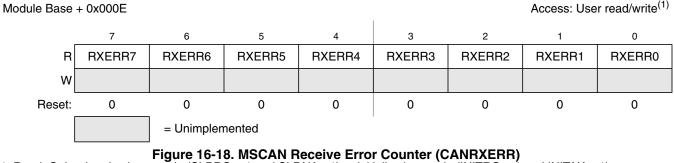
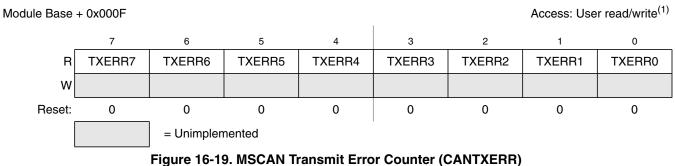

The CANCTL0 register, except WUPE, INITRQ, and SLPRQ, is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

Table 16-3. CANCTL0 Register Field Descriptions

Field	Description
7 RXFRM	 Received Frame Flag — This bit is read and clear only. It is set when a receiver has received a valid message correctly, independently of the filter configuration. After it is set, it remains set until cleared by software or reset. Clearing is done by writing a 1. Writing a 0 is ignored. This bit is not valid in loopback mode. 0 No valid message was received since last clearing this flag 1 A valid message was received since last clearing of this flag
6 RXACT	 Receiver Active Status — This read-only flag indicates the MSCAN is receiving a message⁽¹⁾. The flag is controlled by the receiver front end. This bit is not valid in loopback mode. 0 MSCAN is transmitting or idle 1 MSCAN is receiving a message (including when arbitration is lost)
5 CSWAI ⁽²⁾	 CAN Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling all the clocks at the CPU bus interface to the MSCAN module. 0 The module is not affected during wait mode 1 The module ceases to be clocked during wait mode
4 SYNCH	 Synchronized Status — This read-only flag indicates whether the MSCAN is synchronized to the CAN bus and able to participate in the communication process. It is set and cleared by the MSCAN. 0 MSCAN is not synchronized to the CAN bus 1 MSCAN is synchronized to the CAN bus
3 TIME	 Timer Enable — This bit activates an internal 16-bit wide free running timer which is clocked by the bit clock rate. If the timer is enabled, a 16-bit time stamp will be assigned to each transmitted/received message within the active TX/RX buffer. Right after the EOF of a valid message on the CAN bus, the time stamp is written to the highest bytes (0x000E, 0x000F) in the appropriate buffer (see Section 16.3.3, "Programmer's Model of Message Storage"). In loopback mode no receive timestamp is generated. The internal timer is reset (all bits set to 0) when disabled. This bit is held low in initialization mode. 0 Disable internal MSCAN timer 1 Enable internal MSCAN timer
2 WUPE ⁽³⁾	 Wake-Up Enable — This configuration bit allows the MSCAN to restart from sleep mode or from power down mode (entered from sleep) when traffic on CAN is detected (see Section 16.4.5.5, "MSCAN Sleep Mode"). This bit must be configured before sleep mode entry for the selected function to take effect. 0 Wake-up disabled — The MSCAN ignores traffic on CAN 1 Wake-up enabled — The MSCAN is able to restart

I


1. Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1) Write: Unimplemented

NOTE

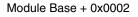
Reading this register when in any other mode other than sleep or initialization mode may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.

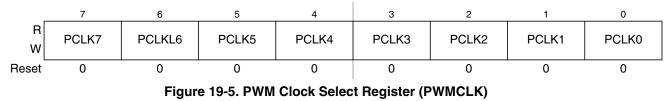
16.3.2.16 MSCAN Transmit Error Counter (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

1. Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1) Write: Unimplemented

NOTE


Reading this register when in any other mode other than sleep or initialization mode, may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.



