

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HCS12X
Core Size	16-Bit
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	91
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.72V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s912xet256j2malr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Pin Pin Pin Pin Name Name Name Name		Pin Name Power		Internal Pull Resistor		Description	
Function 1	Function 2		Function 4		Supply	CTRL	Reset State	Description
EXTAL	—	_		—	V _{DDPLL}	NA	NA	Oscillator pins
XTAL					V_{DDPLL}	NA	NA	
RESET	—	—	—	—	V _{DDX}	PULLI	JP	External reset
TEST					N.A.	RESET pin	DOWN	Test input
BKGD	MODC	_	_	—	V _{DDX}	Always on	Up	Background debug
PAD[31:16]	AN[31:16]	_	_	—	V _{DDA}	PER0AD1 PER1AD1	Disabled	Port AD inputs of ATD1, analog inputs of ATD1
PAD[15:0]	AN[15:0]	—	—	_	V _{DDA}	PER0AD0 PER1AD0	Disabled	Port AD inputs of ATD0, analog inputs of ATD0
PA[7:0]	ADDR[15:8]	IVD[15:8]	—	—	V _{DDX}	PUCR	Disabled	Port A I/O, address bus, internal visibility data
PB[7:1]	ADDR[7:1]	IVD[7:0]	_	_	V _{DDX}	PUCR	Disabled	Port B I/O, address bus, internal visibility data
PB0	ADDR0	UDS			V _{DDX}	PUCR	Disabled	Port B I/O, address bus, upper data strobe
PC[7:0]	DATA[15:8]	_	_	_	V _{DDX}	PUCR	Disabled	Port C I/O, data bus
PD[7:0]	DATA[7:0]	_	_	_	V _{DDX}	PUCR	Disabled	Port D I/O, data bus
PE7	ECLKX2	XCLKS	_	_	V _{DDX}	PUCR	Up	Port E I/O, system clock output, clock select
PE6	TAGHI	MODB	_	_	V _{DDX}	While RESET pin is low: down		Port E I/O, tag high, mode input
PE5	RE	MODA	TAGLO	_	V _{DDX}	While RE pin is low:		Port E I/O, read enable, mode input, tag low input
PE4	ECLK		_	_	V _{DDX}	PUCR	Up	Port E I/O, bus clock output
PE3	LSTRB	LDS	EROMCTL	_	V _{DDX}	PUCR	Up	Port E I/O, low byte data strobe, EROMON control
PE2	R/W	WE	_	_	V _{DDX}	PUCR	Up	Port E I/O, read/write
PE1	ĪRQ	_	_	_	V _{DDX}	PUCR	Up	Port E Input, maskable interrupt
PE0	XIRQ	—	—	_	V _{DDX}	PUCR	Up	Port E input, non-maskable interrupt
PF7	TXD3	_	_	_	V _{DDX}	PERF/ PPSF	Up	Port F I/O, interrupt, TXD of SCI3
PF6	RXD3				V _{DDX}	PERF/ PPSF	Up	Port F I/O, interrupt, RXD of SCI3
PF5	SCL0				V _{DDX}	PERF/ PPSF	Up	Port F I/O, interrupt, SCL of IIC0
PF4	SDA0	—	—		V _{DDX}	PERF/ PPSF	Up	Port F I/O, interrupt, SDA of IIC0
PF3	CS3	—	—	—	V _{DDX}	PERF/ PPSF	Up	Port F I/O, interrupt, chip select 3

Table 1-10. Signal Properties Summary (Sheet 1 of 4)

ter 1 Device Overview MC9S12XE-Family

The program Flash memory and the EEPROM are supplied by the bus clock and the oscillator clock. The oscillator clock is used as a time base to derive the program and erase times for the NVM's.

The CAN modules may be configured to have their clock sources derived either from the bus clock or directly from the oscillator clock. This allows the user to select its clock based on the required jitter performance.

In order to ensure the presence of the clock the MCU includes an on-chip clock monitor connected to the output of the oscillator. The clock monitor can be configured to invoke the PLL self-clocking mode or to generate a system reset if it is allowed to time out as a result of no oscillator clock being present.

In addition to the clock monitor, the MCU also provides a clock quality checker which performs a more accurate check of the clock. The clock quality checker counts a predetermined number of clock edges within a defined time window to insure that the clock is running. The checker can be invoked following specific events such as on wake-up or clock monitor failure.

1.4 Modes of Operation

The MCU can operate in different modes associated with MCU resource mapping and bus interface configuration. These are described in 1.4.1 Chip Configuration Summary.

The MCU can operate in different power modes to facilitate power saving when full system performance is not required. These are described in 1.4.2 Power Modes.

Some modules feature a software programmable option to freeze the module status whilst the background debug module is active to facilitate debugging. This is described in 1.4.3 Freeze Mode.

