

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                       |
|----------------------------|--------------------------------------------------------------|
| Core Processor             | HCS12X                                                       |
| Core Size                  | 16-Bit                                                       |
| Speed                      | 50MHz                                                        |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, SCI, SPI            |
| Peripherals                | LVD, POR, PWM, WDT                                           |
| Number of I/O              | 91                                                           |
| Program Memory Size        | 384KB (384K x 8)                                             |
| Program Memory Type        | FLASH                                                        |
| EEPROM Size                | 4K x 8                                                       |
| RAM Size                   | 24K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.72V ~ 5.5V                                                 |
| Data Converters            | A/D 16x12b                                                   |
| Oscillator Type            | External                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                            |
| Mounting Type              | Surface Mount                                                |
| Package / Case             | 112-LQFP                                                     |
| Supplier Device Package    | 112-LQFP (20x20)                                             |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s912xeq384j3cal |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1.2.3.7 PA[7:0] / ADDR[15:8] / IVD[15:8] — Port A I/O Pins

PA[7:0] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are used for the external address bus. In MCU emulation modes of operation, these pins are used for external address bus and internal visibility read data.

# 1.2.3.8 PB[7:1] / ADDR[7:1] / IVD[7:1] — Port B I/O Pins

PB[7:1] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are used for the external address bus. In MCU emulation modes of operation, these pins are used for external address bus and internal visibility read data.

## 1.2.3.9 PB0 / ADDR0 / UDS / IVD[0] — Port B I/O Pin 0

PB0 is a general-purpose input or output pin. In MCU expanded modes of operation, this pin is used for the external address bus ADDR0 or as upper data strobe signal. In MCU emulation modes of operation, this pin is used for external address bus ADDR0 and internal visibility read data IVD0.

### 1.2.3.10 PC[7:0] / DATA [15:8] — Port C I/O Pins

PC[7:0] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are used for the external data bus.

The input voltage thresholds for PC[7:0] can be configured to reduced levels, to allow data from an external 3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage thresholds for PC[7:0] are configured to reduced levels out of reset in expanded and emulation modes. The input voltage thresholds for PC[7:0] are configured to 5-V levels out of reset in normal modes.

## 1.2.3.11 PD[7:0] / DATA [7:0] — Port D I/O Pins

PD[7:0] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are used for the external data bus.

The input voltage thresholds for PD[7:0] can be configured to reduced levels, to allow data from an external 3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage thresholds for PD[7:0] are configured to reduced levels out of reset in expanded and emulation modes. The input voltage thresholds for PC[7:0] are configured to 5-V levels out of reset in normal modes.

## 1.2.3.12 PE7 / ECLKX2 / XCLKS — Port E I/O Pin 7

PE7 is a general-purpose input or output pin. ECLKX2 is a free running clock of twice the internal bus frequency, available by default in emulation modes and when enabled in other modes. The  $\overline{\text{XCLKS}}$  is an input signal which controls whether a crystal in combination with the internal loop controlled Pierce oscillator is used or whether full swing Pierce oscillator/external clock circuitry is used (refer to Oscillator Configuration). An internal pullup is enabled during reset.



| Vector Address <sup>(1)</sup> | XGATE<br>Channel<br>ID <sup>(2)</sup> | Interrupt Source                             |       | Local Enable                      | STOP<br>Wake up | WAIT<br>Wake up |
|-------------------------------|---------------------------------------|----------------------------------------------|-------|-----------------------------------|-----------------|-----------------|
| Vector base + \$8A            | \$45                                  | SCI2 I bit SCI2CR2<br>(TIE, TCIE, RIE, ILIE) |       | Yes                               | Yes             |                 |
| Vector base + \$88            | \$44                                  | SCI3                                         | l bit | SCI3CR2<br>(TIE, TCIE, RIE, ILIE) | Yes             | Yes             |
| Vector base + \$86            | \$43                                  | SCI4                                         | l bit | SCI4CR2<br>(TIE, TCIE, RIE, ILIE) | Yes             | Yes             |
| Vector base + \$84            | \$42                                  | SCI5                                         | l bit | SCI5CR2<br>(TIE, TCIE, RIE, ILIE) | Yes             | Yes             |
| Vector base + \$82            | \$41                                  | IIC1 Bus                                     | l bit | IBCR (IBIE)                       | No              | Yes             |
| Vector base + \$80            | \$40                                  | Low-voltage interrupt (LVI)                  | l bit | VREGCTRL (LVIE)                   | No              | Yes             |
| Vector base + \$7E            | \$3F                                  | Autonomous periodical interrupt (API)        | l bit | VREGAPICTRL (APIE)                | Yes             | Yes             |
| Vector base + \$7C            | _                                     | High Temperature Interrupt                   | l bit | VREGHTCL (HTIE)                   | No              | Yes             |
| Vector base + \$7A            | \$3D                                  | Periodic interrupt timer channel 0           | l bit | PITINTE (PINTE0)                  | No              | Yes             |
| Vector base + \$78            | \$3C                                  | Periodic interrupt timer channel 1           | l bit | PITINTE (PINTE1)                  | No              | Yes             |
| Vector base + \$76            | \$3B                                  | Periodic interrupt timer channel 2           | l bit | PITINTE (PINTE2)                  | No              | Yes             |
| Vector base + \$74            | \$3A                                  | Periodic interrupt timer channel 3           | l bit | PITINTE (PINTE3)                  | No              | Yes             |
| Vector base + \$72            | \$39                                  | XGATE software trigger 0                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$70            | \$38                                  | XGATE software trigger 1                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$6E            | \$37                                  | XGATE software trigger 2                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$6C            | \$36                                  | XGATE software trigger 3                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$6A            | \$35                                  | XGATE software trigger 4                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$68            | \$34                                  | XGATE software trigger 5                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$66            | \$33                                  | XGATE software trigger 6                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$64            | \$32                                  | XGATE software trigger 7                     | l bit | XGMCTL (XGIE)                     | No              | Yes             |
| Vector base + \$62            |                                       | Reserved                                     |       |                                   |                 |                 |
| Vector base + \$60            |                                       | Reserved                                     |       |                                   |                 |                 |
| Vector base + \$5E            | \$2F                                  | Periodic interrupt timer channel 4           | l bit | PITINTE (PINTE4)                  | No              | Yes             |
| Vector base + \$5C            | \$2E                                  | Periodic interrupt timer channel 5           | l bit | PITINTE (PINTE5)                  | No              | Yes             |
| Vector base + \$5A            | \$2D                                  | Periodic interrupt timer channel 6           | l bit | PITINTE (PINTE6)                  | No              | Yes             |
| Vector base + \$58            | \$2C                                  | Periodic interrupt timer channel 7           | l bit | PITINTE (PINTE7)                  | No              | Yes             |
| Vector base + \$56            | \$2B                                  | SCI7                                         | l bit | SCI7CR2<br>(TIE, TCIE, RIE, ILIE) | Yes             | Yes             |
| Vector base + \$54            | \$2A                                  | TIM timer channel 0                          | l bit | TIE (C0I)                         | No              | Yes             |
| Vector base + \$52            | \$29                                  | TIM timer channel 1                          | l bit | TIE (C1I)                         | No              | Yes             |
| Vector base + \$50            | \$28                                  | TIM timer channel 2                          | l bit | TIE (C2I)                         | No              | Yes             |