Chapter 17 Periodic Interrupt Timer (S12PIT24B8CV2)

	MOVB	#\$01,PITINTE	; enable interupt channel 0
	MOVB	#\$80,PITCFLMT	; enable PIT
	CLI		; clear Interupt disable Mask bit
.***************** ?	**** Main P	rogram ****************	*****
MAIN:	BRA *		; loop until interrupt
•*************************************	**** Channe	10 Interupt Routine ******	******
CH0_ISR:	LDAA MOVB RTI	PITTF #\$01,PITTF	; 8 bit read of PIT time out flags ; clear PIT channel 0 time out flag ; return to MAIN

Read: Anytime

Write: Anytime

NOTE

Register bits PCLK0 to PCLK7 can be written anytime. If a clock select is changed while a PWM signal is being generated, a truncated or stretched pulse can occur during the transition.

Table 19-4	. PWMCLK	Field	Descriptions
------------	----------	-------	--------------

Field	Description
7 PCLK7	Pulse Width Channel 7 Clock Select 0 Clock B is the clock source for PWM channel 7. 1 Clock SB is the clock source for PWM channel 7.
6 PCLK6	Pulse Width Channel 6 Clock Select 0 Clock B is the clock source for PWM channel 6. 1 Clock SB is the clock source for PWM channel 6.
5 PCLK5	Pulse Width Channel 5 Clock Select0Clock A is the clock source for PWM channel 5.1Clock SA is the clock source for PWM channel 5.
4 PCLK4	Pulse Width Channel 4 Clock Select 0 Clock A is the clock source for PWM channel 4. 1 Clock SA is the clock source for PWM channel 4.
3 PCLK3	Pulse Width Channel 3 Clock Select 0 Clock B is the clock source for PWM channel 3. 1 Clock SB is the clock source for PWM channel 3.
2 PCLK2	Pulse Width Channel 2 Clock Select 0 Clock B is the clock source for PWM channel 2. 1 Clock SB is the clock source for PWM channel 2.
1 PCLK1	Pulse Width Channel 1 Clock Select 0 Clock A is the clock source for PWM channel 1. 1 Clock SA is the clock source for PWM channel 1.
0 PCLK0	Pulse Width Channel 0 Clock Select 0 Clock A is the clock source for PWM channel 0. 1 Clock SA is the clock source for PWM channel 0.

19.3.2.4 PWM Prescale Clock Select Register (PWMPRCLK)

This register selects the prescale clock source for clocks A and B independently.

MC9S12XE-Family Reference Manual Rev. 1.25

Register	Error Bit	Error Condition
ACCERR		Set if CCOBIX[2:0] != 000 at command launch
	AUCENN	Set if command not available in current mode (see Table 24-30)
FSTAT FPVIOL MGSTAT1 MGSTAT0		None
		None
		None
FERSTAT	EPVIOLIF	None

 Table 24-74. EEPROM Emulation Query Command Error Handling

24.4.2.21 Partition D-Flash Command

The Partition D-Flash command allows the user to allocate sectors within the D-Flash block for applications and a partition within the buffer RAM for EEPROM access. The D-Flash block consists of 32 sectors with 256 bytes per sector. The Erase All Blocks command must be run prior to launching the Partition D-Flash command.

Table 24-75. Partition D-Flash Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters			
000	0x20	Not required		
001	Number of 256 byte sectors for the D-Flash user partition (DFPART)			
010	Number of 256 byte sectors for buffer RAM EEE partition (ERPART)			

Upon clearing CCIF to launch the Partition D-Flash command, the following actions are taken to define a partition within the D-Flash block for direct access (DFPART) and a partition within the buffer RAM for EEE use (ERPART):

- Validate the DFPART and ERPART values provided:
 - DFPART <= 128 (maximum number of 256 byte sectors in D-Flash block)
 - ERPART <= 8 (maximum number of 256 byte sectors in buffer RAM)
 - If ERPART > 0, 128 DFPART >= 12 (minimum number of 256 byte sectors in the D-Flash block required to support EEE)
 - If ERPART > 0, ((128-DFPART)/ERPART) >= 8 (minimum ratio of D-Flash EEE space to buffer RAM EEE space to support EEE)
- Erase verify the D-Flash block and the EEE nonvolatile information register
- Program DFPART to the EEE nonvolatile information register at global address 0x12_0000 (see Table 24-7)
- Program a duplicate DFPART to the EEE nonvolatile information register at global address 0x12_0002 (see Table 24-7)