For system integrity support separate system states are featured as explained in 1.4.4 System States.

1.4.1 Chip Configuration Summary

The MCU can operate in six different modes associated with resource configuration. The different modes, the state of ROMCTL and EROMCTL signal on rising edge of $\overline{\text{RESET}}$ and the security state of the MCU affect the following device characteristics:

- External bus interface configuration
- Flash in memory map, or not
- Debug features enabled or disabled

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA signals during reset (see Table 1-12). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA signals are latched into these bits on the rising edge of RESET.

In normal expanded mode and in emulation modes the ROMON bit and the EROMON bit in the MMCCTL1 register defines if the on chip flash memory is the memory map, or not. (See Table 1-12.) For a detailed explanation of the ROMON and EROMON bits refer to the MMC description.

Field	Description
6 CSZ	 Access Type Indicator — This bit indicates if the access was a byte or word size access. This bit only contains valid information when tracing CPU12X activity in Detail Mode. 0 Word Access 1 Byte Access
5 CRW	 Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write access. This bit only contains valid information when tracing CPU12X activity in Detail Mode. Write Access Read Access
4 COCF	 CPU12X Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch cycle. This bit only contains valid information when tracing the XGATE accesses in Detail Mode. 0 Stored information does not correspond to opcode fetch cycle 1 Stored information corresponds to opcode fetch cycle
3 XACK	 XGATE Access Indicator — This bit indicates if the stored XGATE address corresponds to a free cycle. This bit only contains valid information when tracing the CPU12X accesses in Detail Mode. 0 Stored information corresponds to free cycle 1 Stored information does not correspond to free cycle
2 XSZ	 Access Type Indicator — This bit indicates if the access was a byte or word size access. This bit only contains valid information when tracing XGATE activity in Detail Mode. 0 Word Access 1 Byte Access
1 XRW	Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write access. This bit only contains valid information when tracing XGATE activity in Detail Mode.0Write Access1Read Access
0 XOCF	XGATE Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch cycle. This bit only contains valid information when tracing the CPU12X accesses in Detail Mode.0Stored information does not correspond to opcode fetch cycle1Stored information corresponds to opcode fetch cycle

Table 8-46. CXINF Field Descriptions (continued)

8.4.5.4 Reading Data from Trace Buffer

The data stored in the Trace Buffer can be read using either the background debug module (BDM) module, the XGATE or the CPU12X provided the S12XDBG module is not armed, is configured for tracing and the system not secured. When the ARM bit is written to 1 the trace buffer is locked to prevent reading. The trace buffer can only be unlocked for reading by an aligned word write to DBGTB when the module is disarmed.

The Trace Buffer can only be read through the DBGTB register using aligned word reads, any byte or misaligned reads return 0 and do not cause the trace buffer pointer to increment to the next trace buffer address. The Trace Buffer data is read out first-in first-out. By reading CNT in DBGCNT the number of valid 64-bit lines can be determined. DBGCNT will not decrement as data is read.

Whilst reading an internal pointer is used to determine the next line to be read. After a tracing session, the pointer points to the oldest data entry, thus if no overflow has occurred, the pointer points to line0, otherwise it points to the line with the oldest entry. The pointer is initialized by each aligned write to DBGTBH to point to the oldest data again. This enables an interrupted trace buffer read sequence to be easily restarted from the oldest data entry.

Branch if Higher

Operation

If C | Z = 0, then PC + $0002 + (REL9 \le 1) \Rightarrow PC$

Branch instruction to compare <u>unsigned numbers</u>.

Branch if RS1 > RS2:

SUB R0,RS1,RS2 BHI REL9

CCR Effects

Ν	z	v	С
_	_	_	

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

Code and CPU Cycles

Source Form	Address Mode	Machine Code	Cycles
BHI REL9	REL9	0 0 1 1 0 0 0 REL9	PP/P