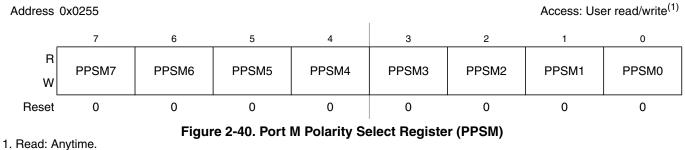
# Chapter 2 Port Integration Module (S12XEPIMV1)

| Revision<br>Number | Revision Date | Sections<br>Affected      | Description of Changes                                                                                                               |  |
|--------------------|---------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| V01.17             | 02 Apr 2008   |                           | <ul> <li>Corrected reduced drive strength to 1/5</li> <li>Separated PE1,0 bit descriptions from other PE GPIO</li> </ul>             |  |
| V01.18             | 25 Nov 2008   | 2.3.19/120<br>2.4.3.4/181 | <ul> <li>Corrected alternative functions on Port K (ACC[2:0])</li> <li>Corrected functions on PE[5] (MODB) and PE[2] (WE)</li> </ul> |  |
| V01.19             | 18 Dec 2009   |                           | <ul> <li>Added function independency to reduced drive and wired-or bit descriptions</li> <li>Minor corrections</li> </ul>            |  |

Table 2-1. Revision History

# 2.1 Introduction

### 2.1.1 Overview


The S12XE Family Port Integration Module establishes the interface between the peripheral modules including the non-multiplexed External Bus Interface module (S12X\_EBI) and the I/O pins for all ports. It controls the electrical pin properties as well as the signal prioritization and multiplexing on shared pins.

This document covers:

- Port A and B used as address output of the S12X\_EBI
- Port C and D used as data I/O of the S12X\_EBI
- Port E associated with the S12X\_EBI control signals and the  $\overline{IRQ}$ ,  $\overline{XIRQ}$  interrupt inputs
- Port K associated with address output and control signals of the S12X\_EBI
- Port T associated with 1 ECT module
- Port S associated with 2 SCI and 1 SPI modules
- Port M associated with 4 MSCAN and 1 SCI module
- Port P connected to the PWM and 2 SPI modules inputs can be used as an external interrupt source
- Port H associated with 4 SCI modules inputs can be used as an external interrupt source
- Port J associated with 1 MSCAN, 1 SCI, 2 IIC modules and chip select outputs inputs can be used as an external interrupt source
- Port AD0 and AD1 associated with two 16-channel ATD modules
- Port R associated with 1 standard timer (TIM) module
- Port L associated with 4 SCI modules



### 2.3.42 Port M Polarity Select Register (PPSM)



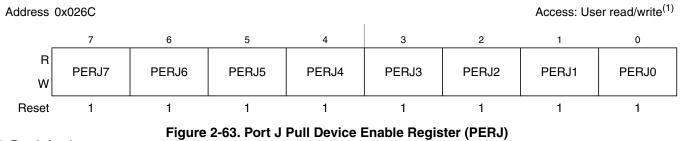
Write: Anytime.

#### Table 2-38. PPSM Register Field Descriptions

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0   | Port M pull device select—Determine pull device polarity on input pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PPSM  | <ul> <li>This register selects whether a pull-down or a pull-up device is connected to the pin. If CAN is active a pull-up device can be activated on the RXCAN[3:0] inputs, but not a pull-down.</li> <li>1 A pull-down device is connected to the associated Port M pin, if enabled by the associated bit in register PERM and if the port is used as a general purpose but not as RXCAN.</li> <li>0 A pull-up device is connected to the associated Port M pin, if enabled by the associated bit in register PERM and if the port is used as general purpose or RXCAN input.</li> </ul> |

### 2.3.43 Port M Wired-Or Mode Register (WOMM)

#### Access: User read/write<sup>(1)</sup> Address 0x0256 7 6 5 4 3 2 0 1 R WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0 W 0 0 0 0 0 0 0 0 Reset Figure 2-41. Port M Wired-Or Mode Register (WOMM)


1. Read: Anytime. Write: Anytime.

### Table 2-39. WOMM Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0<br>WOMM | <ul> <li>Port M wired-or mode—Enable wired-or functionality</li> <li>This register configures the output pins as wired-or independent of the function used on the pins. If enabled the output is driven active low only (open-drain). A logic level of "1" is not driven. This allows a multipoint connection of several serial modules. These bits have no influence on pins used as inputs.</li> <li>1 Output buffers operate as open-drain outputs.</li> <li>0 Output buffers operate as push-pull outputs.</li> </ul> |



### 2.3.65 Port J Pull Device Enable Register (PERJ)



1. Read: Anytime. Write: Anytime.

#### Table 2-61. PERJ Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0<br>PERJ | <ul> <li>Port J pull device enable—Enable pull devices on input pins</li> <li>These bits configure whether a pull device is activated, if the associated pin is used as an input. This bit has no effect if the pin is used as an output. Out of reset all pull device are enabled.</li> <li>1 Pull device enabled.</li> <li>0 Pull device disabled.</li> </ul> |

# 2.3.66 Port J Polarity Select Register (PPSJ)

Access: User read/write<sup>(1)</sup>

| _      | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| R<br>W | PPSJ7 | PPSJ6 | PPSJ5 | PPSJ4 | PPSJ3 | PPSJ2 | PPSJ1 | PPSJ0 |
| Reset  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

#### Figure 2-64. Port J Polarity Select Register (PPSJ)

1. Read: Anytime. Write: Anytime.

#### Table 2-62. PPSJ Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0<br>PPSJ | <ul> <li>Port J pull device select—Determine pull device polarity on input pins</li> <li>This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-<br/>up or pull-down device if enabled.</li> <li>1 A rising edge on the associated Port J pin sets the associated flag bit in the PIFJ register. A pull-down device is<br/>connected to the associated Port J pin, if enabled by the associated bit in register PERJ and if the port is used as<br/>input.</li> <li>0 A falling edge on the associated Port J pin, if enabled by the associated flag bit in the PIFJ register. A pull-up device is<br/>connected to the associated Port J pin, if enabled by the associated flag bit in the PIFJ register. A pull-up device is<br/>input.</li> </ul> |



• Single Stepping

Writing a "1" to the XGSS bit will call the RISC core to execute a single instruction. All RISC core registers will be updated accordingly.