MC9S12XE-Family Reference Manual Rev. 1.25

Chapter 25 256 KByte Flash Module (S12XFTM256K2V1)

Revision Number	Revision Date	Sections Affected	Description of Changes
V01.08	14 Nov 2007	25.5.2/25-951 25.4.2/25-927	 Changed terminology from 'word program' to "Program P-Flash' in the BDM unsecuring description, Section 25.5.2 Added requirement that user not write any Flash module register during
		20.4.2/20-927	execution of commands 'Erase All Blocks', Section 25.4.2.8, and 'Unsecure Flash', Section 25.4.2.11
		25.4.2.8/25-933	- Added statement that security is released upon successful completion of command 'Erase All Blocks', Section 25.4.2.8
V01.09	19 Dec 2007	25.4.2.5/25-930	- Corrected Error Handling table for Load Data Field command
		25.4.2/25-927	- Corrected Error Handling table for Full Partition D-Flash, Partition D-Flash, and EEPROM Emulation Query commands
		25.3.1/25-896	- Corrected P-Flash IFR Accessibility table
V01.10	25 Sep 2009	25.1/25-891	- Clarify single bit fault correction for P-Flash phrase
		25.3.2.1/25-903	- Expand FDIV vs OSCCLK Frequency table
		25.4.2.4/25-930	- Add statement concerning code runaway when executing Read Once command from Flash block containing associated fields
		25.4.2.7/25-932	- Add statement concerning code runaway when executing Program Once command from Flash block containing associated fields
		25.4.2.12/25- 936	 Add statement concerning code runaway when executing Verify Backdoor Access Key command from Flash block containing associated fields Relate Key 0 to associated Backdoor Comparison Key address
		25.4.2.12/25-	- Change "power down reset" to "reset"
		936	- Add ACCERR condition for Disable EEPROM Emulation command
		25.4.2.12/25-	The following changes were made to clarify module behavior related to Flash
		936	register access during reset sequence and while Flash commands are active:
		25.4.2.20/25-	- Add caution concerning register writes while command is active
		945	- Writes to FCLKDIV are allowed during reset sequence while CCIF is clear
			- Add caution concerning register writes while command is active - Writes to FCCOBIX, FCCOBHI, FCCOBLO registers are ignored during
		25.3.2/25-901	reset sequence
		25.3.2.1/25-903	
		25.4.1.2/25-922	
		25.6/25-951	

Table 25-1. Revision History

25.1 Introduction

The FTM256K2 module implements the following:

• 256 Kbytes of P-Flash (Program Flash) memory, consisting of 2 physical Flash blocks, intended primarily for nonvolatile code storage

26.4.2.10 Erase P-Flash Sector Command

The Erase P-Flash Sector operation will erase all addresses in a P-Flash sector.

CCOBIX[2:0]	FCCOB Parameters		
000	0x0A	Global address [22:16] to identify P-Flash block to be erased	
001	Global address [15:0] anywhere within the sector to be erased. Refer to Section 26.1.2.1 for the P-Flash sector size.		

Table 26-51. Erase P-Flash Sector Command FCCOB Requirements

Upon clearing CCIF to launch the Erase P-Flash Sector command, the Memory Controller will erase the selected Flash sector and then verify that it is erased. The CCIF flag will be set after the Erase P-Flash Sector operation has completed.

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 001 at command launch
		Set if a Load Data Field command sequence is currently active
	ACCERR	Set if command not available in current mode (see Table 26-30)
		Set if an invalid global address [22:16] is supplied ⁽¹⁾
FSTAT		Set if a misaligned phrase address is supplied (global address [2:0] != 000)
	FPVIOL	Set if the selected P-Flash sector is protected
	MGSTAT1	Set if any errors have been encountered during the verify operation
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation
FERSTAT EPVIOLIF None		None

Table 26-52. Erase P-Flash Sector Command Error Handling

1. As defined by the memory map for FTM512K3.

26.4.2.11 Unsecure Flash Command

The Unsecure Flash command will erase the entire P-Flash and D-Flash memory space and, if the erase is successful, will release security.