Field	Description
7 PLLSEL	PLL Select BitWrite: Anytime.Writing a one when LOCK=0 has no effect. This prevents the selection of an unstable PLLCLK as SYSCLK.PLLSEL bit is cleared when the MCU enters Self Clock Mode, Stop Mode or Wait Mode with PLLWAI bit set.It is recommended to read back the PLLSEL bit to make sure PLLCLK has really been selected asSYSCLK, as LOCK status bit could theoretically change at the very moment writing the PLLSEL bit.00System clocks are derived from OSCCLK (f _{BUS} = f _{OSC} / 2).11System clocks are derived from PLLCLK (f _{BUS} = f _{PLL} / 2).
6 PSTP	 Pseudo Stop Bit Write: Anytime This bit controls the functionality of the oscillator during Stop Mode. 0 Oscillator is disabled in Stop Mode. 1 Oscillator continues to run in Stop Mode (Pseudo Stop). Note: Pseudo Stop Mode allows for faster STOP recovery and reduces the mechanical stress and aging of the resonator in case of frequent STOP conditions at the expense of a slightly increased power consumption.
5 XCLKS	 Oscillator Configuration Status Bit — This read-only bit shows the oscillator configuration status. 0 Loop controlled Pierce Oscillator is selected. 1 External clock / full swing Pierce Oscillator is selected.
3 PLLWAI	PLL Stops in Wait Mode Bit Write: Anytime If PLLWAI is set, the S12XECRG will clear the PLLSEL bit before entering Wait Mode. The PLLON bit remains set during Wait Mode but the IPLL is powered down. Upon exiting Wait Mode, the PLLSEL bit has to be set manually if PLL clock is required. 0 IPLL keeps running in Wait Mode. 1 IPLL stops in Wait Mode.
1 RTIWAI	RTI Stops in Wait Mode Bit Write: Anytime 0 RTI keeps running in Wait Mode. 1 RTI stops and initializes the RTI dividers whenever the part goes into Wait Mode.
0 COPWAI	 COP Stops in Wait Mode Bit Normal modes: Write once Special modes: Write anytime 0 COP keeps running in Wait Mode. 1 COP stops and initializes the COP counter whenever the part goes into Wait Mode.

Table 11-6. CLKSEL Field Descriptions

11.3.2.7 S12XECRG IPLL Control Register (PLLCTL)

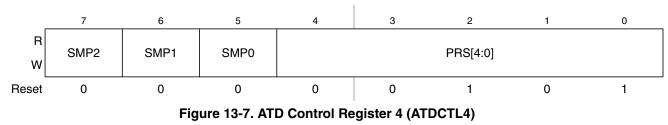
This register controls the IPLL functionality.

Module Base + 0x0006

_	7	6	5	4	3	2	1	0
R W	CME	PLLON	FM1	FM0	FSTWKP	PRE	PCE	SCME
Reset	1	1	0	0	0	0	0	1

S8C	S4C	S2C	S1C	Number of Conversions per Sequence
0	0	0	0	16
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Table 13-11. Conversion Sequence Length Coding


 Table 13-12. ATD Behavior in Freeze Mode (Breakpoint)

FRZ1	FRZ0	Behavior in Freeze Mode			
0	0	Continue conversion			
0	1	Reserved			
1	0	Finish current conversion, then freeze			
1	1	Freeze Immediately			

13.3.2.5 ATD Control Register 4 (ATDCTL4)

Writes to this register will abort current conversion sequence.

Module Base + 0x0004

Read: Anytime

Write: Anytime

ter 14 Enhanced Capture Timer (ECT16B8CV3)

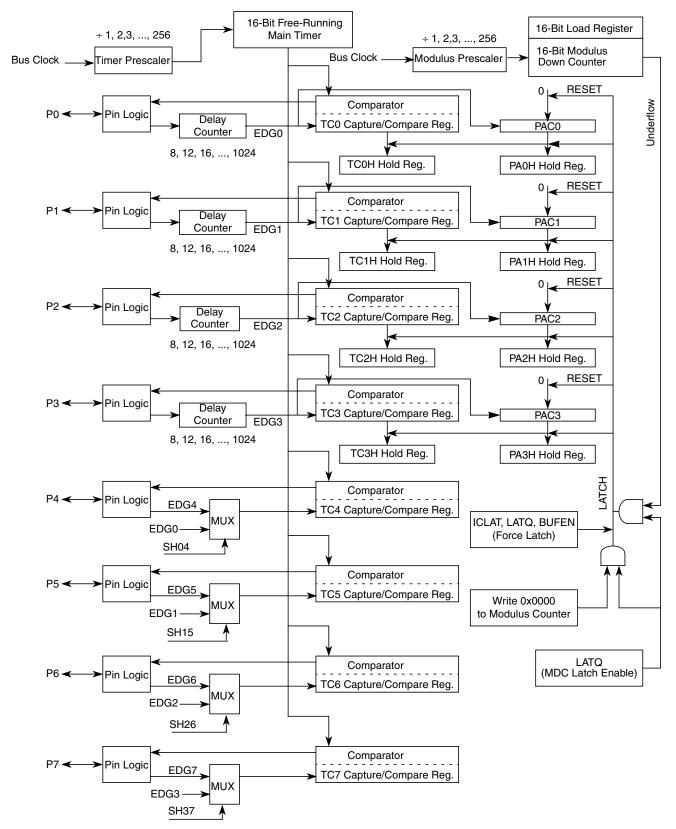


Figure 14-68. Detailed Timer Block Diagram in Latch Mode when PRNT = 1

1. Read: Anytime

Write: Anytime when not in initialization mode

NOTE

The CANTIER register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable when not in initialization mode (INITRQ = 0 and INITAK = 0).