• Write accesses to the XGCHID register and the XGCHPL register

XGATE threads can be initiated and terminated through a 16 write access to the XGCHID and the XGCHPL register or through a 8 bit write access to the XGCHID register. Detailed operation is shown in Table 10-22. Once a thread has been initiated it's code can be either single stepped or it can be executed by leaving debug mode.

| Register | Content                |        | /cle Write<br>ss to | Action                                                                                                       |  |
|----------|------------------------|--------|---------------------|--------------------------------------------------------------------------------------------------------------|--|
| XGCHID   | XGCHPL                 | XGCHID | XGCHPL              |                                                                                                              |  |
| 0        | 0                      | 1127   | _(1)                | Set new XGCHID<br>Set XGCHPL to 0x01<br>Initiate new thread                                                  |  |
| 0        | 0                      | 1127   | 07                  | Set new XGCHID<br>Set new XGCHPL<br>Initiate new thread                                                      |  |
| 1127     | 03                     | 1127   | 47                  | Interrupt current thread<br>Set new XGCHID<br>Set new XGCHPL<br>Initiate new thread                          |  |
| 1127     | 07                     | 0      | 07                  | Terminate current thread.<br>Resume interrupted thread or become idle if<br>no interrupted thread is pending |  |
|          | All other combinations |        |                     | No action                                                                                                    |  |

| Table 10-22. Initiat | ting and Terminatin | a Threads in Debu | ua Mode |
|----------------------|---------------------|-------------------|---------|
|                      |                     |                   | -g      |

1. 8 bit write access to XGCHID

### NOTE

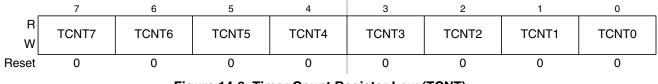
Even though zero is not a valid interrupt priority level of the S12X\_INT module, a thread of priority level 0 can be initiated in debug mode. The XGATE handles requests of priority level 0 in the same way as it handles requests of priority levels 1 to 3.

### NOTE

All channels 1 to 127 can be initiated by writing to the XGCHID register, even if they are not assigned to any peripheral module.

### NOTE

In Debug Mode the XGATE will ignore all requests from peripheral modules.


### 10.6.1.0.1 Entering Debug Mode

Debug mode can be entered in four ways:

1. Setting XGDBG to "1"



Module Base + 0x0005



#### Figure 14-8. Timer Count Register Low (TCNT)

Read: Anytime

Write: Writable in special modes.

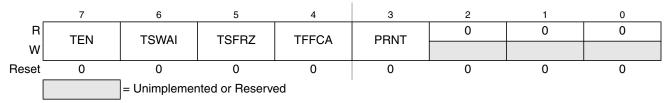
All bits reset to zero.

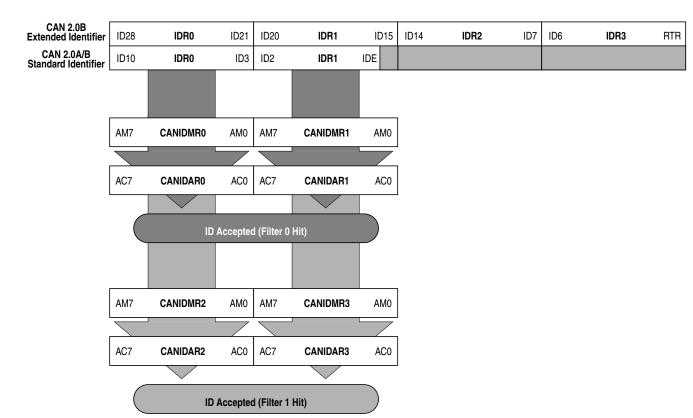
#### Table 14-6. TCNT Field Descriptions

| Field              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:0<br>TCNT[15:0] | <ul> <li>Timer Counter Bits — The 16-bit main timer is an up counter. A read to this register will return the current value of the counter. Access to the counter register will take place in one clock cycle.</li> <li>Note: A separate read/write for high byte and low byte in test mode will give a different result than accessing them as a word. The period of the first count after a write to the TCNT registers may be a different size because the write is not synchronized with the prescaler clock.</li> </ul> |

### 14.3.2.6 Timer System Control Register 1 (TSCR1)

Module Base + 0x0006





Figure 14-9. Timer System Control Register 1 (TSCR1)

Read or write: Anytime except PRNT bit is write once

All bits reset to zero.

### Table 14-7. TSCR1 Field Descriptions

| Field      | Description                                                                                                                                                                                                                                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>TEN   | <ul> <li>Timer Enable</li> <li>Disables the main timer, including the counter. Can be used for reducing power consumption.</li> <li>Allows the timer to function normally.</li> <li>Note: If for any reason the timer is not active, there is no ÷64 clock for the pulse accumulator since the ÷64 is generated by the timer prescaler.</li> </ul> |
| 6<br>TSWAI | <ul> <li>Timer Module Stops While in Wait</li> <li>Allows the timer module to continue running during wait.</li> <li>Disables the timer counter, pulse accumulators and modulus down counter when the MCU is in wait mode.<br/>Timer interrupts cannot be used to get the MCU out of wait.</li> </ul>                                              |



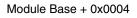

ter 16 Freescale's Scalable Controller Area Network (S12MSCANV3)

Figure 16-41. 16-bit Maskable Identifier Acceptance Filters



### 19.3.2.5 PWM Center Align Enable Register (PWMCAE)

The PWMCAE register contains eight control bits for the selection of center aligned outputs or left aligned outputs for each PWM channel. If the CAEx bit is set to a one, the corresponding PWM output will be center aligned. If the CAEx bit is cleared, the corresponding PWM output will be left aligned. See Section 19.4.2.5, "Left Aligned Outputs" and Section 19.4.2.6, "Center Aligned Outputs" for a more detailed description of the PWM output modes.



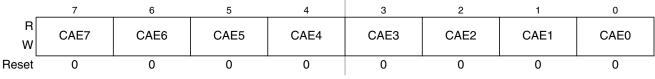


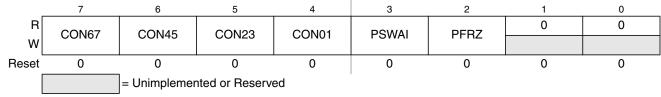

Figure 19-7. PWM Center Align Enable Register (PWMCAE)

Read: Anytime

Write: Anytime

### NOTE

Write these bits only when the corresponding channel is disabled.


### Table 19-8. PWMCAE Field Descriptions

| Field    | Description                                           |  |  |  |
|----------|-------------------------------------------------------|--|--|--|
| 7–0      | enter Aligned Output Modes on Channels 7–0            |  |  |  |
| CAE[7:0] | 0 Channels 7–0 operate in left aligned output mode.   |  |  |  |
|          | 1 Channels 7–0 operate in center aligned output mode. |  |  |  |

### 19.3.2.6 PWM Control Register (PWMCTL)

The PWMCTL register provides for various control of the PWM module.

Module Base + 0x0005





### Read: Anytime

Write: Anytime

There are three control bits for concatenation, each of which is used to concatenate a pair of PWM channels into one 16-bit channel. When channels 6 and 7are concatenated, channel 6 registers become the high order bytes of the double byte channel. When channels 4 and 5 are concatenated, channel 4 registers become the high order bytes of the double byte channel. When channels 2 and 3 are concatenated, channel



# 20.4 Functional Description

This section provides a complete functional description of the SCI block, detailing the operation of the design from the end user perspective in a number of subsections.

Figure 20-14 shows the structure of the SCI module. The SCI allows full duplex, asynchronous, serial communication between the CPU and remote devices, including other CPUs. The SCI transmitter and receiver operate independently, although they use the same baud rate generator. The CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data.

