


#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

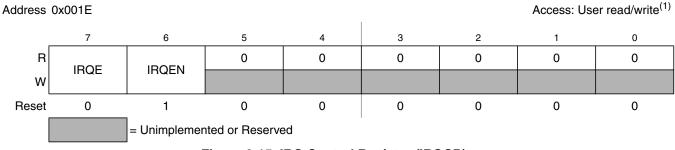
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XF

| Product Status             | Active                                                       |
|----------------------------|--------------------------------------------------------------|
| Core Processor             | HCS12X                                                       |
| Core Size                  | 16-Bit                                                       |
| Speed                      | 50MHz                                                        |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, SCI, SPI            |
| Peripherals                | LVD, POR, PWM, WDT                                           |
| Number of I/O              | 91                                                           |
| Program Memory Size        | 256KB (256K x 8)                                             |
| Program Memory Type        | FLASH                                                        |
| EEPROM Size                | 4K x 8                                                       |
| RAM Size                   | 16K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.72V ~ 5.5V                                                 |
| Data Converters            | A/D 16x12b                                                   |
| Oscillator Type            | External                                                     |
| Operating Temperature      | -40°C ~ 125°C (TA)                                           |
| Mounting Type              | Surface Mount                                                |
| Package / Case             | 112-LQFP                                                     |
| Supplier Device Package    | 112-LQFP (20x20)                                             |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s912xet256j2mal |

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Vector Address <sup>(1)</sup> | XGATE<br>Channel<br>ID <sup>(2)</sup> | Interrupt Source       | CCR<br>Mask | Local Enable               | STOP<br>Wake up | WAIT<br>Wake up |
|-------------------------------|---------------------------------------|------------------------|-------------|----------------------------|-----------------|-----------------|
| Vector base + \$BE            | \$5F                                  | SPI1                   | I bit       | SPI1CR1 (SPIE,<br>SPTIE)   | No              | Yes             |
| Vector base + \$BC            | \$5E                                  | SPI2                   | I bit       | SPI2CR1 (SPIE,<br>SPTIE)   | No              | Yes             |
| Vector base + \$BA            | \$5D                                  | FLASH Fault Detect     | I bit       | FCNFG2 (FDIE)              | No              | No              |
| Vector base + \$B8            | \$5C                                  | FLASH                  | I bit       | FCNFG (CCIE, CBEIE)        | No              | Yes             |
| Vector base + \$B6            | \$5B                                  | CAN0 wake-up           | I bit       | CANORIER (WUPIE)           | Yes             | Yes             |
| Vector base + \$B4            | \$5A                                  | CAN0 errors            | I bit       | CAN0RIER (CSCIE,<br>OVRIE) | No              | Yes             |
| Vector base + \$B2            | \$59                                  | CAN0 receive           | I bit       | CAN0RIER (RXFIE)           | No              | Yes             |
| Vector base + \$B0            | \$58                                  | CAN0 transmit          | l bit       | CAN0TIER<br>(TXEIE[2:0])   | No              | Yes             |
| Vector base + \$AE            | \$57                                  | CAN1 wake-up           | I bit       | CAN1RIER (WUPIE)           | Yes             | Yes             |
| Vector base + \$AC            | \$56                                  | CAN1 errors            | I bit       | CAN1RIER (CSCIE,<br>OVRIE) | No              | Yes             |
| Vector base + \$AA            | \$55                                  | CAN1 receive           | I bit       | CAN1RIER (RXFIE)           | No              | Yes             |
| Vector base + \$A8            | \$54                                  | CAN1 transmit          | I bit       | CAN1TIER<br>(TXEIE[2:0])   | No              | Yes             |
| Vector base + \$A6            | \$53                                  | CAN2 wake-up           | I bit       | CAN2RIER (WUPIE)           | Yes             | Yes             |
| Vector base + \$A4            | \$52                                  | CAN2 errors            | I bit       | CAN2RIER<br>(CSCIE, OVRIE) | No              | Yes             |
| Vector base + \$A2            | \$51                                  | CAN2 receive           | I bit       | CAN2RIER (RXFIE)           | No              | Yes             |
| Vector base + \$A0            | \$50                                  | CAN2 transmit          | I bit       | CAN2TIER<br>(TXEIE[2:0])   | No              | Yes             |
| Vector base + \$9E            | \$4F                                  | CAN3 wake-up           | l bit       | CAN3RIER (WUPIE)           | Yes             | Yes             |
| Vector base+ \$9C             | \$4E                                  | CAN3 errors            | I bit       | CAN3RIER (CSCIE,<br>OVRIE) | No              | Yes             |
| Vector base+ \$9A             | \$4D                                  | CAN3 receive           | l bit       | CAN3RIER (RXFIE)           | No              | Yes             |
| Vector base + \$98            | \$4C                                  | CAN3 transmit          | I bit       | CAN3TIER<br>(TXEIE[2:0])   | No              | Yes             |
| Vector base + \$96            | \$4B                                  | CAN4 wake-up           | l bit       | CAN4RIER (WUPIE)           | Yes             | Yes             |
| Vector base + \$94            | \$4A                                  | CAN4 errors            | I bit       | CAN4RIER (CSCIE,<br>OVRIE) | No              | Yes             |
| Vector base + \$92            | \$49                                  | CAN4 receive           | I bit       | CAN4RIER (RXFIE)           | No              | Yes             |
| Vector base + \$90            | \$48                                  | CAN4 transmit          | I bit       | CAN4TIER<br>(TXEIE[2:0])   | No              | Yes             |
| Vector base + \$8E            | \$47                                  | Port P Interrupt       | I bit       | PIEP (PIEP7-PIEP0)         | Yes             | Yes             |
| Vector base+ \$8C             | \$46                                  | PWM emergency shutdown | I bit       | PWMSDN (PWMIE)             | No              | Yes             |

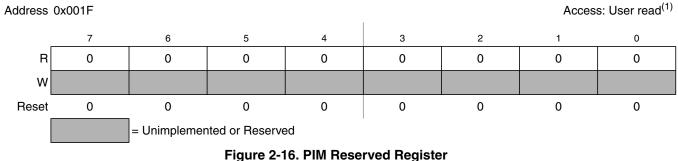
Table 1-14. Interrupt Vector Locations (Sheet 2 of 4)