Table 16-14. CANTIER Register Field Descriptions

Field	Description
2-0 TXEIE[2:0]	 Transmitter Empty Interrupt Enable 0 No interrupt request is generated from this event. 1 A transmitter empty (transmit buffer available for transmission) event causes a transmitter empty interrupt request.

16.3.2.9 MSCAN Transmitter Message Abort Request Register (CANTARQ)

The CANTARQ register allows abort request of queued messages as described below.

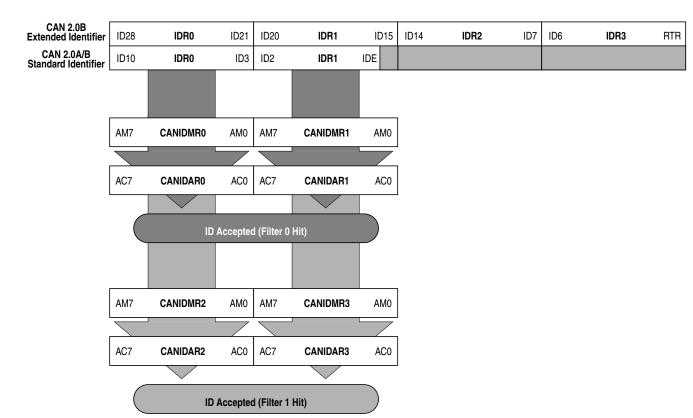
Module Base + 0x0008

Access: User read/write⁽¹⁾

	7	6	5	4	3	2	1	0
R	0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
w						ADTINUZ	ADINQI	ADINGU
Reset:	0	0	0	0	0	0	0	0
	= Unimplemented							

Figure 16-12. MSCAN Transmitter Message Abort Request Register (CANTARQ)

1. Read: Anytime


Write: Anytime when not in initialization mode

NOTE

The CANTARQ register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable when not in initialization mode (INITRQ = 0 and INITAK = 0).

Table 16-15. CANTARQ Register Field Descriptions

Field	Description
2-0 ABTRQ[2:0]	Abort Request — The CPU sets the ABTRQx bit to request that a scheduled message buffer (TXEx = 0) be aborted. The MSCAN grants the request if the message has not already started transmission, or if the transmission is not successful (lost arbitration or error). When a message is aborted, the associated TXE (see Section 16.3.2.7, "MSCAN Transmitter Flag Register (CANTFLG)") and abort acknowledge flags (ABTAK, see Section 16.3.2.10, "MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)") are set and a transmit interrupt occurs if enabled. The CPU cannot reset ABTRQx. ABTRQx is reset whenever the associated TXE flag is set. 0 No abort request 1 Abort request pending

ter 16 Freescale's Scalable Controller Area Network (S12MSCANV3)

Figure 16-41. 16-bit Maskable Identifier Acceptance Filters

21.3.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register diagram with an associated figure number. Details of register bit and field function follow the register diagrams, in bit order.

21.3.2.1 SPI Control Register 1 (SPICR1)

Module Base +0x0000

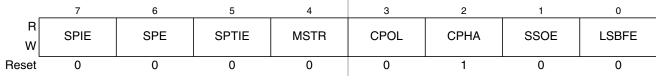


Figure 21-3. SPI Control Register 1 (SPICR1)

Read: Anytime

Write: Anytime

Field	Description
7 SPIE	 SPI Interrupt Enable Bit — This bit enables SPI interrupt requests, if SPIF or MODF status flag is set. O SPI interrupts disabled. 1 SPI interrupts enabled.
6 SPE	 SPI System Enable Bit — This bit enables the SPI system and dedicates the SPI port pins to SPI system functions. If SPE is cleared, SPI is disabled and forced into idle state, status bits in SPISR register are reset. SPI disabled (lower power consumption). SPI enabled, port pins are dedicated to SPI functions.
5 SPTIE	 SPI Transmit Interrupt Enable — This bit enables SPI interrupt requests, if SPTEF flag is set. O SPTEF interrupt disabled. 1 SPTEF interrupt enabled.
4 MSTR	 SPI Master/Slave Mode Select Bit — This bit selects whether the SPI operates in master or slave mode. Switching the SPI from master to slave or vice versa forces the SPI system into idle state. SPI is in slave mode. SPI is in master mode.
3 CPOL	 SPI Clock Polarity Bit — This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical CPOL values. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. 0 Active-high clocks selected. In idle state SCK is low. 1 Active-low clocks selected. In idle state SCK is high.
2 CPHA	 SPI Clock Phase Bit — This bit is used to select the SPI clock format. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. 0 Sampling of data occurs at odd edges (1,3,5,) of the SCK clock. 1 Sampling of data occurs at even edges (2,4,6,) of the SCK clock.