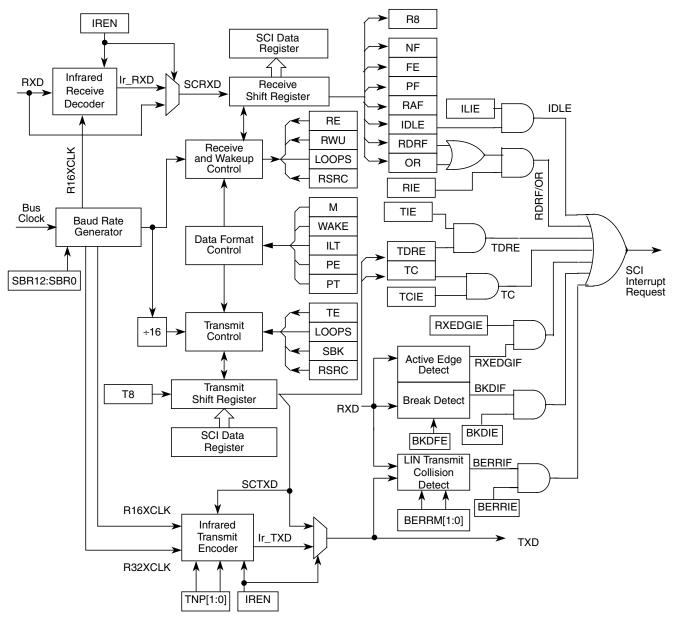
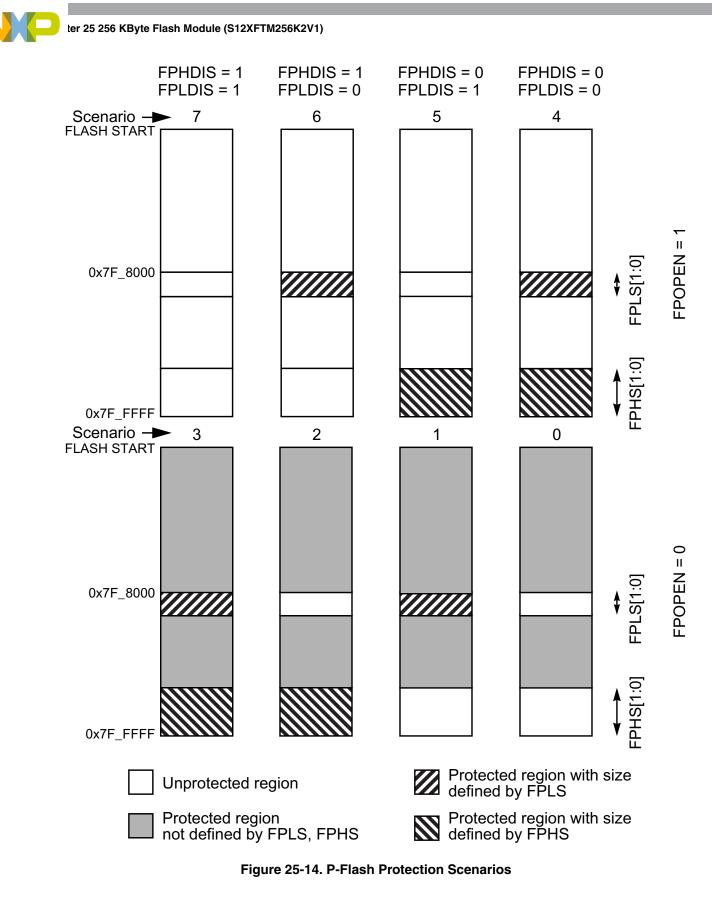



Figure 20-14. Detailed SCI Block Diagram

| Register | Error Bit | Error Condition                                                         |
|----------|-----------|-------------------------------------------------------------------------|
|          |           | Set if CCOBIX[2:0] != 010 at command launch                             |
|          | ACCERR    | Set if command not available in current mode (see Table 24-30)          |
| FSTAT    |           | Set if an invalid DFPART or ERPART selection is supplied <sup>(1)</sup> |
| FSTAL    | FPVIOL    | None                                                                    |
|          | MGSTAT1   | Set if any errors have been encountered during the read                 |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the read |
| FERSTAT  | EPVIOLIF  | None                                                                    |

1. As defined by the maximum ERPART for FTM256K2.


### 24.4.2.15 Erase Verify D-Flash Section Command

The Erase Verify D-Flash Section command will verify that a section of code in the D-Flash user partition is erased. The Erase Verify D-Flash Section command defines the starting point of the data to be verified and the number of words.

Table 24-63. Erase Verify D-Flash Section Command FCCOB Requirements

| CCOBIX[2:0] | FCCOB Parameters                                       |                                                      |  |  |  |  |
|-------------|--------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| 000         | 0x10                                                   | Global address [22:16] to identify the D-Flash block |  |  |  |  |
| 001         | Global address [15:0] of the first word to be verified |                                                      |  |  |  |  |
| 010         | Number of words to be verified                         |                                                      |  |  |  |  |

Upon clearing CCIF to launch the Erase Verify D-Flash Section command, the Memory Controller will verify the selected section of D-Flash memory is erased. The CCIF flag will set after the Erase Verify D-Flash Section operation has completed.



MC9S12XE-Family Reference Manual Rev. 1.25



values for the Program Once command range from 0x0000 to 0x0007. During execution of the Program Once command, any attempt to read addresses within P-Flash block 0 will return invalid data.

| Register | Error Bit | Error Condition                                                                     |
|----------|-----------|-------------------------------------------------------------------------------------|
|          | ACCERR    | Set if CCOBIX[2:0] != 101 at command launch                                         |
|          |           | Set if a Load Data Field command sequence is currently active                       |
|          |           | Set if command not available in current mode (see Table 26-30)                      |
|          |           | Set if an invalid phrase index is supplied                                          |
| FSTAT    |           | Set if the requested phrase has already been programmed <sup>(1)</sup>              |
|          | FPVIOL    | None                                                                                |
|          | MGSTAT1   | Set if any errors have been encountered during the verify operation                 |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the verify operation |
| FERSTAT  | EPVIOLIF  | None                                                                                |

1. If a Program Once phrase is initially programmed to 0xFFFF\_FFFF\_FFFFF, the Program Once command will be allowed to execute again on that same phrase.

### 26.4.2.8 Erase All Blocks Command

The Erase All Blocks operation will erase the entire P-Flash and D-Flash memory space including the EEE nonvolatile information register.

| Table 26-47. Erase All Blocks Command FCCOB Requirements |
|----------------------------------------------------------|
|----------------------------------------------------------|

| CCOBIX[2:0] | FCCOB Parameters |              |  |  |  |  |
|-------------|------------------|--------------|--|--|--|--|
| 000         | 0x08             | Not required |  |  |  |  |

Upon clearing CCIF to launch the Erase All Blocks command, the Memory Controller will erase the entire Flash memory space and verify that it is erased. If the Memory Controller verifies that the entire Flash memory space was properly erased, security will be released. During the execution of this command (CCIF=0) the user must not write to any Flash module register. The CCIF flag will set after the Erase All Blocks operation has completed.