#### Chapter 2 Port Integration Module (S12XEPIMV1)

# 2.3.17 IRQ Control Register (IRQCR)



#### Figure 2-15. IRQ Control Register (IRQCR)


1. Read: See individual bit descriptions below. Write: See individual bit descriptions below.

### Table 2-17. IRQCR Register Field Descriptions

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>IRQE  | <ul> <li>IRQ select edge sensitive only—</li> <li>Special modes: Read or write anytime.</li> <li>Normal &amp; emulation modes: Read anytime, write once.</li> <li>1 IRQ configured to respond only to falling edges. Falling edges on the IRQ pin will be detected anytime IRQE = 1<br/>and will be cleared only upon a reset or the servicing of the IRQ interrupt.</li> <li>0 IRQ configured for low level recognition.</li> </ul> |
| 6<br>IRQEN | External IRQ enable—<br>Read or write anytime.<br>1 External IRQ pin is connected to interrupt logic.<br>0 External IRQ pin is disconnected from interrupt logic.                                                                                                                                                                                                                                                                    |
| 5-0        | Reserved—                                                                                                                                                                                                                                                                                                                                                                                                                            |

### 2.3.18 PIM Reserved Register

This register is reserved for factory testing of the PIM module and is not available in normal operation.



1. Read: Always reads 0x00 Write: Unimplemented

### NOTE

Writing to this register when in special modes can alter the pin functionality.



### Expanded modes

Address, data, and control signals are activated in normal expanded and special test modes when accessing the external bus. Access to internal resources will not cause activity on the external bus.

• Emulation modes

External bus is active to emulate, via an external tool, the normal expanded or the normal single chip mode.}

# 3.1.5 Block Diagram

Figure  $3-1^1$  shows a block diagram of the MMC.

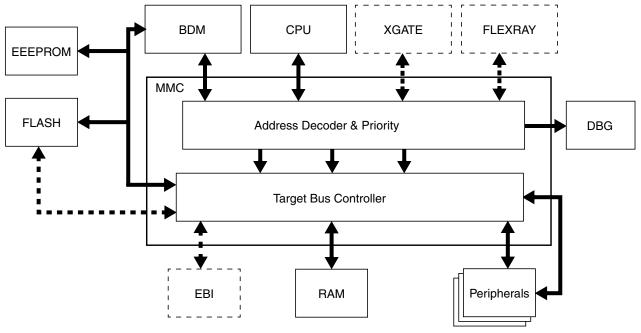



Figure 3-1. MMC Block Diagram

# 3.2 External Signal Description

The user is advised to refer to the device overview for port configuration and location of external bus signals. Some pins may not be bonded out in all implementations.

Table 3-3 and Table 3-4 outline the pin names and functions. It also provides a brief description of their operation.

<sup>1.</sup> Doted blocks and lines are optional. Please refer to the Device User Guide for their availlibilities.



## 3.4.3 Chip Access Restrictions

CPU and XGATE accesses are watched in the memory protection unit (See MPU Block Guide). In case of access violation, the suspect master is acknowledged with an indication of an error; the victim target will not be accessed.

Other violations MPU is not handling are listed below.

### 3.4.3.1 Illegal XGATE Accesses

A possible access error is flagged by the MMC and signalled to XGATE under the following conditions:

- XGATE performs misaligned word (in case of load-store or opcode or vector fetch accesses).
- XGATE accesses the register space (in case of opcode or vector fetch).
- XGATE performs a write to Flash in any modes (in case of load-store access).
- XGATE performs an access to a secured Flash in expanded modes (in case of load-store or opcode or vector fetch accesses).

For further details refer to the XGATE Block Guide.

## 3.4.4 Chip Bus Control

The MMC controls the address buses and the data buses that interface the S12X masters (CPU, BDM and XGATE) with the rest of the system (master buses). In addition the MMC handles all CPU read data bus swapping operations. All internal and external resources are connected to specific target buses (see Figure 3-23<sup>1</sup>).

1. Doted blocks and lines are optional. Please refer to the Device User Guide for their availlibilities.



#### Table 4-9. MPUDESC1 Field Descriptions

| Field | Description                                                                                                                                                                                       |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <b>Memory range lower boundary address bits</b> — The LOW_ADDR[18:11] bits represent bits [18:11] of the global memory address that is used as the lower boundary for the described memory range. |

### 4.3.1.8 MPU Descriptor Register 2 (MPUDESC2)

Address: Module Base + 0x0008

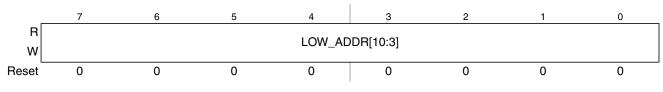



Figure 4-10. MPU Descriptor Register 2 (MPUDESC2)

Read: Anytime

Write: Anytime

#### Table 4-10. MPUDESC2 Field Descriptions

| Field     | Description                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------|
| 7–0       | Memory range lower boundary address bits — The LOW_ADDR[10:3] bits represent bits [10:3] of the global |
| LOW_ADDR[ | memory address that is used as the lower boundary for the described memory range.                      |
| 10:3]     |                                                                                                        |

### 4.3.1.9 MPU Descriptor Register 3 (MPUDESC3)

Address: Module Base + 0x0009

| _     | 7   | 6   | 5 | 4 | 3 | 2       | 1          | 0 |
|-------|-----|-----|---|---|---|---------|------------|---|
| R     | WP  | NEX | 0 | 0 |   | HIGH_AD | DR[22·19]  |   |
| W     | VVI | NEX |   |   |   | Then_Ab | DT([22.13] |   |
| Reset | 0   | 0   | 0 | 0 | 1 | 1       | 1          | 1 |

#### Figure 4-11. MPU Descriptor Register 3 (MPUDESC3)

Read: Anytime

Write: Anytime

### Table 4-11. MPUDESC3 Field Descriptions

| Field | Description                                                                                                                                                                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Write-Protect bit — The WP bit causes the described memory range to be treated as write-protected. If this bit is set every attempt to write in the described memory range causes an access violation. |



- Provides up to 108 XGATE channels, including 8 software triggered channels
- Interruptible thread execution
- Two register banks to support fast context switching between threads
- Hardware semaphores which are shared between the S12X\_CPU and the XGATE module
- Able to trigger S12X\_CPU interrupts upon completion of an XGATE transfer
- Software error detection to catch erratic application code

### 10.1.3 Modes of Operation

There are four run modes on S12XE devices.