Table 21-2. SPICR1 Field Descriptions

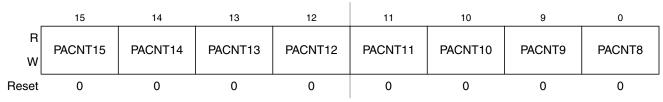


Table 22-21. PAFLG Field Descriptions

Field	Description
1 PAOVF	Pulse Accumulator Overflow Flag — Set when the 16-bit pulse accumulator overflows from 0xFFFF to 0x0000. Clearing this bit requires writing a one to this bit in the PAFLG register while TEN bit of TSCR1 or PAEN bit of PACTL register is set to one.
0 PAIF	Pulse Accumulator Input edge Flag — Set when the selected edge is detected at the IOC7 input pin.In event mode the event edge triggers PAIF and in gated time accumulation mode the trailing edge of the gate signal at the IOC7 input pin triggers PAIF.
	Clearing this bit requires writing a one to this bit in the PAFLG register while TEN bit of TSCR1 or PAEN bit of PACTL register is set to one. Any access to the PACNT register will clear all the flags in this register when TFFCA bit in register TSCR(0x0006) is set.

22.3.2.17 Pulse Accumulators Count Registers (PACNT)

Module Base + 0x0022

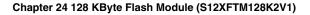
Module Base + 0x0023

	7	6	5	4	3	2	1	0
R		DAONITO	DAONITE		DAONITO	DAONITO	DAONITA	DAONITO
w	PACNT7	PACNT6	PACNT5	PACNT4	PACNT3	PACNT2	PACNT1	PACNT0
Reset	0	0	0	0	0	0	0	0

Figure 22-27. Pulse Accumulator Count Register Low (PACNTL)

Read: Anytime

Write: Anytime


These registers contain the number of active input edges on its input pin since the last reset.

When PACNT overflows from 0xFFFF to 0x0000, the Interrupt flag PAOVF in PAFLG (0x0021) is set.

Full count register access should take place in one clock cycle. A separate read/write for high byte and low byte will give a different result than accessing them as a word.

NOTE

Reading the pulse accumulator counter registers immediately after an active edge on the pulse accumulator input pin may miss the last count because the input has to be synchronized with the bus clock first.

CAUTION

A P-Flash phrase must be in the erased state before being programmed. Cumulative programming of bits within a Flash phrase is not allowed.

Table 24-41. Program P-Flash Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters						
000	0x06	Global address [22:16] to identify P-Flash block					
001	Global address [15:0] of phrase location to be programmed ⁽¹⁾						
010	Word 0 program value						
011	Word 1 program value						
100	Word 2 program value						
101	Word 3 pro	Word 3 program value					

1. Global address [2:0] must be 000

Upon clearing CCIF to launch the Program P-Flash command, the Memory Controller will program the data words to the supplied global address and will then proceed to verify the data words read back as expected. The CCIF flag will set after the Program P-Flash operation has completed.

Register	Error Bit	Error Condition
		Set if CCOBIX[2:0] != 101 at command launch
	ACCERR	Set if command not available in current mode (see Table 24-30)
	ACCERR	Set if an invalid global address [22:0] is supplied ⁽¹⁾
FSTAT		Set if a misaligned phrase address is supplied (global address [2:0] != 000)
	FPVIOL	Set if the global address [22:0] points to a protected area
	MGSTAT1	Set if any errors have been encountered during the verify operation ⁽²⁾
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation ²
FERSTAT	EPVIOLIF	None

Table 24-42. Program P-Flash Command Error Handling

1. As defined by the memory map for FTM256K2.

2. As found in the memory map for FTM256K2.

24.4.2.6 Program Once Command

The Program Once command restricts programming to a reserved 64 byte field (8 phrases) in the nonvolatile information register located in P-Flash block 0. The Program Once reserved field can be read using the Read Once command as described in Section 24.4.2.4. The Program Once command must only be issued once since the nonvolatile information register in P-Flash block 0 cannot be erased. The Program