### 27.4.1.3 Valid Flash Module Commands

| Table 27-30. | Flash | Commands | by | Mode |
|--------------|-------|----------|----|------|
|--------------|-------|----------|----|------|

|      | Command                      |           | Unsecured |                   |                   |           | Secured   |                   |                   |  |
|------|------------------------------|-----------|-----------|-------------------|-------------------|-----------|-----------|-------------------|-------------------|--|
| FCMD |                              | NS<br>(1) | NX<br>(2) | SS <sup>(3)</sup> | ST <sup>(4)</sup> | NS<br>(5) | NX<br>(6) | SS <sup>(7)</sup> | ST <sup>(8)</sup> |  |
| 0x01 | Erase Verify All Blocks      | *         | *         | *                 | *                 | *         | *         | *                 | *                 |  |
| 0x02 | Erase Verify Block           | *         | *         | *                 | *                 | *         | *         | *                 | *                 |  |
| 0x03 | Erase Verify P-Flash Section | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x04 | Read Once                    | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x05 | Load Data Field              | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x06 | Program P-Flash              | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x07 | Program Once                 | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x08 | Erase All Blocks             |           |           | *                 | *                 |           |           | *                 | *                 |  |
| 0x09 | Erase P-Flash Block          | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x0A | Erase P-Flash Sector         | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x0B | Unsecure Flash               |           |           | *                 | *                 |           |           | *                 | *                 |  |
| 0x0C | Verify Backdoor Access Key   | *         |           |                   |                   | *         |           |                   |                   |  |
| 0x0D | Set User Margin Level        | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x0E | Set Field Margin Level       |           |           | *                 | *                 |           |           |                   |                   |  |
| 0x0F | Full Partition D-Flash       |           |           | *                 | *                 |           |           |                   |                   |  |
| 0x10 | Erase Verify D-Flash Section | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x11 | Program D-Flash              | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x12 | Erase D-Flash Sector         | *         | *         | *                 | *                 | *         |           |                   |                   |  |
| 0x13 | Enable EEPROM Emulation      | *         | *         | *                 | *                 | *         | *         | *                 | *                 |  |
| 0x14 | Disable EEPROM Emulation     | *         | *         | *                 | *                 | *         | *         | *                 | *                 |  |
| 0x15 | EEPROM Emulation Query       | *         | *         | *                 | *                 | *         | *         | *                 | *                 |  |
| 0x20 | Partition D-Flash            | *         | *         | *                 | *                 | *         | *         | *                 | *                 |  |

1. Unsecured Normal Single Chip mode.

2. Unsecured Normal Expanded mode.

3. Unsecured Special Single Chip mode.

4. Unsecured Special Mode.

5. Secured Normal Single Chip mode.

6. Secured Normal Expanded mode.

7. Secured Special Single Chip mode.

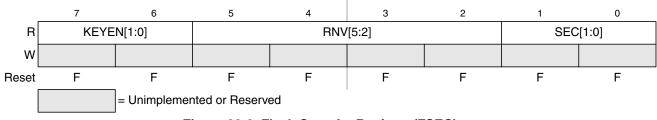
8. Secured Special Mode.

| OSCCLK Frequency<br>(MHz) |                    | FDIV[6:0] | OSCCLK Frequency<br>(MHz) |                  | FDIV[6:0] |                  | OSCCLK Frequency<br>(MHz) |           |  |
|---------------------------|--------------------|-----------|---------------------------|------------------|-----------|------------------|---------------------------|-----------|--|
| MIN <sup>(1)</sup>        | MAX <sup>(2)</sup> |           | MIN <sup>1</sup>          | MAX <sup>2</sup> |           | MIN <sup>1</sup> | MAX <sup>2</sup>          | FDIV[6:0] |  |
|                           |                    |           | 33.60                     | 34.65            | 0x20      | 67.20            | 68.25                     | 0x40      |  |
| 1.60                      | 2.10               | 0x01      | 34.65                     | 35.70            | 0x21      | 68.25            | 69.30                     | 0x41      |  |
| 2.40                      | 3.15               | 0x02      | 35.70                     | 36.75            | 0x22      | 69.30            | 70.35                     | 0x42      |  |
| 3.20                      | 4.20               | 0x03      | 36.75                     | 37.80            | 0x23      | 70.35            | 71.40                     | 0x43      |  |
| 4.20                      | 5.25               | 0x04      | 37.80                     | 38.85            | 0x24      | 71.40            | 72.45                     | 0x44      |  |
| 5.25                      | 6.30               | 0x05      | 38.85                     | 39.90            | 0x25      | 72.45            | 73.50                     | 0x45      |  |
| 6.30                      | 7.35               | 0x06      | 39.90                     | 40.95            | 0x26      | 73.50            | 74.55                     | 0x46      |  |
| 7.35                      | 8.40               | 0x07      | 40.95                     | 42.00            | 0x27      | 74.55            | 75.60                     | 0x47      |  |
| 8.40                      | 9.45               | 0x08      | 42.00                     | 43.05            | 0x28      | 75.60            | 76.65                     | 0x48      |  |
| 9.45                      | 10.50              | 0x09      | 43.05                     | 44.10            | 0x29      | 76.65            | 77.70                     | 0x49      |  |
| 10.50                     | 11.55              | 0x0A      | 44.10                     | 45.15            | 0x2A      | 77.70            | 78.75                     | 0x4A      |  |
| 11.55                     | 12.60              | 0x0B      | 45.15                     | 46.20            | 0x2B      | 78.75            | 79.80                     | 0x4B      |  |
| 12.60                     | 13.65              | 0x0C      | 46.20                     | 47.25            | 0x2C      | 79.80            | 80.85                     | 0x4C      |  |
| 13.65                     | 14.70              | 0x0D      | 47.25                     | 48.30            | 0x2D      | 80.85            | 81.90                     | 0x4D      |  |
| 14.70                     | 15.75              | 0x0E      | 48.30                     | 49.35            | 0x2E      | 81.90            | 82.95                     | 0x4E      |  |
| 15.75                     | 16.80              | 0x0F      | 49.35                     | 50.40            | 0x2F      | 82.95            | 84.00                     | 0x4F      |  |
| 16.80                     | 17.85              | 0x10      | 50.40                     | 51.45            | 0x30      | 84.00            | 85.05                     | 0x50      |  |
| 17.85                     | 18.90              | 0x11      | 51.45                     | 52.50            | 0x31      | 85.05            | 86.10                     | 0x51      |  |
| 18.90                     | 19.95              | 0x12      | 52.50                     | 53.55            | 0x32      | 86.10            | 87.15                     | 0x52      |  |
| 19.95                     | 21.00              | 0x13      | 53.55                     | 54.60            | 0x33      | 87.15            | 88.20                     | 0x53      |  |
| 21.00                     | 22.05              | 0x14      | 54.60                     | 55.65            | 0x34      | 88.20            | 89.25                     | 0x54      |  |
| 22.05                     | 23.10              | 0x15      | 55.65                     | 56.70            | 0x35      | 89.25            | 90.30                     | 0x55      |  |
| 23.10                     | 24.15              | 0x16      | 56.70                     | 57.75            | 0x36      | 90.30            | 91.35                     | 0x56      |  |
| 24.15                     | 25.20              | 0x17      | 57.75                     | 58.80            | 0x37      | 91.35            | 92.40                     | 0x57      |  |
| 25.20                     | 26.25              | 0x18      | 58.80                     | 59.85            | 0x38      | 92.40            | 93.45                     | 0x58      |  |
| 26.25                     | 27.30              | 0x19      | 59.85                     | 60.90            | 0x39      | 93.45            | 94.50                     | 0x59      |  |
| 27.30                     | 28.35              | 0x1A      | 60.90                     | 61.95            | 0x3A      | 94.50            | 95.55                     | 0x5A      |  |
| 28.35                     | 29.40              | 0x1B      | 61.95                     | 63.00            | 0x3B      | 95.55            | 96.60                     | 0x5B      |  |
| 29.40                     | 30.45              | 0x1C      | 63.00                     | 64.05            | 0x3C      | 96.60            | 97.65                     | 0x5C      |  |
| 30.45                     | 31.50              | 0x1D      | 64.05                     | 65.10            | 0x3D      | 97.65            | 98.70                     | 0x5D      |  |
| 31.50                     | 32.55              | 0x1E      | 65.10                     | 66.15            | 0x3E      | 98.70            | 99.75                     | 0x5E      |  |
| 32.55                     | 33.60              | 0x1F      | 66.15                     | 67.20            | 0x3F      | 99.75            | 100.80                    | 0x5F      |  |