• Run mode, wait mode, stop mode

The XGATE is able to operate in all of these three system modes. Clock activity will be automatically stopped when the XGATE module is idle.

• Freeze mode (BDM active)

In freeze mode all clocks of the XGATE module may be stopped, depending on the module configuration (see Section 10.3.1.1, "XGATE Control Register (XGMCTL)").

### 10.1.4 Block Diagram

Figure 10-1 shows a block diagram of the XGATE.

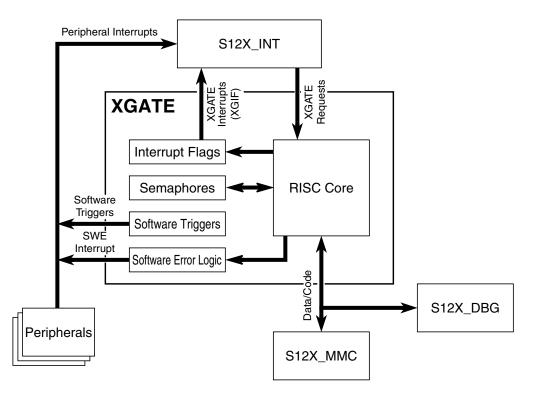



Figure 10-1. XGATE Block Diagram



#### Table 10-9. XGVBR Field Descriptions

| Field               | Description                                                                                                   |
|---------------------|---------------------------------------------------------------------------------------------------------------|
| 15–1<br>XBVBR[15:1] | Vector Base Address — The XGVBR register holds the start address of the vector block in the XGATE memory map. |

### 10.3.1.8 XGATE Channel Interrupt Flag Vector (XGIF)

The XGATE Channel Interrupt Flag Vector (Figure 10-10) provides access to the interrupt flags of all channels. Each flag may be cleared by writing a "1" to its bit location. Refer to Section 10.5.2, "Outgoing Interrupt Requests" for further information.

Module Base +0x0008

| _      | 127     | 126     | 125     | 124     | 123     | 122     | 121     | 120     | 119     | 118     | 117     | 116     | 115     | 114     | 113      | 112     |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|
| R      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | XGIF 78 | XGF 77  | XGIF_76 | XGIF_75 | XGIF_74 | XGIF_73 | XGIF_72 | XGIF 71  | XGIF_70 |
| W      |         |         |         |         |         |         |         | AGIF_/0 | AGF_//  | AGIF_70 | AGIF_75 | AGIF_/4 | AGIF_/3 | AGIF_72 | AGIF_/ I | AGIF_70 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        | 0       |
|        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |          |         |
|        | 111     | 110     | 109     | 108     | 107     | 106     | 105     | 104     | 103     | 102     | 101     | 100     | 99      | 98      | 97       | 96      |
| R<br>W | XGIF_6F | XGIF_6E | XGIF_6D | XGIF_6C | XGIF_6B | XGIF_6A | XGIF_69 | XGIF_68 | XGF_67  | XGIF_66 | XGIF_65 | XGIF_64 | XGIF_63 | XGIF_62 | XGIF_61  | XGIF_60 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        | 0       |
|        |         |         |         |         |         |         |         |         |         |         |         |         | I       |         |          |         |
| _      | 95      | 94      | 93      | 92      | 91      | 90      | 89      | 88      | 87      | 86      | 85      | 84      | 83      | 82      | 81       | 80      |
| R<br>W | XGIF_5F | XGIF_5E | XGIF_5D | XGIF_5C | XGIF_5B | XGIF_5A | XGIF_59 | XGIF_58 | XGF_57  | XGIF_56 | XGIF_55 | XGIF_54 | XGIF_53 | XGIF_52 | XGIF_51  | XGIF_50 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        | 0       |
|        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |          |         |
| _      | 79      | 78      | 77      | 76      | 75      | 74      | 73      | 72      | 71      | 70      | 69      | 68      | 67      | 66      | 65       | 64      |
| R<br>W | XGIF_4F | XGIF_4E | XGIF_4D | XGIF_4C | XGIF_4B | XGIF_4A | XGIF_49 | XGIF_48 | XGF _47 | XGIF_46 | XGIF_45 | XGIF_44 | XGIF_43 | XGIF_42 | XGIF_41  | XGIF_40 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0        | 0       |

Figure 10-10. XGATE Channel Interrupt Flag Vector (XGIF)



### 11.4.3.3 Stop Mode

All clocks are stopped in STOP mode, dependent of the setting of the PCE, PRE and PSTP bit. The oscillator is disabled in STOP mode unless the PSTP bit is set. If the PRE or PCE bits are set, the RTI or COP continues to run in Pseudo Stop Mode. In addition to disabling system and core clocks the S12XECRG requests other functional units of the MCU (e.g. voltage-regulator) to enter their individual power saving modes (if available).

If the PLLSEL bit is still set when entering Stop Mode, the S12XECRG will switch the system and core clocks to OSCCLK by clearing the PLLSEL bit. Then the S12XECRG disables the IPLL, disables the core clock and finally disables the remaining system clocks.

If Pseudo Stop Mode is entered from Self-Clock Mode the S12XECRG will continue to check the clock quality until clock check is successful. In this case the IPLL and the voltage regulator (VREG) will remain enabled. If Full Stop Mode (PSTP = 0) is entered from Self-Clock Mode the ongoing clock quality check will be stopped. A complete timeout window check will be started when Stop Mode is left again.

There are two ways to restart the MCU from Stop Mode:

- 1. Any reset
- 2. Any interrupt

If the MCU is woken-up from Full Stop Mode by an interrupt and the fast wake-up feature is enabled (FSTWKP=1 and SCME=1), the system will immediately (no clock quality check) resume operation in Self-Clock Mode (see Section 11.4.1.4, "Clock Quality Checker"). The SCMIF flag will not be set for this special case. The system will remain in Self-Clock Mode with oscillator disabled until FSTWKP bit is cleared. The clearing of FSTWKP will start the oscillator and the clock quality check. If the clock quality check is successful, the S12XECRG will switch all system clocks to oscillator clock. The SCMIF flag will be set. See application examples in Figure 11-19 and Figure 11-20.