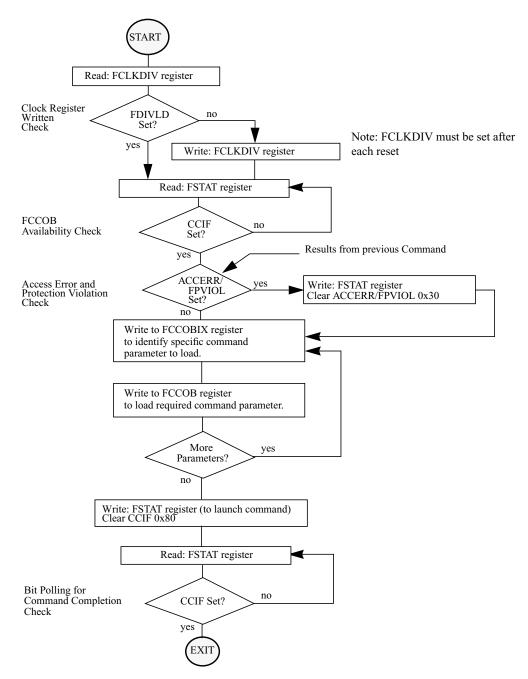


Figure 26-26. Generic Flash Command Write Sequence Flowchart

Register	Error Bit Error Condition					
		Set if CCOBIX[2:0] != 010 at command launch				
		Set if a Load Data Field command sequence is currently active				
		Set if command not available in current mode (see Table 26-30)				
	ACCERR	Set if an invalid global address [22:0] is supplied ⁽¹⁾				
FSTAT		Set if a misaligned phrase address is supplied (global address [2:0] != 000)				
		Set if the requested section crosses a 256 Kbyte boundary				
	FPVIOL	None				
	MGSTAT1	Set if any errors have been encountered during the read ⁽²⁾				
	MGSTAT0	Set if any non-correctable errors have been encountered during the read ²				
FERSTAT	EPVIOLIF	None				

Table 26-38. Erase Verify P-Flash Section Command Error Handling

1. As defined by the memory map for FTM512K3.

2. As found in the memory map for FTM512K3.

26.4.2.4 Read Once Command

The Read Once command provides read access to a reserved 64 byte field (8 phrases) located in the nonvolatile information register of P-Flash block 0. The Read Once field is programmed using the Program Once command described in Section 26.4.2.7. The Read Once command must not be executed from the Flash block containing the Program Once reserved field to avoid code runaway.

CCOBIX[2:0]	FCCOB Parameters						
000	0x04	Not Required					
001	Read Once phrase index (0x0000 - 0x0007)						
010	Read Once word 0 value						
011	Read Once word 1 value						
100	Read Once word 2 value						
101	Read Once	word 3 value					

 Table 26-39. Read Once Command FCCOB Requirements

Upon clearing CCIF to launch the Read Once command, a Read Once phrase is fetched and stored in the FCCOB indexed register. The CCIF flag will set after the Read Once operation has completed. Valid phrase index values for the Read Once command range from 0x0000 to 0x0007. During execution of the Read Once command, any attempt to read addresses within P-Flash block 0 will return invalid data.

SEC[1:0]	Status of Security
00	SECURED
01	SECURED ⁽¹⁾
10	UNSECURED
11	SECURED

Table 29-12. Flash Security States

1. Preferred SEC state to set MCU to secured state.

The security function in the Flash module is described in Section 29.5.

29.3.2.3 Flash CCOB Index Register (FCCOBIX)

Offset Module Base + 0x0002

The FCCOBIX register is used to index the FCCOB register for Flash memory operations.

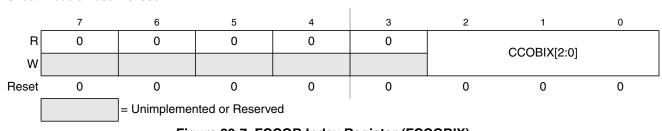


Figure 29-7. FCCOB Index Register (FCCOBIX)

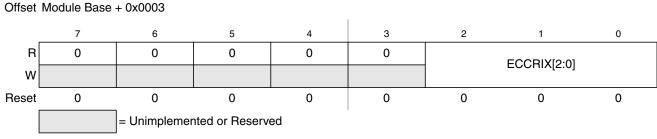

CCOBIX bits are readable and writable while remaining bits read 0 and are not writable.

 Table 29-13. FCCOBIX Field Descriptions

Field	Description
2–0 CCOBIX[1:0]	Common Command Register Index — The CCOBIX bits are used to select which word of the FCCOB register array is being read or written to. See Section 29.3.2.11, "Flash Common Command Object Register (FCCOB)," for more details.

29.3.2.4 Flash ECCR Index Register (FECCRIX)

The FECCRIX register is used to index the FECCR register for ECC fault reporting.

Figure 29-8. FECCR Index Register (FECCRIX)

ECCRIX bits are readable and writable while remaining bits read 0 and are not writable.