#### Table 28-9. FDIV vs OSCCLK Frequency

1. FDIV shown generates an FCLK frequency of >0.8 MHz






2. FDIV shown generates an FCLK frequency of 1.05 MHz

### 28.3.2.2 Flash Security Register (FSEC)

The FSEC register holds all bits associated with the security of the MCU and Flash module.

Offset Module Base + 0x0001



#### Figure 28-6. Flash Security Register (FSEC)

All bits in the FSEC register are readable but not writable.

During the reset sequence, the FSEC register is loaded with the contents of the Flash security byte in the Flash configuration field at global address 0x7F\_FF0F located in P-Flash memory (see Table 28-3) as indicated by reset condition F in Figure 28-6. If a double bit fault is detected while reading the P-Flash phrase containing the Flash security byte during the reset sequence, all bits in the FSEC register will be set to leave the Flash module in a secured state with backdoor key access disabled.

| Field             | Description                                                                                                                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–6<br>KEYEN[1:0] | <b>Backdoor Key Security Enable Bits</b> — The KEYEN[1:0] bits define the enabling of backdoor key access to the Flash module as shown in Table 28-11.                                                  |
| 5–2<br>RNV[5:2}   | Reserved Nonvolatile Bits — The RNV bits should remain in the erased state for future enhancements.                                                                                                     |
| 1–0<br>SEC[1:0]   | <b>Flash Security Bits</b> — The SEC[1:0] bits define the security state of the MCU as shown in Table 28-12. If the Flash module is unsecured using backdoor key access, the SEC bits are forced to 10. |

#### Table 28-11. Flash KEYEN States

| KEYEN[1:0] | Status of Backdoor Key Access |
|------------|-------------------------------|
| 00         | DISABLED                      |
| 01         | DISABLED <sup>(1)</sup>       |
| 10         | ENABLED                       |
| 11         | DISABLED                      |

1. Preferred KEYEN state to disable backdoor key access.



| Register | Error Bit | Error Condition                                                                                           |
|----------|-----------|-----------------------------------------------------------------------------------------------------------|
|          |           | Set if CCOBIX[2:0] != 010 at command launch                                                               |
|          |           | Set if a Load Data Field command sequence is currently active                                             |
|          |           | Set if command not available in current mode (see Table 28-30)                                            |
|          | ACCEBB    | Set if an invalid global address [22:0] is supplied                                                       |
|          |           | Set if a misaligned word address is supplied (global address [0] != 0)                                    |
| FSTAT    |           | Set if the global address [22:0] points to an area of the D-Flash EEE partition                           |
|          |           | Set if the requested section breaches the end of the D-Flash block or goes into the D-Flash EEE partition |
|          | FPVIOL    | None                                                                                                      |
|          | MGSTAT1   | Set if any errors have been encountered during the read                                                   |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the read                                   |
| FERSTAT  | EPVIOLIF  | None                                                                                                      |

#### Table 28-66. Erase Verify D-Flash Section Command Error Handling

### 28.4.2.17 Program D-Flash Command

The Program D-Flash operation programs one to four previously erased words in the D-Flash user partition. The Program D-Flash operation will confirm that the targeted location(s) were successfully programmed upon completion.

### CAUTION

A Flash word must be in the erased state before being programmed. Cumulative programming of bits within a Flash word is not allowed.

| CCOBIX[2:0] | FCCOB Parameters                               |                                                      |  |  |  |  |  |
|-------------|------------------------------------------------|------------------------------------------------------|--|--|--|--|--|
| 000         | 0x11                                           | Global address [22:16] to identify the D-Flash block |  |  |  |  |  |
| 001         | Global address [15:0] of word to be programmed |                                                      |  |  |  |  |  |
| 010         | Word 0 program value                           |                                                      |  |  |  |  |  |
| 011         | Word 1 program value, if desired               |                                                      |  |  |  |  |  |
| 100         | Word 2 program value, if desired               |                                                      |  |  |  |  |  |
| 101         | Word 3 program value, if desired               |                                                      |  |  |  |  |  |

 Table 28-67. Program D-Flash Command FCCOB Requirements

Upon clearing CCIF to launch the Program D-Flash command, the user-supplied words will be transferred to the Memory Controller and be programmed. The CCOBIX index value at Program D-Flash command launch determines how many words will be programmed in the D-Flash block. No protection checks are made in the Program D-Flash operation on the D-Flash block, only access error checks. The CCIF flag is set when the operation has completed.





#### **Output Loads** A.5

#### A.5.1 **Resistive Loads**

The voltage regulator is intended to supply the internal logic and oscillator. It allows no external DC loads.

#### A.5.2 **Capacitive Loads**

The capacitive loads are specified in Table A-22. Ceramic capacitors with X7R dielectricum are required.

| Num | Characteristic                    | Symbol                | Min | Recommended | Max | Unit |
|-----|-----------------------------------|-----------------------|-----|-------------|-----|------|
| 1   | VDD/VDDF external capacitive load | C <sub>DDext</sub>    | 176 | 220         | 264 | nF   |
| 3   | VDDPLL external capacitive load   | C <sub>DDPLLext</sub> | 80  | 220         | 264 | nF   |

Table A-22. - Required Capacitive Loads

#### A.5.3 Chip Power-up and Voltage Drops

LVI (low voltage interrupt), POR (power-on reset) and LVRs (low voltage reset) handle chip power-up or drops of the supply voltage. Their function is shown in Figure A-3.

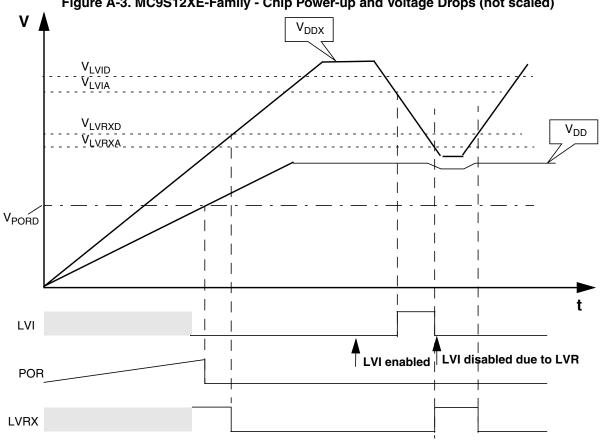



Figure A-3. MC9S12XE-Family - Chip Power-up and Voltage Drops (not scaled)



### 0x0040–0x007F Enhanced Capture Timer 16-Bit 8-Channels (ECT) Map (Sheet 1 of 3)

| AddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1 $0x0040$ TIOS $R$<br>WIOS7IOS6IOS5IOS4IOS3IOS2IOS1 $0x0041$ CFORC $R$<br>W $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0x0042$ OC7M $R$<br>WOC7M7OC7M6OC7M5OC7M4OC7M3OC7M2OC7M1 $0x0043$ OC7D $R$<br>WOC7D7OC7D6OC7D5OC7D4OC7D3OC7D2OC7D1 $0x0044$ TCNT (high) $R$<br>WTCNT7TCNT6TCNT5TCNT4TCNT11TCNT10TCNT9 $0x0046$ TSCR1 $R$<br>WTCN7TOV6TOV5TOV4TOV3TOV2TOV1 $0x0047$ TTOV $R$<br>WTOV7TOV6TOV5TOV4TOV3TOV2TOV1 | Bit 0 |       |        |        |        |        |         |        |                                         |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--------|--------|--------|---------|--------|-----------------------------------------|---------|
| 0x0040HOSHOS7HOS6HOS5HOS5HOS3HOS3HOS2HOS10x0041CFORCR0000000000x0042OC7MROC7M7OC7M6OC7M5OC7M4OC7M3OC7M2OC7M10x0043OC7DROC7D7OC7D6OC7D5OC7D4OC7D3OC7D2OC7D10x0044TCNT (high)RTCNT15TCNT14TCNT13TCNT12TCNT11TCNT10TCNT90x0045TCNT (low)RTCNT7TCNT6TCNT5TCNT4TCNT3TCNT2TCNT10x0046TSCR1RTENTSWAITSFRZTFFCAPRNT000x0047TTOVRTOV7TOV6TOV5TOV4TOV3TOV2TOV1                                                                                                        |       | Bit 1 | Bit 2  | Bit 3  | Bit 4  | Bit 5  | Bit 6   | Bit 7  | Name                                    | Address |
| 0x0041CFORCWFOC7FOC6FOC5FOC4FOC3FOC2FOC10x0042OC7M $R_W$ OC7M7OC7M6OC7M5OC7M4OC7M3OC7M2OC7M10x0043OC7D $R_W$ OC7D7OC7D6OC7D5OC7D4OC7D3OC7D2OC7D10x0044TCNT (high) $R_W$ TCNT15TCNT14TCNT13TCNT12TCNT11TCNT10TCNT90x0045TCNT (low) $R_W$ TCNT7TCNT6TCNT5TCNT4TCNT3TCNT2TCNT10x0046TSCR1 $R_W$ TENTSWAITSFRZTFFCAPRNT000x0047TTOV $R_W$ TOV7TOV6TOV5TOV4TOV3TOV2TOV1                                                                                          | IOS0  | IOS1  | IOS2   | IOS3   | IOS4   | IOS5   | IOS6    | IOS7   |                                         | 0x0040  |
| wFOC7FOC6FOC5FOC4FOC3FOC2FOC10x0042OC7MOC7MOC7M7OC7M6OC7M5OC7M4OC7M3OC7M2OC7M10x0043OC7D $\mathbb{M}^{R}$ OC7D7OC7D6OC7D5OC7D4OC7D3OC7D2OC7D10x0044TCNT (high) $\mathbb{M}^{R}$ TCNT15TCNT14TCNT13TCNT12TCNT11TCNT10TCNT90x0045TCNT (low) $\mathbb{M}^{R}$ TCNT7TCNT6TCNT5TCNT4TCNT3TCNT2TCNT10x0046TSCR1 $\mathbb{M}^{R}$ TENTSWAITSFRZTFFCAPRNT000x0047TTOV $\mathbb{M}^{R}$ TOV7TOV6TOV5TOV4TOV3TOV2TOV1                                                 | 0     | 0     | 0      | 0      | 0      | -      | 0       | 0      | CEORC R                                 | 0×00/1  |
| 0x00420C7M0C7M70C7M60C7M50C7M40C7M30C7M30C7M20C7M10x00430C7D $R_{W}$ 0C7D70C7D60C7D50C7D40C7D30C7D20C7D10x0044TCNT (high) $R_{W}$ TCNT15TCNT14TCNT13TCNT12TCNT11TCNT10TCNT90x0045TCNT (low) $R_{W}$ TCNT7TCNT6TCNT5TCNT4TCNT3TCNT2TCNT10x0046TSCR1 $R_{W}$ TENTSWAITSFRZTFFCAPRNT000x0047TTOV $R_{W}$ TOV7TOV6TOV5TOV4TOV3TOV2TOV1                                                                                                                          | FOC0  | FOC1  | FOC2   | FOC3   | FOC4   | FOC5   | FOC6    | FOC7   | W W                                     | 0X0041  |
| 0x00430C7D $W$ 0C7D70C7D60C7D50C7D40C7D30C7D30C7D20C7D10x0044TCNT (high) $R$<br>WTCNT15TCNT14TCNT13TCNT12TCNT11TCNT10TCNT90x0045TCNT (low) $R$<br>WTCNT7TCNT6TCNT5TCNT4TCNT3TCNT2TCNT10x0046TSCR1 $R$<br>WTENTSWAITSFRZTFFCA<br>TOV5PRNT000x0047TTOV $R$<br>WTOV7TOV6TOV5TOV4TOV3TOV2TOV1                                                                                                                                                                   | OC7M0 | OC7M1 | OC7M2  | OC7M3  | OC7M4  | OC7M5  | OC7M6   | OC7M7  |                                         | 0x0042  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                      | OC7D0 | OC7D1 | OC7D2  | OC7D3  | OC7D4  | OC7D5  | OC7D6   | OC7D7  | ()(./))                                 | 0x0043  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                       | TCNT8 | TCNT9 | TCNT10 | TCNT11 | TCNT12 | TCNT13 | TCNT14  | TCNT15 | 1(2N) I(n) an = 1                       | 0x0044  |
| 0x0046     ISCRI     W     IEN     ISWAI     ISFRZ     IFFCA     PRNI       0x0047     TTOV     R     TOV7     TOV6     TOV5     TOV4     TOV3     TOV2     TOV1                                                                                                                                                                                                                                                                                            | TCNT0 | TCNT1 | TCNT2  | TCNT3  | TCNT4  | TCNT5  | TCNT6   | TCNT7  |                                         | 0x0045  |
| 0x0047 TTOV R<br>W TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1                                                                                                                                                                                                                                                                                                                                                                                                       | 0     | 0     | 0      | DRNT   | TEECA  | TSED7  | τςινιλι |        | R                                       | 0×0046  |
| 0x0047 110V W 10V7 10V6 10V5 10V4 10V3 10V2 10V1                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |        |        | IIIOA  | TOTAL  | ISWAI   |        | W W                                     | 070040  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOV0  | TOV1  | TOV2   | ТОУЗ   | TOV4   | TOV5   | TOV6    | TOV7   |                                         | 0x0047  |
| 0x0048 ICIL1 W OM7 OL7 OM6 OL6 OM5 OL5 OM4                                                                                                                                                                                                                                                                                                                                                                                                                  | OL4   | OM4   | OL5    | OM5    | OL6    | OM6    | OL7     | OM7    |                                         | 0x0048  |
| 0x0049 TCTL2 R OM3 OL3 OM2 OL2 OM1 OL1 OM0                                                                                                                                                                                                                                                                                                                                                                                                                  | OL0   | OM0   | OL1    | OM1    | OL2    | OM2    | OL3     | ОМЗ    | 10112                                   | 0x0049  |
| 0x004A TCTL3 R EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B                                                                                                                                                                                                                                                                                                                                                                                                    | EDG4A | EDG4B | EDG5A  | EDG5B  | EDG6A  | EDG6B  | EDG7A   | EDG7B  |                                         | 0x004A  |
| 0x004B TCTL4 R EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B                                                                                                                                                                                                                                                                                                                                                                                                    | EDG0A | EDG0B | EDG1A  | EDG1B  | EDG2A  | EDG2B  | EDG3A   | EDG3B  |                                         | 0x004B  |
| 0x004C TIE R C7I C6I C5I C4I C3I C2I C1I                                                                                                                                                                                                                                                                                                                                                                                                                    | COI   | C1I   | C2I    | СЗІ    | C4I    | C5I    | C6I     | C7I    |                                         | 0x004C  |
| 0x004D TSCR2 R TOI 0 0 0 TCRE PR2 PR1                                                                                                                                                                                                                                                                                                                                                                                                                       | PR0   | PR1   | PR2    | TCRE   | 0      | 0      | 0       | τοι    | R R                                     | 0x004D  |
| 0x004E TFLG1 R C7F C6F C5F C4F C3F C2F C1F                                                                                                                                                                                                                                                                                                                                                                                                                  | C0F   | C1F   | C2F    | C3F    | C4F    | C5F    | C6F     | C7E    | R R                                     | 0x004E  |
| 0x004F TFLG2 R TOF 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | 0     | 0      | 0      | 0      | 0      | 0       | TOF    | 111111111111111111111111111111111111111 | 0x004F  |
| 0x0050 TC0 (hi) R Bit 15 14 13 12 11 10 9                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 8 | 9     | 10     | 11     | 12     | 13     | 14      | Bit 15 | TC0 (bi)                                | 0x0050  |
| 0x0051 TC0 (lo) R Bit 7 6 5 4 3 2 1                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 0 | 1     | 2      | 3      | 4      | 5      | 6       | Bit 7  |                                         | 0x0051  |
| 0x0052 TC1 (hi) R Bit 15 14 13 12 11 10 9                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 8 | 9     | 10     | 11     | 12     | 13     | 14      | Bit 15 | I ( . I (ni) I                          | 0x0052  |
| 0x0053 TC1 (lo) R Bit 7 6 5 4 3 2 1                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 0 | 1     | 2      | 3      | 4      | 5      | 6       | Bit 7  |                                         | 0x0053  |
| 0x0054 TC2 (hi) R Bit 15 14 13 12 11 10 9                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 8 | 9     | 10     | 11     | 12     | 13     | 14      | Bit 15 |                                         | 0x0054  |
| 0x0055 TC2 (lo) $\begin{array}{c cccc} R \\ W \end{array}$ Bit 7 6 5 4 3 2 1                                                                                                                                                                                                                                                                                                                                                                                | Bit 0 | 1     | 2      | 3      | 4      | 5      | 6       | Bit 7  |                                         | 0x0055  |



### 0x0040–0x007F Enhanced Capture Timer 16-Bit 8-Channels (ECT) Map (Sheet 3 of 3)

| Address | Name       |        | Bit 7                     | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1  | Bit 0  |
|---------|------------|--------|---------------------------|---------|---------|---------|---------|---------|--------|--------|
| 0x006D  | TIMTST     | R      | 0                         | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| 0X006D  | 11111151   | W      | Reserved For Factory Test |         |         |         |         |         |        |        |
| 0x006E  | PTPSR      | R<br>W | PTPS7                     | PTPS6   | PTPS5   | PTPS4   | PTPS3   | PTPS2   | PTPS1  | PTPS0  |
| 0x006F  | PTMCPSR    | R<br>W | PTMPS7                    | PTMPS6  | PTMPS5  | PTMPS4  | PTMPS3  | PTMPS2  | PTMPS1 | PTMPS0 |
| 0x0070  | PBCTL      | R<br>W | 0                         | PBEN    | 0       | 0       | 0       | 0       | PBOVI  | 0      |
| 0x0071  | PBFLG      | R<br>W | 0                         | 0       | 0       | 0       | 0       | 0       | PBOVF  | 0      |
| 0x0072  | РАЗН       | R      | PA3H7                     | PA3H6   | PA3H5   | PA3H4   | PA3H3   | PA3H2   | PA3H1  | PA3H0  |
| 000072  |            | W      |                           |         |         |         |         |         |        |        |
| 0x0073  | PA2H       | R<br>W | PA2H7                     | PA2H6   | PA2H5   | PA2H4   | PA2H3   | PA2H2   | PA2H1  | PA2H0  |
| 0x0074  | PA1H       | R<br>W | PA1H7                     | PA1H6   | PA1H5   | PA1H4   | PA1H3   | PA1H2   | PA1H1  | PA1H 0 |
| 0x0075  | PA0H       | R<br>W | PA0H7                     | PA0H6   | PA0H5   | PA0H4   | PA0H3   | PA0H2   | PA0H1  | PA0H0  |
| 0x0076  | MCCNT (hi) | R<br>W | MCCNT15                   | MCCNT14 | MCCNT13 | MCCNT12 | MCCNT11 | MCCNT10 | MCCNT9 | MCCNT8 |
| 0x0077  | MCCNT (lo) | R<br>W | MCCNT7                    | MCCNT6  | MCCNT5  | MCCNT4  | MCCNT3  | MCCNT2  | MCCNT1 | MCCNT0 |
| 0x0078  | TC0H (hi)  | R<br>W | TC15                      | TC14    | TC13    | TC12    | TC11    | TC10    | TC9    | TC8    |
| 0x0079  | TC0H (lo)  | R      | TC7                       | TC6     | TC5     | TC4     | TC3     | TC2     | TC1    | TC0    |
| 0x007A  | TC1H (hi)  | W<br>R | TC15                      | TC14    | TC13    | TC12    | TC11    | TC10    | TC9    | TC8    |
| 0,007 A |            | W      |                           |         |         |         |         |         |        |        |
| 0x007B  | TC1H (lo)  | R<br>W | TC7                       | TC6     | TC5     | TC4     | TC3     | TC2     | TC1    | TC0    |
| 0x007C  | TC2H (hi)  | R      | TC15                      | TC14    | TC13    | TC12    | TC11    | TC10    | TC9    | TC8    |
|         |            | W<br>R | TC7                       | TC6     | TC5     | TC4     | TC3     | TC2     | TC1    | TC0    |
| 0x007D  | TC2H (lo)  | W      |                           |         |         |         |         |         |        |        |
| 0x007E  | TC3H (hi)  | R<br>W | TC15                      | TC14    | TC13    | TC12    | TC11    | TC10    | TC9    | TC8    |
| 0x007F  | TC3H (lo)  | R      | TC7                       | TC6     | TC5     | TC4     | TC3     | TC2     | TC1    | TC0    |
| -       | · /        | W      |                           |         |         |         |         |         |        |        |