Because the IPLL has been powered-down during Stop Mode the PLLSEL bit is cleared and the MCU runs on OSCCLK after leaving Stop-Mode. The software must manually set the PLLSEL bit again, in order to switch system and core clocks to the PLLCLK.

### NOTE

In Full Stop Mode or Self-Clock Mode caused by the fast wake-up feature the clock monitor and the oscillator are disabled.



An exception to this is when channels are concatenated. Once concatenated mode is enabled (CONxx bits set in PWMCTL register), enabling/disabling the corresponding 16-bit PWM channel is controlled by the low order PWMEx bit. In this case, the high order bytes PWMEx bits have no effect and their corresponding PWM output lines are disabled.

While in run mode, if all eight PWM channels are disabled (PWME7-0 = 0), the prescaler counter shuts off for power savings.

Module Base + 0x0000

| _      | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| R<br>W | PWME7 | PWME6 | PWME5 | PWME4 | PWME3 | PWME2 | PWME1 | PWME0 |
| Reset  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Figure 19-3. PWM Enable Register (PWME)

Read: Anytime

Write: Anytime

| Field      | Description                                                                                                                                                                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>PWME7 | Pulse Width Channel 7 Enable         0       Pulse width channel 7 is disabled.         1       Pulse width channel 7 is enabled. The pulse modulated signal becomes available at PWM output bit 7 when its clock source begins its next cycle.                                                                                  |
| 6<br>PWME6 | Pulse Width Channel 6 Enable         0       Pulse width channel 6 is disabled.         1       Pulse width channel 6 is enabled. The pulse modulated signal becomes available at PWM output bit6 when its clock source begins its next cycle. If CON67=1, then bit has no effect and PWM output line 6 is disabled.             |
| 5<br>PWME5 | Pulse Width Channel 5 Enable         0       Pulse width channel 5 is disabled.         1       Pulse width channel 5 is enabled. The pulse modulated signal becomes available at PWM output bit 5 when its clock source begins its next cycle.                                                                                  |
| 4<br>PWME4 | Pulse Width Channel 4 Enable         0       Pulse width channel 4 is disabled.         1       Pulse width channel 4 is enabled. The pulse modulated signal becomes available at PWM, output bit 4 when its clock source begins its next cycle. If CON45 = 1, then bit has no effect and PWM output bit4 is disabled.           |
| 3<br>PWME3 | Pulse Width Channel 3 Enable         0       Pulse width channel 3 is disabled.         1       Pulse width channel 3 is enabled. The pulse modulated signal becomes available at PWM, output bit 3 when its clock source begins its next cycle.                                                                                 |
| 2<br>PWME2 | <ul> <li>Pulse Width Channel 2 Enable</li> <li>0 Pulse width channel 2 is disabled.</li> <li>1 Pulse width channel 2 is enabled. The pulse modulated signal becomes available at PWM, output bit 2 when its clock source begins its next cycle. If CON23 = 1, then bit has no effect and PWM output bit2 is disabled.</li> </ul> |

#### Table 19-2. PWME Field Descriptions



Table 23-9. Selectable Autonomous Periodical Interrupt Periods (continued)

|   | APIR[15:0] | Selected Period           |
|---|------------|---------------------------|
| 1 | FFFF       | 131072 * bus clock period |

1. When trimmed within specified accuracy. See electrical specifications for details.

The period can be calculated as follows depending of APICLK:

Period = 2\*(APIR[15:0] + 1) \* 0.1 ms or period = 2\*(APIR[15:0] + 1) \* bus clock period

### 23.3.2.6 Reserved 06

The Reserved 06 is reserved for test purposes.

0x02F6



### 23.3.2.7 High Temperature Trimming Register (VREGHTTR)

The VREGHTTR register allows to trim the VREG temperature sense.

0x02F7



= Unimplemented or Reserved

#### Figure 23-9. VREGHTTR

#### Table 23-10. VREGHTTR field descriptions

| Field            | Description                                                                                                                                                                              |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7<br>HTOEN       | High Temperature Offset Enable Bit — If set the temperature sense offset is enabled         0 The temperature sense offset is disabled         1 The temperature sense offset is enabled |  |
| 3–0<br>HTTR[3:0] | High Temperature Trimming Bits — See Table 23-11 for trimming effects.                                                                                                                   |  |

#### Table 23-11. Trimming Effect

| Bit     | Trimming Effect                            |
|---------|--------------------------------------------|
| HTTR[3] | Increases V <sub>HT</sub> twice of HTTR[2] |



**D-Flash Sector** — The D-Flash sector is the smallest portion of the D-Flash memory that can be erased. The D-Flash sector consists of four 64 byte rows for a total of 256 bytes.

**EEE (Emulated EEPROM)** — A method to emulate the small sector size features and endurance characteristics associated with an EEPROM.

**EEE IFR** — Nonvolatile information register located in the D-Flash block that contains data required to partition the D-Flash memory and buffer RAM for EEE. The EEE IFR is visible in the global memory map by setting the EEEIFRON bit in the MMCCTL1 register.

**NVM Command Mode** — An NVM mode using the CPU to setup the FCCOB register to pass parameters required for Flash command execution.

**Phrase** — An aligned group of four 16-bit words within the P-Flash memory. Each phrase includes eight ECC bits for single bit fault correction and double bit fault detection within the phrase.

P-Flash Memory — The P-Flash memory constitutes the main nonvolatile memory store for applications.

**P-Flash Sector** — The P-Flash sector is the smallest portion of the P-Flash memory that can be erased. Each P-Flash sector contains 1024 bytes.

**Program IFR** — Nonvolatile information register located in the P-Flash block that contains the Device ID, Version ID, and the Program Once field. The Program IFR is visible in the global memory map by setting the PGMIFRON bit in the MMCCTL1 register.