Table A-8. 5V I/O Characteristics

Num	C	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Input high voltage	VIH	0.65*V _{DD35}	_	_	v
	Т	Input high voltage	VIH	_	_	V _{DD35} + 0.3	v
2	Р	Input low voltage	V _{IL}	_	_	0.35*V _{DD35}	V
	Т	Input low voltage	V _{IL}	V _{SS35} – 0.3	_	_	v
3	Т	Input hysteresis	VHYS	_	250	_	mV
4a	Ρ	Input leakage current (pins in high impedance input mode) ⁽¹⁾ $V_{in} = V_{DD35}$ or V_{SS35} M Temperature range -40°C to 150°C V Temperature range -40°C to 130°C C Temperature range -40°C to 110°C	I _{in}	-1 -0.75 -0.5		1 0.75 0.5	μΑ
4b	C	Input leakage current (pins in high impedance input mode) $V_{in} = V_{DD35}$ or V_{SS35} -40°C 27°C 70°C 85°C 100°C 105°C 110°C 120°C 125°C 130°C 130°C 150°C	I _{in}				nA
5	С	Output high voltage (pins in output mode) Partial drive I _{OH} = -2 mA	V _{OH}	V _{DD35} – 0.8	_	—	V
6	Р	Output high voltage (pins in output mode) Full drive I _{OH} = -10 mA	V _{OH}	V _{DD35} – 0.8	_	—	V
7	С	Output low voltage (pins in output mode) Partial drive I _{OL} = +2 mA	V _{OL}	_	_	0.8	V
3	Р	Output low voltage (pins in output mode) Full drive I _{OL} = +10 mA	V _{OL}	—	—	0.8	V
)	Р	Internal pull up resistance V _{IH} min > input voltage > V _{IL} max	R _{PUL}	25	_	50	KΩ
0	Р	Internal pull down resistance V _{IH} min > input voltage > V _{IL} max	R _{PDH}	25		50	ΚΩ
1	D	Input capacitance	C _{in}	_	6		pF
12	Т	Injection current ⁽²⁾ Single pin limit Total device Limit, sum of all injected currents	I _{ICS} I _{ICP}	-2.5 -25	—	2.5 25	mA
3	Ρ	Port H, J, P interrupt input pulse filtered(STOP) $^{(3)}$	t _{PULSE}		_	3	μs
14	Ρ	Port H, J, P interrupt input pulse passed(STOP) ³	t _{PULSE}	10			μs
15	D	Port H, J, P interrupt input pulse filtered (STOP)	t _{PULSE}			3	tcyc

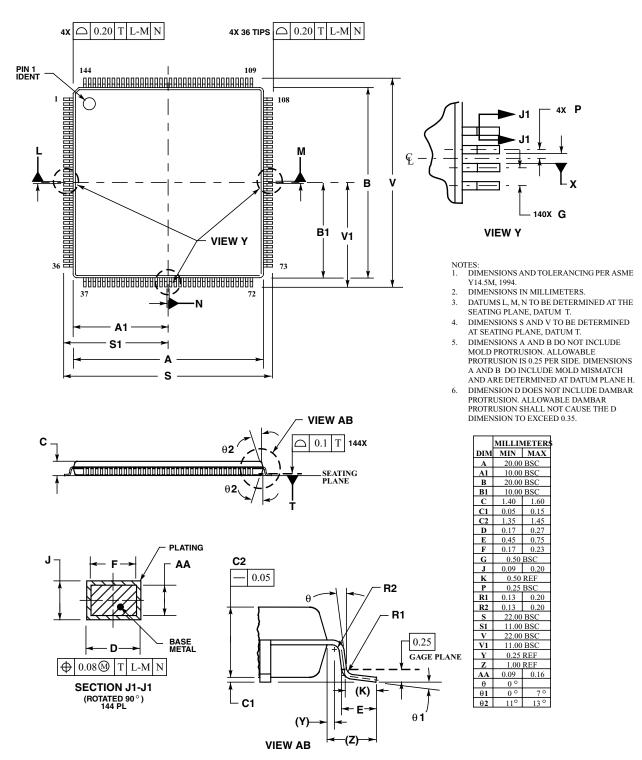
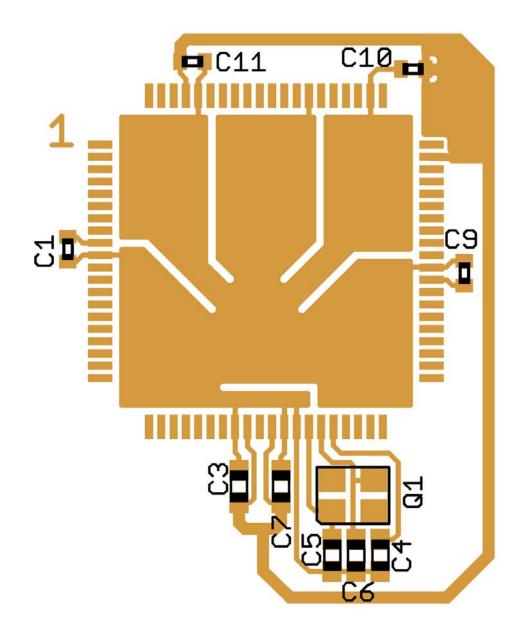