Table 26-53. Unsecure Flash Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters				
000	0x0B	Not required			

Upon clearing CCIF to launch the Unsecure Flash command, the Memory Controller will erase the entire P-Flash and D-Flash memory space and verify that it is erased. If the Memory Controller verifies that the entire Flash memory space was properly erased, security will be released. If the erase verify is not successful, the Unsecure Flash operation sets MGSTAT1 and terminates without changing the security

Register	Error Bit	Error Condition				
		Set if CCOBIX[2:0] != 001 at command launch				
		Set if a Load Data Field command sequence is currently active				
	ACCERR	Set if command not available in current mode (see Table 27-30)				
		Set if an invalid global address [22:0] is supplied				
FSTAT		Set if a misaligned word address is supplied (global address [0] != 0)				
		Set if the global address [22:0] points to the D-Flash EEE partition				
	FPVIOL	None				
	MGSTAT1	Set if any errors have been encountered during the verify operation				
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation				
FERSTAT	EPVIOLIF	None				

27.4.2.19 Enable EEPROM Emulation Command

MGSTAT0

EPVIOLIF

None

None

The Enable EEPROM Emulation command causes the Memory Controller to enable EEE activity. EEE activity is disabled after any reset.

Table 27-71. Enable EEPROM Emulation Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters				
000	0x13	Not required			

Upon clearing CCIF to launch the Enable EEPROM Emulation command, the CCIF flag will set after the Memory Controller enables EEE operations using the contents of the EEE tag RAM and tag counter. The Full Partition D-Flash or the Partition D-Flash command must be run prior to launching the Enable EEPROM Emulation command.

	Table 27-72. Enable EEF Nom Enhalation Command Error Handling						
Register	Error Bit	Error Condition					
		Set if CCOBIX[2:0] != 000 at command launch					
FSTAT	ACCERR	Set if a Load Data Field command sequence is currently active					
		Set if Full Partition D-Flash or Partition D-Flash command not previously run					
FOTAL	FPVIOL	None					
	MGSTAT1	None					

FERSTAT

SEC[1:0]	Status of Security
00	SECURED
01	SECURED ⁽¹⁾
10	UNSECURED
11	SECURED

Table 29-12. Flash Security States

1. Preferred SEC state to set MCU to secured state.

The security function in the Flash module is described in Section 29.5.

29.3.2.3 Flash CCOB Index Register (FCCOBIX)

Offset Module Base + 0x0002

The FCCOBIX register is used to index the FCCOB register for Flash memory operations.

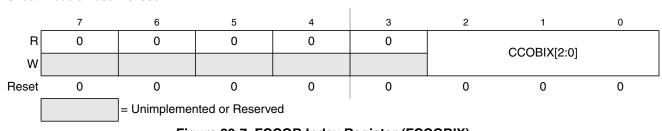


Figure 29-7. FCCOB Index Register (FCCOBIX)

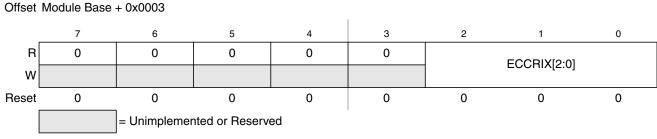

CCOBIX bits are readable and writable while remaining bits read 0 and are not writable.

 Table 29-13. FCCOBIX Field Descriptions

Field	Description
2–0 CCOBIX[1:0]	Common Command Register Index — The CCOBIX bits are used to select which word of the FCCOB register array is being read or written to. See Section 29.3.2.11, "Flash Common Command Object Register (FCCOB)," for more details.

29.3.2.4 Flash ECCR Index Register (FECCRIX)

The FECCRIX register is used to index the FECCR register for ECC fault reporting.

Figure 29-8. FECCR Index Register (FECCRIX)

ECCRIX bits are readable and writable while remaining bits read 0 and are not writable.

MC9S12XE-Family Reference Manual Rev. 1.25

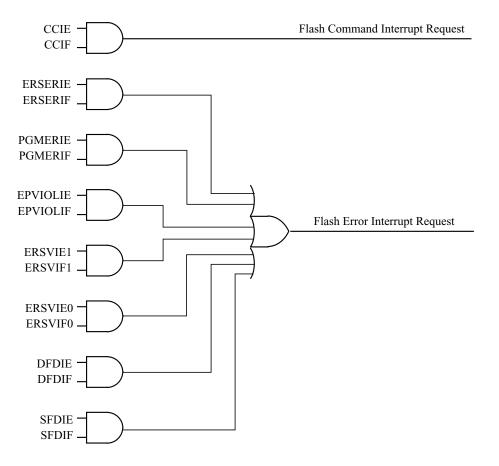


Figure 29-27. Flash Module Interrupts Implementation

29.4.4 Wait Mode

The Flash module is not affected if the MCU enters wait mode. The Flash module can recover the MCU from wait via the CCIF interrupt (see Section 29.4.3, "Interrupts").

29.4.5 Stop Mode

If a Flash command is active (CCIF = 0) or an EE-Emulation operation is pending when the MCU requests stop mode, the current Flash operation will be completed before the CPU is allowed to enter stop mode.

29.5 Security

The Flash module provides security information to the MCU. The Flash security state is defined by the SEC bits of the FSEC register (see Table 29-12). During reset, the Flash module initializes the FSEC register using data read from the security byte of the Flash configuration field at global address 0x7F_FF0F.

A.3.1.24 **EEE Copy Down**

The typical EEE copy down time is given by the following equation

$$t_{dfcd} = (14000 + (316 \cdot ERPART) + (1500 \cdot (124 - DFPART))) \times \frac{1}{f_{NVMBUS}}$$

The maximum EEE copy down time is given by the following equation

$$t_{dfcd} = (34000 + (316 \cdot \text{ERPART}) + (1500 \cdot (124 - \text{DFPART}))) \times \frac{1}{f_{\text{NVMBUS}}}$$

Worst case for Enable EEPROM Emulation allows for all the EEE records to have to be copied which is a very low probability scenario only likely in the case that the EEE is mostly full of unchanging data (the records for which are stored in consecutive D-Flash sectors).

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	External oscillator clock	f _{NVMOSC}	2	_	50 ⁽¹⁾	MHz
2	D	Bus frequency for programming or erase operations	f _{NVMBUS}	1	_	50	MHz
3	D	Operating frequency	f _{NVMOP}	800	_	1050	kHz
4	D	P-Flash phrase programming	t _{bwpgm}	_	162	173	μs
5a	D	P- Flash phrase program time using D-LOAD on 4 blocks	t _{bwpgm4}	_	231	264	μs
5b	D	P-Flash phrase program time using D-LOAD on 3 blocks	t _{bwpgm3}	_	208	233	μs
5c	D	P-Flash phrase program time using D-LOAD on 2 blocks	t _{bwpgm2}	_	185	202	μs
6	Ρ	P-Flash sector erase time	t _{era}	_	20	21	ms
7	Ρ	Erase All Blocks (Mass erase) time	t _{mass}	_	101	102	ms
7a	D	Unsecure Flash	t _{uns}	_	101	102	ms
8	D	P-Flash erase verify (blank check) time ⁽²⁾	t _{check}	_	_	33500 ²	t _{cyc}
9a	D	D-Flash word programming one word	t _{dpgm}	_	88	95	μs
9b	D	D-Flash word programming two words	t _{dpgm}	_	153	165	μs
9c	D	D-Flash word programming three words	t _{dpgm}	_	212	230	μs
9d	D	D-Flash word programming four words	t _{dpgm}	_	282	316	μs
9e	D	D-Flash word programming four words crossing row boundary	t _{dpgm}	_	298	342	μs
10	D	D-Flash sector erase time	t _{eradf}	_	5.2 ⁽³⁾	21	ms
11	D	D-Flash erase verify (blank check) time	t _{check}	_	_	17500	t _{cyc}
12	D	EEE copy down (mask sets 5M48H, 3M25J, 2M53J, 1M12S, 1N35H, 1N36H)	t _{dfrcd}	_	255000	275000 ⁽⁴⁾	t _{cyc}
12	D	EEE copy down (other mask sets)	t _{dfrcd}	_	205000	225000 ⁽⁵⁾	t _{cyc}

Table	Δ-19	NVM	Timina	Characteristics
lable	A-13.		rinning	Characteristics

Hostington of oscillator in crystal mode apply.
 Valid for both "Erase verify all" or "Erase verify block" on 256K block without failing locations
 This is a typical value for a new device
 Maximum partitioning

Output Loads A.5

A.5.1 **Resistive Loads**

The voltage regulator is intended to supply the internal logic and oscillator. It allows no external DC loads.

A.5.2 **Capacitive Loads**

The capacitive loads are specified in Table A-22. Ceramic capacitors with X7R dielectricum are required.

Num	Characteristic	Symbol	Min	Recommended	Max	Unit
1	VDD/VDDF external capacitive load	C _{DDext}	176	220	264	nF
3	VDDPLL external capacitive load	C _{DDPLLext}	80	220	264	nF

Table A-22. - Required Capacitive Loads

A.5.3 Chip Power-up and Voltage Drops

LVI (low voltage interrupt), POR (power-on reset) and LVRs (low voltage reset) handle chip power-up or drops of the supply voltage. Their function is shown in Figure A-3.

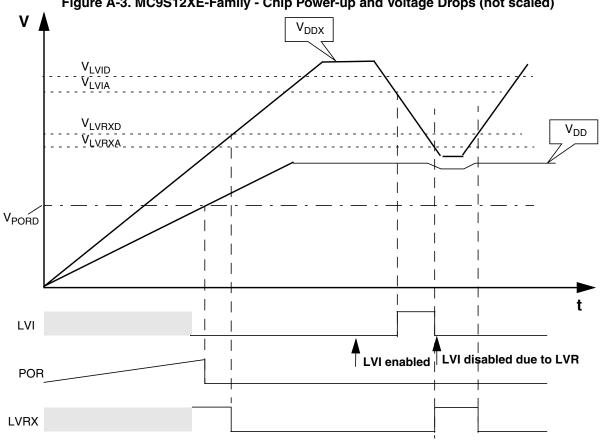


Figure A-3. MC9S12XE-Family - Chip Power-up and Voltage Drops (not scaled)

0x0380-0x03BF XGATE Map (Sheet 2 of 3)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0396	XGIF	R W	XGIF_0F	XGIF_0E	XGIF_0D	XGIF_0C	XGIF_0B	XGIF_0A	XGIF_09	0
0x0397	XGIF	R	0	0	0	0	0	0	0	0
0x0398	XGSWTM	W R W	0	0	0	0 XGSW/	0 TM[7:0]	0	0	0
0x0399	XGSWT	R	XGSWTM[7:0] XGSWT[7:0]							
0x039A	XGSEMM	R W	0	0	0	0 XGSEN	0 /M[7:0]	0	0	0
0x039B	XGSEM	R	XGSEM[7:0]							
0x039C	Reserved	R	0	0	0	0	0	0	0	0
0x039D	XGCCR	R W	0	0	0	0	XGN	XGZ	XGV	XGC
0x039E	XGPC (hi)	R W	XGPC[15:8]							
0x039F	XGPC (lo)	R W	XGPC[7:0]							
0x03A0	Reserved	R W	0	0	0	0	0	0	0	0
0x03A1	Reserved	R W	0	0	0	0	0	0	0	0
0x03A2	XGR1 (hi)	R W	XGR1[15:8]							
0x03A3	XGR1 (lo)	R W	XGR1[7:0]							
0x03A4	XGR2 (hi)	R W	XGR2[15:8]							
0x03A5	XGR2 (lo)	R W	XGR2[7:0]							
0x03A6	XGR3 (hi)	R W	XGR3[15:8]							
0x03A7	XGR3 (lo)	R W	XGR3[7:0]							
0x03A8	XGR4 (hi)	R W	XGR4[15:8]							
0x03A9	XGR4 (lo)	R W	XGR4[7:0]							
0x03AA	XGR5 (hi)	R W	XGR5[15:8]							
0x03AB	XGR5(lo)	R W	XGR5[7:0]							
0x03AC	XGR6 (hi)	R W	XGR6[15:8]							