# 25.1.2 Features

### 25.1.2.1 P-Flash Features

- 256 Kbytes of P-Flash memory composed of two 128 Kbyte Flash blocks. The 128 Kbyte Flash blocks are each divided into 128 sectors of 1024 bytes.
- Single bit fault correction and double bit fault detection within a 64-bit phrase during read operations
- Automated program and erase algorithm with verify and generation of ECC parity bits
- Fast sector erase and phrase program operation
- Ability to program up to one phrase in each P-Flash block simultaneously
- Flexible protection scheme to prevent accidental program or erase of P-Flash memory

### 25.1.2.2 D-Flash Features

- Up to 32 Kbytes of D-Flash memory with 256 byte sectors for user access
- Dedicated commands to control access to the D-Flash memory over EEE operation
- Single bit fault correction and double bit fault detection within a word during read operations
- Automated program and erase algorithm with verify and generation of ECC parity bits
- Fast sector erase and word program operation
- Ability to program up to four words in a burst sequence



# 26.4.2.10 Erase P-Flash Sector Command

The Erase P-Flash Sector operation will erase all addresses in a P-Flash sector.

| CCOBIX[2:0] | FCCOB Parameters                                                                                                         |                                                                  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| 000         | 0x0A                                                                                                                     | Global address [22:16] to identify<br>P-Flash block to be erased |  |
| 001         | Global address [15:0] anywhere within the sector to be erased.<br>Refer to Section 26.1.2.1 for the P-Flash sector size. |                                                                  |  |

Table 26-51. Erase P-Flash Sector Command FCCOB Requirements

Upon clearing CCIF to launch the Erase P-Flash Sector command, the Memory Controller will erase the selected Flash sector and then verify that it is erased. The CCIF flag will be set after the Erase P-Flash Sector operation has completed.

| Register Error Bit |          | Error Condition                                                                     |  |
|--------------------|----------|-------------------------------------------------------------------------------------|--|
|                    | ACCERR   | Set if CCOBIX[2:0] != 001 at command launch                                         |  |
|                    |          | Set if a Load Data Field command sequence is currently active                       |  |
|                    |          | Set if command not available in current mode (see Table 26-30)                      |  |
|                    |          | Set if an invalid global address [22:16] is supplied <sup>(1)</sup>                 |  |
| FSTAT              |          | Set if a misaligned phrase address is supplied (global address [2:0] != 000)        |  |
|                    | FPVIOL   | Set if the selected P-Flash sector is protected                                     |  |
|                    | MGSTAT1  | Set if any errors have been encountered during the verify operation                 |  |
|                    | MGSTAT0  | Set if any non-correctable errors have been encountered during the verify operation |  |
| FERSTAT            | EPVIOLIF | None                                                                                |  |

Table 26-52. Erase P-Flash Sector Command Error Handling

1. As defined by the memory map for FTM512K3.

### 26.4.2.11 Unsecure Flash Command

The Unsecure Flash command will erase the entire P-Flash and D-Flash memory space and, if the erase is successful, will release security.

### Table 26-53. Unsecure Flash Command FCCOB Requirements

| CCOBIX[2:0] | FCCOB Parameters |              |
|-------------|------------------|--------------|
| 000         | 0x0B             | Not required |

Upon clearing CCIF to launch the Unsecure Flash command, the Memory Controller will erase the entire P-Flash and D-Flash memory space and verify that it is erased. If the Memory Controller verifies that the entire Flash memory space was properly erased, security will be released. If the erase verify is not successful, the Unsecure Flash operation sets MGSTAT1 and terminates without changing the security

Offset Module Base + 0x0005

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1<br>FDFD | <ul> <li>Force Double Bit Fault Detect — The FDFD bit allows the user to simulate a double bit fault during Flash array read operations and check the associated interrupt routine. The FDFD bit is cleared by writing a 0 to FDFD. The FECCR registers will not be updated during the Flash array read operation with FDFD set unless an actual double bit fault is detected.</li> <li>0 Flash array read operations will set the DFDIF flag in the FERSTAT register only if a double bit fault is detected 1 Any Flash array read operation will force the DFDIF flag in the FERSTAT register to be set (see Section 27.3.2.7) and an interrupt will be generated as long as the DFDIE interrupt enable in the FERCNFG register is set (see Section 27.3.2.6)</li> </ul> |  |
| 0<br>FSFD | <ul> <li>Force Single Bit Fault Detect — The FSFD bit allows the user to simulate a single bit fault during Flash array read operations and check the associated interrupt routine. The FSFD bit is cleared by writing a 0 to FSFD. The FECCR registers will not be updated during the Flash array read operation with FSFD set unless an actual single bit fault is detected.</li> <li>0 Flash array read operations will set the SFDIF flag in the FERSTAT register only if a single bit fault is detected 1 Flash array read operation will force the SFDIF flag in the FERSTAT register to be set (see Section 27.3.2.7) and an interrupt will be generated as long as the SFDIE interrupt enable in the FERCNFG register is set (see Section 27.3.2.6)</li> </ul>     |  |

# 27.3.2.6 Flash Error Configuration Register (FERCNFG)

The FERCNFG register enables the Flash error interrupts for the FERSTAT flags.

7 6 5 4 3 2 1 0 0 R ERSERIE PGMERIE **EPVIOLIE** ERSVIE1 ERSVIE0 DFDIE SFDIE W 0 0 0 0 0 0 0 0 Reset = Unimplemented or Reserved

### Figure 27-10. Flash Error Configuration Register (FERCNFG)

All assigned bits in the FERCNFG register are readable and writable.

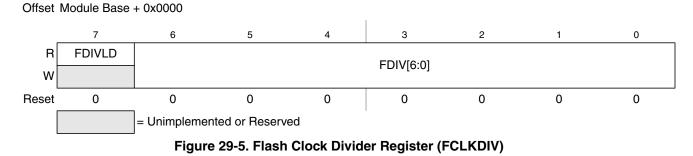

| Field         | Description                                                                                                                                                                                                                                                                                                                                      |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7<br>ERSERIE  | <ul> <li>EEE Erase Error Interrupt Enable — The ERSERIE bit controls interrupt generation when a failure is detected during an EEE erase operation.</li> <li>0 ERSERIF interrupt disabled</li> <li>1 An interrupt will be requested whenever the ERSERIF flag is set (see Section 27.3.2.8)</li> </ul>                                           |  |  |
| 6<br>PGMERIE  | <ul> <li>EEE Program Error Interrupt Enable — The PGMERIE bit controls interrupt generation when a failure is detected during an EEE program operation.</li> <li>0 PGMERIF interrupt disabled</li> <li>1 An interrupt will be requested whenever the PGMERIF flag is set (see Section 27.3.2.8)</li> </ul>                                       |  |  |
| 4<br>EPVIOLIE | <ul> <li>EEE Protection Violation Interrupt Enable — The EPVIOLIE bit controls interrupt generation when a protection violation is detected during a write to the buffer RAM EEE partition.</li> <li>0 EPVIOLIF interrupt disabled</li> <li>1 An interrupt will be requested whenever the EPVIOLIF flag is set (see Section 27.3.2.8)</li> </ul> |  |  |



Figure 29-4. FTM1024K5 Register Summary (continued)

## 29.3.2.1 Flash Clock Divider Register (FCLKDIV)

The FCLKDIV register is used to control timed events in program and erase algorithms.



All bits in the FCLKDIV register are readable, bits 6–0 are write once and bit 7 is not writable.

#### Table 29-8. FCLKDIV Field Descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7<br>FDIVLD      | Clock Divider Loaded<br>0 FCLKDIV register has not been written<br>1 FCLKDIV register has been written since the last reset                                                                                                                                                                                                                                                                                             |  |
| 6–0<br>FDIV[6:0] | <b>Clock Divider Bits</b> — FDIV[6:0] must be set to effectively divide OSCCLK down to generate an internal Flash clock, FCLK, with a target frequency of 1 MHz for use by the Flash module to control timed events during program and erase algorithms. Table 29-9 shows recommended values for FDIV[6:0] based on OSCCLK frequency. Please refer to Section 29.4.1, "Flash Command Operations," for more information. |  |

### CAUTION

The FCLKDIV register should never be written while a Flash command is executing (CCIF=0). The FCLKDIV register is writable during the Flash reset sequence even though CCIF is clear.

| FCMD | Command                          | Function on D-Flash Memory                                                                                                                                                                                                                                |  |
|------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x08 | Erase All Blocks                 | Erase all D-Flash (and P-Flash) blocks.<br>An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN<br>bits in the FPROT register and the EPDIS and EPOPEN bits in the EPROT register are<br>set prior to launching the command. |  |
| 0x0B | Unsecure Flash                   | Supports a method of releasing MCU security by erasing all D-Flash (and P-Flash) blocks and verifying that all D-Flash (and P-Flash) blocks are erased.                                                                                                   |  |
| 0x0D | Set User Margin<br>Level         | Specifies a user margin read level for the D-Flash block.                                                                                                                                                                                                 |  |
| 0x0E | Set Field Margin<br>Level        | Specifies a field margin read level for the D-Flash block (special modes only).                                                                                                                                                                           |  |
| 0x0F | Full Partition D-<br>Flash       | Erase the D-Flash block and partition an area of the D-Flash block for user access.                                                                                                                                                                       |  |
| 0x10 | Erase Verify D-<br>Flash Section | Verify that a given number of words starting at the address provided are erased.                                                                                                                                                                          |  |
| 0x11 | Program D-Flash                  | Program up to four words in the D-Flash block.                                                                                                                                                                                                            |  |
| 0x12 | Erase D-Flash<br>Sector          | Erase all bytes in a sector of the D-Flash block.                                                                                                                                                                                                         |  |
| 0x13 | Enable EEPROM<br>Emulation       | Enable EEPROM emulation where writes to the buffer RAM EEE partition will be copied to the D-Flash EEE partition.                                                                                                                                         |  |
| 0x14 | Disable EEPROM<br>Emulation      | Suspend all current erase and program activity related to EEPROM emulation but leave current EEE tags set.                                                                                                                                                |  |
| 0x15 | EEPROM<br>Emulation Query        | Returns EEE partition and status variables.                                                                                                                                                                                                               |  |
| 0x20 | Partition D-Flash                | Partition an area of the D-Flash block for user access.                                                                                                                                                                                                   |  |

| Table 29-32. | D-Flash | Commands  |
|--------------|---------|-----------|
|              | Dilaon  | oominanao |

# 29.4.2 Flash Command Description

This section provides details of all available Flash commands launched by a command write sequence. The ACCERR bit in the FSTAT register will be set during the command write sequence if any of the following illegal steps are performed, causing the command not to be processed by the Memory Controller:

- Starting any command write sequence that programs or erases Flash memory before initializing the FCLKDIV register
- Writing an invalid command as part of the command write sequence
- For additional possible errors, refer to the error handling table provided for each command

If a Flash block is read during execution of an algorithm (CCIF = 0) on that same block, the read operation will return invalid data. If the SFDIF or DFDIF flags were not previously set when the invalid read operation occurred, both the SFDIF and DFDIF flags will be set and the FECCR registers will be loaded with the global address used in the invalid read operation with the data and parity fields set to all 0.

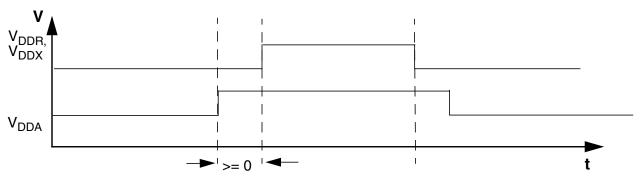
If the ACCERR or FPVIOL bits are set in the FSTAT register, the user must clear these bits before starting any command write sequence (see Section 29.3.2.7).

| Register | Error Bit | Error Condition                                                                                                  |
|----------|-----------|------------------------------------------------------------------------------------------------------------------|
|          |           | Set if CCOBIX[2:0] < 010 at command launch                                                                       |
|          |           | Set if CCOBIX[2:0] > 101 at command launch                                                                       |
|          |           | Set if a Load Data Field command sequence is currently active                                                    |
|          |           | Set if command not available in current mode (see Table 29-30)                                                   |
|          | ACCERR    | Set if an invalid global address [22:0] is supplied                                                              |
|          |           | Set if a misaligned word address is supplied (global address [0] != 0)                                           |
| FSTAT    |           | Set if the global address [22:0] points to an area in the D-Flash EEE partition                                  |
|          |           | Set if the requested group of words breaches the end of the D-Flash block or goes into the D-Flash EEE partition |
|          | FPVIOL    | None                                                                                                             |
|          | MGSTAT1   | Set if any errors have been encountered during the verify operation                                              |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the verify operation                              |
| FERSTAT  | EPVIOLIF  | None                                                                                                             |

### Table 29-68. Program D-Flash Command Error Handling

## 29.4.2.18 Erase D-Flash Sector Command

The Erase D-Flash Sector operation will erase all addresses in a sector of the D-Flash user partition.


Table 29-69. Erase D-Flash Sector Command FCCOB Requirements

| CCOBIX[2:0] | FCCOB Parameters |                                                                   |  |  |  |  |  |  |
|-------------|------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| 000         | 0x12             | Global address [22:16] to identify<br>D-Flash block               |  |  |  |  |  |  |
| 001         |                  | ere within the sector to be erased.<br>2 for D-Flash sector size. |  |  |  |  |  |  |

Upon clearing CCIF to launch the Erase D-Flash Sector command, the Memory Controller will erase the selected Flash sector and verify that it is erased. The CCIF flag will set after the Erase D-Flash Sector operation has completed.







During power sequencing  $V_{DDA}$  can be powered up before  $V_{DDR}$ ,  $V_{DDX}$ .

 $V_{DDR}$  and  $V_{DDX}$  must be powered up together adhering to the operating conditions differential.  $V_{RH}$  power up must follow  $V_{DDA}$  to avoid current injection.

# A.6 Reset, Oscillator and PLL

This section summarizes the electrical characteristics of the various startup scenarios for oscillator and phase-locked loop (PLL).

# A.6.1 Startup

Table A-23 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) block description

| Condit | Conditions are shown in Table A-4unless otherwise noted |                                             |                    |     |     |                     |                  |  |  |  |  |
|--------|---------------------------------------------------------|---------------------------------------------|--------------------|-----|-----|---------------------|------------------|--|--|--|--|
| Num    | С                                                       | Rating                                      | Symbol             | Min | Тур | Max                 | Unit             |  |  |  |  |
| 1      | D                                                       | Reset input pulse width, minimum input time | PW <sub>RSTL</sub> | 2   |     |                     | t <sub>osc</sub> |  |  |  |  |
| 2      | D                                                       | Startup from reset                          | t <sub>RST</sub>   | 192 |     | 4000 <sup>(1)</sup> | n <sub>bus</sub> |  |  |  |  |
| 3      | D                                                       | Wait recovery startup time                  | t <sub>WRS</sub>   | _   | _   | 14                  | t <sub>cyc</sub> |  |  |  |  |
| 4      | D                                                       | Fast wakeup from STOP <sup>(2)</sup>        | t <sub>fws</sub>   | _   | 50  | 100                 | μs               |  |  |  |  |

Table A-23. Startup Characteristics

1. This is the time between RESET deassertion and start of CPU code execution.

2. Including voltage regulator startup;  $V_{DD}/V_{DDF}$  filter capacitors 220 nF,  $V_{DD35}$  = 5 V, T= 25°C

### A.6.1.1 POR

The release level  $V_{PORR}$  and the assert level  $V_{PORA}$  are derived from the  $V_{DD}$  supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time  $t_{CQOUT}$  no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by  $n_{uposc}$ .

ndix E Detailed Register Address Map

### 0x0240–0x027F Port Integration Module (PIM) Map 5 of 6 (continued)

| Address | Name     |        | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|---------|----------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| 0x0248  | PTS      | R<br>W | PTS7  | PTS6   | PTS5   | PTS4   | PTS3   | PTS2   | PTS1   | PTS0   |
| 0x0249  | PTIS     | R<br>W | PTIS7 | PTIS6  | PTIS5  | PTIS4  | PTIS3  | PTIS2  | PTIS1  | PTIS0  |
| 0x024A  | DDRS     | R<br>W |       | DDRS7  | DDRS5  | DDRS4  | DDRS3  | DDRS2  | DDRS1  | DDRS0  |
| 0x024B  | RDRS     | R<br>W | RDRS7 | RDRS6  | RDRS5  | RDRS4  | RDRS3  | RDRS2  | RDRS1  | RDRS0  |
| 0x024C  | PERS     | R<br>W | PERS7 | PERS6  | PERS5  | PERS4  | PERS3  | PERS2  | PERS1  | PERS0  |
| 0x024D  | PPSS     | R<br>W | PPSS7 | PPSS6  | PPSS5  | PPSS4  | PPSS3  | PPSS2  | PPSS1  | PPSS0  |
| 0x024E  | WOMS     | R<br>W | WOMS7 | WOMS6  | WOMS5  | WOMS4  | WOMS3  | WOMS2  | WOMS1  | WOMS0  |
| 0x024F  | Reserved | R<br>W | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 0x0250  | PTM      | R<br>W | PTM7  | PTM6   | PTM5   | PTM4   | PTM3   | PTM2   | PTM1   | PTM0   |
| 0x0251  | PTIM     | R<br>W | PTIM7 | PTIM6  | PTIM5  | PTIM4  | PTIM3  | PTIM2  | PTIM1  | PTIM0  |
| 0x0252  | DDRM     | R<br>W | DDRM7 | DDRM7  | DDRM5  | DDRM4  | DDRM3  | DDRM2  | DDRM1  | DDRM0  |
| 0x0253  | RDRM     | R<br>W | RDRM7 | RDRM6  | RDRM5  | RDRM4  | RDRM3  | RDRM2  | RDRM1  | RDRM0  |
| 0x0254  | PERM     | R<br>W | PERM7 | PERM6  | PERM5  | PERM4  | PERM3  | PERM2  | PERM1  | PERM0  |
| 0x0255  | PPSM     | R<br>W | PPSM7 | PPSM6  | PPSM5  | PPSM4  | PPSM3  | PPSM2  | PPSM1  | PPSM0  |
| 0x0256  | WOMM     | R<br>W | WOMM7 | WOMM6  | WOMM5  | WOMM4  | WOMM3  | WOMM2  | WOMM1  | WOMM0  |
| 0x0257  | MODRR    | R<br>W | 0     | MODRR6 | MODRR5 | MODRR4 | MODRR3 | MODRR2 | MODRR1 | MODRR0 |
| 0x0258  | PTP      | R<br>W | PTP7  | PTP6   | PTP5   | PTP4   | PTP3   | PTP2   | PTP1   | PTP0   |
| 0x0259  | PTIP     | R<br>W | PTIP7 | PTIP6  | PTIP5  | PTIP4  | PTIP3  | PTIP2  | PTIP1  | PTIP0  |
| 0x025A  | DDRP     | R      |       | DDRP7  | DDRP5  | DDRP4  | DDRP3  | DDRP2  | DDRP1  | DDRP0  |
| 0x025B  | RDRP     | R<br>W | RDRP7 | RDRP6  | RDRP5  | RDRP4  | RDRP3  | RDRP2  | RDRP1  | RDRP0  |
| 0x025C  | PERP     | R<br>W | PERP7 | PERP6  | PERP5  | PERP4  | PERP3  | PERP2  | PERP1  | PERP0  |
| 0x025D  | PPSP     | R<br>W | PPSP7 | PPSP6  | PPSP5  | PPSP4  | PPSP3  | PPSP2  | PPSP1  | PPSS0  |
| 0x025E  | PIEP     | R<br>W | PIEP7 | PIEP6  | PIEP5  | PIEP4  | PIEP3  | PIEP2  | PIEP1  | PIEP0  |
| 0x025F  | PIFP     | R<br>W | PIFP7 | PIFP6  | PIFP5  | PIFP4  | PIFP3  | PIFP2  | PIFP1  | PIFP0  |



### 0x0380-0x03BF XGATE Map (Sheet 2 of 3)

| Address | Name      |             | Bit 7   | Bit 6                     | Bit 5   | Bit 4      | Bit 3        | Bit 2    | Bit 1   | Bit 0 |  |  |  |
|---------|-----------|-------------|---------|---------------------------|---------|------------|--------------|----------|---------|-------|--|--|--|
| 0x0396  | XGIF      | R<br>W      | XGIF_0F | XGIF_0E                   | XGIF_0D | XGIF_0C    | XGIF_0B      | XGIF_0A  | XGIF_09 | 0     |  |  |  |
| 0x0397  | XGIF      | R           | 0       | 0                         | 0       | 0          | 0            | 0        | 0       | 0     |  |  |  |
| 0x0398  | XGSWTM    | W<br>R<br>W | 0       | 0                         | 0       | 0<br>XGSW/ | 0<br>TM[7:0] | 0        | 0       | 0     |  |  |  |
| 0x0399  | XGSWT     | R           |         | XGSWTM[7:0]<br>XGSWT[7:0] |         |            |              |          |         |       |  |  |  |
| 0x039A  | XGSEMM    | R<br>W      | 0       | 0                         | 0       | 0<br>XGSEN | 0<br>/M[7:0] | 0        | 0       | 0     |  |  |  |
| 0x039B  | XGSEM     | R           |         |                           |         |            | M[7:0]       |          |         |       |  |  |  |
| 0x039C  | Reserved  | R           | 0       | 0                         | 0       | 0          | 0            | 0        | 0       | 0     |  |  |  |
| 0x039D  | XGCCR     | R<br>W      | 0       | 0                         | 0       | 0          | XGN          | XGZ      | XGV     | XGC   |  |  |  |
| 0x039E  | XGPC (hi) | R<br>W      |         |                           |         | XGPC       | [15:8]       | <u> </u> |         |       |  |  |  |
| 0x039F  | XGPC (lo) | R<br>W      | ,       |                           |         | XGP        | C[7:0]       |          |         |       |  |  |  |
| 0x03A0  | Reserved  | R<br>W      | 0       | 0                         | 0       | 0          | 0            | 0        | 0       | 0     |  |  |  |
| 0x03A1  | Reserved  | R<br>W      | 0       | 0                         | 0       | 0          | 0            | 0        | 0       | 0     |  |  |  |
| 0x03A2  | XGR1 (hi) | R<br>W      |         | I                         | L       | XGR1       | [15:8]       | L        |         |       |  |  |  |
| 0x03A3  | XGR1 (lo) | R<br>W      | ,       |                           |         | XGR        | 1[7:0]       |          |         |       |  |  |  |
| 0x03A4  | XGR2 (hi) | R<br>W      | ,       |                           |         | XGR2       | [15:8]       |          |         |       |  |  |  |
| 0x03A5  | XGR2 (lo) | R<br>W      | ,       |                           |         | XGR        | 2[7:0]       |          |         |       |  |  |  |
| 0x03A6  | XGR3 (hi) | R<br>W      | ,       |                           |         | XGR3       | 8[15:8]      |          |         |       |  |  |  |
| 0x03A7  | XGR3 (lo) | R<br>W      | ,       |                           |         | XGR        | 3[7:0]       |          |         |       |  |  |  |
| 0x03A8  | XGR4 (hi) | R<br>W      | ,       |                           |         | XGR4       | [15:8]       |          |         |       |  |  |  |
| 0x03A9  | XGR4 (lo) | R<br>W      |         | XGR4[7:0]                 |         |            |              |          |         |       |  |  |  |
| 0x03AA  | XGR5 (hi) | R<br>W      |         | XGR5[15:8]                |         |            |              |          |         |       |  |  |  |
| 0x03AB  | XGR5(lo)  | R<br>W      |         | XGR5[7:0]                 |         |            |              |          |         |       |  |  |  |
| 0x03AC  | XGR6 (hi) | R<br>W      | ,       |                           |         | XGR6       | [15:8]       |          |         |       |  |  |  |



#### Appendix E Detailed Register Address Map

### 0x0400–0x07FF Reserved

| Address           | Name     |   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------------------|----------|---|-------|-------|-------|-------|-------|-------|-------|-------|
| 0x0400–<br>0x07FF | Reserved | R | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|                   |          | W |       |       |       |       |       |       |       |       |