Figure B-2. 144-Pin LQFP Mechanical Dimensions (Case No. 918-03)

Figure C-3. 80-Pin QFP Recommended PCB Layout (Loop Controlled Pierce Oscillator)

ndix E Detailed Register Address Map

0x0030–0x0031 Reserved Register Space

0x0030	Reserved	R	0	0	0	0	0	0	0	0
0x0000	neserveu	W								
0x0031	Reserved	R	0	0	0	0	0	0	0	0
0x0031	Reserved	W								

0x0032–0x0033 Port Integration Module (PIM) Map 4 of 6

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0032	PORTK	R W	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0
0x0033	DDRK	R W	DDRK7	DDRK6	DDRK5	DDRK4	DDRK3	DDRK2	DDRK1	DDRK0

0x0034–0x003F Clock and Reset Generator (CRG) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x0034	SYNR	R W	VCOFF	RQ[1:0]	SYNDIV5	SYNDIV4	SYNDIV3	SYNDIV2	SYNDIV1	SYNDIV0		
0x0035	REFDV	R W	REFFF	RQ[1:0]	REFDIV5	REFDIV4	REFDIV3	REFDIV2	REFDIV1	REFDIV0		
0x0036	POSTDIV	R W	0	0	0	POSTDIV[4:0]]						
0x0037	CRGFLG	R W	RTIF	PORF	LVRF	LOCKIF	LOCK	ILAF	SCMIF	SCM		
0x0038	CRGINT	R W	RTIE	0	0	LOCKIE	0	0	SCMIE	0		
0x0039	CLKSEL	R W	PLLSEL	PSTP	XCLKS	0	PLLWAI	0	RTIWAI	COPWAI		
0x003A	PLLCTL	R W	CME	PLLON	FM1	FM0	FSTWKP	PRE	PCE	SCME		
0x003B	RTICTL	R W	RTDEC	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0		
0x003C	COPCTL	R W	WCOP	RSBCK	0 WRTMASK	0	0	CR2	CR1	CR0		
0x003D	FORBYP	R	0	0	0	0	0	0	0	0		
ONCOOL	1011011	W		Reserved For Factory Test								
0x003E	CTCTL	CTCTL R	0	0	0	0		0	0	0		
		W			1	Reserved Fo	-					
0x003F	ARMCOP	R	0	0	0	0	0	0	0	0		
		W	Bit 7	6	5	4	3	2	1	Bit 0		

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x00C8	SCI0BDH ⁽¹⁾	R W	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8	
0x00C9	SCI0BDL ¹	R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0	
0x00CA	SCI0CR11	R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT	
0x00C8	SCI0ASR1 ⁽²⁾		RXEDGIF	0	0	0	0	BERRV	BERRIF	BKDIF	
		W	INCLUGII					DENIN			
0x00C9	SCI0ACR1 ²	0ACR1 ² R W	RXEDGIE	0	0	0	0	0	BERRIE	BKDIE	
			INCLUCIE							DICDIE	
0x00CA	SCI0ACR2 ²	R	0	0	0	0	0	BERRM1	BERRM0	BKDFE	
		CONTRACT	W						DEFRIN	DEITIMO	
0x00CB	SCI0CR2	R W	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	
0x00CC	SCI0SR1	R	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF	
		W									
0x00CD	SCI0SR2		R	AMAP	0	0	TXPOL	RXPOL	BRK13	TXDIR	RAF
		W									
0x00CE	SCI0DRH	R	R8 T8	0	0	0	0	0	0		
		W		10							
0x00CF	SCI0DRL	R	R7	R6	R5	R4	R3	R2	R1	R0	
		W	T7	T6	T5	T4	Т3	T2	T1	Т0	

0x00C8–0x00CF Asynchronous Serial Interface (SCI0) Map

1. Those registers are accessible if the AMAP bit in the SCI0SR2 register is set to zero 2. Those registers are accessible if the AMAP bit in the SCI0SR2 register is set to one

0x00D0-0x00D7 Asynchronous Serial Interface (SCI1) Map

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00D0	SCI1BDH ⁽¹⁾	R W	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8
0x00D1	SCI1BDL ¹	R W	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
0x00D2	SCI1CR1 ¹	R W	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
0x00D0	SCI1ASR1 ⁽²⁾	R W	RXEDGIF	0	0	0	0	BERRV	BERRIF	BKDIF
0x00D1	SCI1ACR1 ²	R W	RXEDGIE	0	0	0	0	0	BERRIE	BKDIE
0x00D2	SCI1ACR2 ²	R W	0	0	0	0	0	BERRM1	BERRM0	BKDFE
0x00D3	SCI1CR2	R W	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
0x00D4	SCI1SR1	R W	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF