

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                       |
|----------------------------|--------------------------------------------------------------|
| Core Processor             | HCS12X                                                       |
| Core Size                  | 16-Bit                                                       |
| Speed                      | 50MHz                                                        |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, SCI, SPI            |
| Peripherals                | LVD, POR, PWM, WDT                                           |
| Number of I/O              | 119                                                          |
| Program Memory Size        | 256KB (256K x 8)                                             |
| Program Memory Type        | FLASH                                                        |
| EEPROM Size                | 4K x 8                                                       |
| RAM Size                   | 16K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.72V ~ 5.5V                                                 |
| Data Converters            | A/D 24x12b                                                   |
| Oscillator Type            | External                                                     |
| Operating Temperature      | -40°C ~ 105°C (TA)                                           |
| Mounting Type              | Surface Mount                                                |
| Package / Case             | 144-LQFP                                                     |
| Supplier Device Package    | 144-LQFP (20x20)                                             |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s912xet256j2vag |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





Figure 1-3 shows XGATE local address translation to the global memory map. It indicates also the location of used internal resources in the memory map.

| Internal Resource | Size /KByte        | \$Address                |
|-------------------|--------------------|--------------------------|
| XGATE RAM         | 32K                | XGRAM_LOW = 0x0F_8000    |
| FLASH             | 30K <sup>(1)</sup> | XGFLASH_HIGH = 0x78_8000 |

 Table 1-3. XGATE Resources

1. This value is calculated by the following formula: (64K -2K- XGRAMSIZE)

| Device                                | FLASH_LOW                | PPAGE | RAM_LOW   | RPAGE | EE_LOW    | EPAGE                |
|---------------------------------------|--------------------------|-------|-----------|-------|-----------|----------------------|
| 9S12XEP100                            | 0x70_0000                | 64    | 0x0F_0000 | 16    | 0x13_F000 | $4^{(3)} + 32^{(4)}$ |
| 9S12XEP768                            | 0x74_0000                | 48    | 0x0F_4000 | 12    | 0x13_F000 | 4 + 32               |
| 9S12XEQ512                            | 0x78_0000                | 32    | 0x0F_8000 | 8     | 0x13_F000 | 4 + 32               |
| 9S12XEx384                            | 0x78_0000 <sup>(5)</sup> | 24    | 0x0F_A000 | 6     | 0x13_F000 | 4 + 32               |
| 9S12XET256<br>9S12XEA256<br>(6)       | 0x78_0000 <sup>(7)</sup> | 16    | 0x0F_C000 | 4     | 0x13_F000 | 4 + 32               |
| 9S12XEG128<br>9S12XEA128 <sup>6</sup> | 0x78_0000 <sup>(8)</sup> | 8     | 0x0F_D000 | 3     | 0x13_F800 | 2 + 32               |

#### Table 1-4. Derivative Dependent Memory Parameters

1. Number of 16K pages addressable via PPAGE register

2. Number of 4K pages addressing the RAM. RAM can also be mapped to 0x4000 - 0x7FFF

3. Number of 1K pages addressing the Cache RAM via the EPAGE register counting downwards from 0xFF

4. Number of 1K pages addressing the Data flash via the EPAGE register starting upwards from 0x00

5. The 384K memory map is split into a 128K block from 0x78\_0000 to 0x79\_FFFF and a 256K block from 0x7C\_0000 to 0x7F\_FFFF

6. The 9S12XEA devices are a special bondout for access to extra ADC channels in 80QFP. Available in 80QFP only. WARNING: NOT PIN-COMPATIBLE WITH REST OF FAMILY.

7. The 256K memory map is split into a 128K block from 0x78\_0000 to 0x79\_FFFF and a 128K block from 0x7E\_0000 to 0x7F\_FFFF

8. The 128K memory map is split into a 64K block from 0x78\_0000 to 0x78\_FFFF and a 64K block from 0x7F\_0000 to 0x7F\_FFFF

| Device     | 0x70_0000 | 0x74_0000 | 0x78_0000 | 0x7A_0000 | 0x7C_0000 | 0x7E_0000 |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 9S12XEP100 | B3        | B2        | B1S       | B1N       | В         | 0         |
| 9S12XEP768 | —         | B2        | B1S       | B1N       | В         | 0         |
| 9S12XEQ512 | _         | _         | B1S       | B1N       | В         | 0         |
| 9S12XEx384 | —         | —         | B1S       | —         | В         | 0         |

| able 1-5. Derivative | Dependent Flash | Block Mapping | J |
|----------------------|-----------------|---------------|---|
|----------------------|-----------------|---------------|---|

| Device                                | 0x70_0000 | 0x74_0000 | 0x78_0000 | 0x7A_0000 | 0x7C_0000 | 0x7E_0000 |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 9S12XET256<br>9S12XEA256<br>(1)       |           | _         | B1S       |           |           | B0(128K)  |
| 9S12XEG128<br>9S12XEA128 <sup>1</sup> | _         | _         | B1S (64K) | _         |           | B0 (64K)  |

Table 1-5. Derivative Dependent Flash Block Mapping (continued)

 The 9S12XEA devices are special bondouts for access to extra ADC channels in 80QFP. Available in 80QFP only. WARNING: NOT PIN-COMPATIBLE WITH REST OF FAMILY.

Block B1 is divided into two 128K blocks. The XGATE is always mapped to block B1S.

On the 9S12XEG128 the flash is divided into two 64K blocks B0 and B1S, the B1S range extending from 0x78\_0000 to 0x78\_FFFF, the B0 range extending from 0x7F\_0000 to 0x7F\_FFFF.

The block B0 is a reduced size 128K block on the 256K derivative. On the larger derivatives B0 is a 256K block. The block B0 is a reduced size 64K block on the 128K derivative.



| Register<br>Name |        | Bit 7       | 6                                                 | 5              | 4       | 3           | 2       | 1       | Bit 0   |
|------------------|--------|-------------|---------------------------------------------------|----------------|---------|-------------|---------|---------|---------|
| 0x0263<br>RDRH   | R<br>W | RDRH7       | RDRH7 RDRH6 RDRH5 RDF                             |                | RDRH4   | RDRH3 RDRH2 |         | RDRH1   | RDRH0   |
| 0x0264<br>PERH   | R<br>W | PERH7       | PERH6                                             | PERH5          | PERH4   | ERH4 PERH3  |         | PERH1   | PERH0   |
| 0x0265<br>PPSH   | R<br>W | PPSH7       | PPSH6                                             | PPSH5          | PPSH4   | PPSH3       | PPSH2   | PPSH1   | PPSH0   |
| 0x0266<br>PIEH   | R<br>W | PIEH7       | PIEH6                                             | PIEH5          | PIEH4   | PIEH3       | PIEH2   | PIEH1   | PIEH0   |
| 0x0267<br>PIFH   | R<br>W | PIFH7       | PIFH6                                             | PIFH5          | PIFH4   | PIFH3       | PIFH2   | PIFH1   | PIFH0   |
| 0x0268<br>PTJ    | R<br>W | PTJ7        | PTJ7 PTJ6 PTJ5 PTJ4 PTJ3 F                        |                | PTJ2    | PTJ1        | PTJ0    |         |         |
| 0x0269<br>PTIJ   | R<br>W | PTIJ7       | PTIJ6                                             | PTIJ5          | PTIJ4   | PTIJ3       | PTIJ2   | PTIJ1   | PTIJ0   |
| 0x026A<br>DDRJ   | R<br>W | DDRJ7       | DDRJ6                                             | DDRJ5          | DDRJ4   | DDRJ3       | DDRJ2   | DDRJ1   | DDRJ0   |
| 0x026B<br>RDRJ   | R<br>W | RDRJ7 RDRJ6 |                                                   | RDRJ5          | RDRJ4   | RDRJ3       | RDRJ2   | RDRJ1   | RDRJ0   |
| 0x026C<br>PERJ   | R<br>W | PERJ7 PERJ6 |                                                   | PERJ5          | PERJ4   | PERJ3       | PERJ2   | PERJ1   | PERJ0   |
| 0x026D<br>PPSJ   | R<br>W | PPSJ7       | PPSJ6                                             | PPSJ5          | PPSJ4   | PPSJ3       | PPSJ2   | PPSJ1   | PPSJ0   |
| 0x026E<br>PIEJ   | R<br>W | PIEJ7       | PIEJ6                                             | PIEJ5          | PIEJ4   | PIEJ3       | PIEJ2   | PIEJ1   | PIEJ0   |
| 0x026F<br>PIFJ   | R<br>W | PIFJ7       | PIFJ6                                             | PIFJ5          | PIFJ4   | PIFJ3       | PIFJ2   | PIFJ1   | PIFJ0   |
| 0x0270<br>PT0AD0 | R<br>W | PT0AD07     | PT0AD07 PT0AD06 PT0AD05 PT0AD04 PT0AD03 PT0AD02 F |                | PT0AD01 | PT0AD00     |         |         |         |
| 0x0271<br>PT1AD0 | R<br>W | PT1AD07     | PT1AD06                                           | PT1AD05        | PT1AD04 | PT1AD03     | PT1AD02 | PT1AD01 | PT1AD00 |
|                  | [      |             | = Unimpleme                                       | ented or Reser | ved     |             |         |         |         |



# 2.3.42 Port M Polarity Select Register (PPSM)



Write: Anytime.

#### Table 2-38. PPSM Register Field Descriptions

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0   | Port M pull device select—Determine pull device polarity on input pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PPSM  | <ul> <li>This register selects whether a pull-down or a pull-up device is connected to the pin. If CAN is active a pull-up device can be activated on the RXCAN[3:0] inputs, but not a pull-down.</li> <li>1 A pull-down device is connected to the associated Port M pin, if enabled by the associated bit in register PERM and if the port is used as a general purpose but not as RXCAN.</li> <li>0 A pull-up device is connected to the associated Port M pin, if enabled by the associated bit in register PERM and if the port is used as general purpose or RXCAN input.</li> </ul> |

# 2.3.43 Port M Wired-Or Mode Register (WOMM)

#### Access: User read/write<sup>(1)</sup> Address 0x0256 7 6 5 4 3 2 0 1 R WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0 W 0 0 0 0 0 0 0 0 Reset Figure 2-41. Port M Wired-Or Mode Register (WOMM)

1. Read: Anytime. Write: Anytime.

## Table 2-39. WOMM Register Field Descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0<br>WOMM | <ul> <li>Port M wired-or mode—Enable wired-or functionality</li> <li>This register configures the output pins as wired-or independent of the function used on the pins. If enabled the output is driven active low only (open-drain). A logic level of "1" is not driven. This allows a multipoint connection of several serial modules. These bits have no influence on pins used as inputs.</li> <li>1 Output buffers operate as open-drain outputs.</li> <li>0 Output buffers operate as push-pull outputs.</li> </ul> |



# Chapter 5 External Bus Interface (S12XEBIV4)

| Revision<br>Number | Revision Date | Sections<br>Affected | Description of Changes           |
|--------------------|---------------|----------------------|----------------------------------|
| V04.01             | 12 Sep 2005   |                      | - Added CSx stretch description. |
| V04.02             | 23 May 2006   |                      | - Internal updates               |
| V04.03             | 24 Jul 2006   |                      | - Removed term IVIS              |

Table 5-1. Revision History

# 5.1 Introduction

This document describes the functionality of the XEBI block controlling the external bus interface.

The XEBI controls the functionality of a non-multiplexed external bus (a.k.a. 'expansion bus') in relationship with the chip operation modes. Dependent on the mode, the external bus can be used for data exchange with external memory, peripherals or PRU, and provide visibility to the internal bus externally in combination with an emulator.



Figure 7-10 shows the host receiving a logic 0 from the target. Since the host is asynchronous to the target, there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of the bit time as perceived by the target. The host initiates the bit time but the target finishes it. Since the target wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly drives it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after starting the bit time.



Figure 7-10. BDM Target-to-Host Serial Bit Timing (Logic 0)

# 7.4.7 Serial Interface Hardware Handshake Protocol

BDM commands that require CPU execution are ultimately treated at the MCU bus rate. Since the BDM clock source can be asynchronously related to the bus frequency, when CLKSW = 0, it is very helpful to provide a handshake protocol in which the host could determine when an issued command is executed by the CPU. The alternative is to always wait the amount of time equal to the appropriate number of cycles at the slowest possible rate the clock could be running. This sub-section will describe the hardware handshake protocol.

The hardware handshake protocol signals to the host controller when an issued command was successfully executed by the target. This protocol is implemented by a 16 serial clock cycle low pulse followed by a brief speedup pulse in the BKGD pin. This pulse is generated by the target MCU when a command, issued by the host, has been successfully executed (see Figure 7-11). This pulse is referred to as the ACK pulse. After the ACK pulse has finished: the host can start the bit retrieval if the last issued command was a read command, or start a new command if the last command was a write command or a control command (BACKGROUND, GO, GO\_UNTIL or TRACE1). The ACK pulse is not issued earlier than 32 serial clock cycles after the BDM command was issued. The end of the BDM command is assumed to be the 16th tick of the last bit. This minimum delay assures enough time for the host to perceive the ACK pulse. Note also that, there is no upper limit for the delay between the command and the related ACK pulse, since the command execution depends upon the CPU bus frequency, which in some cases could be very slow



#### Table 10-9. XGVBR Field Descriptions

| Field       | Description                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------|
| 15–1        | Vector Base Address — The XGVBR register holds the start address of the vector block in the XGATE |
| XBVBR[15:1] | memory map.                                                                                       |

# 10.3.1.8 XGATE Channel Interrupt Flag Vector (XGIF)

The XGATE Channel Interrupt Flag Vector (Figure 10-10) provides access to the interrupt flags of all channels. Each flag may be cleared by writing a "1" to its bit location. Refer to Section 10.5.2, "Outgoing Interrupt Requests" for further information.

Module Base +0x0008

| _      | 127     | 126     | 125     | 124     | 123     | 122     | 121     | 120     | 119     | 118     | 117     | 116     | 115     | 114     | 113     | 112     |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| R      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | VOIE 70 | ×01 17  | VOIE 70 |         |         |         | VOIE 70 |         | VOIE 70 |
| w      |         |         |         |         |         |         |         | XGIF_/8 | XGF_//  | XGIF_/6 | XGIF_/5 | XGIF_/4 | XGIF_/3 | XGIF_/2 | XGIF_/1 | XGIF_/0 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| _      | 111     | 110     | 109     | 108     | 107     | 106     | 105     | 104     | 103     | 102     | 101     | 100     | 99      | 98      | 97      | 96      |
| R<br>W | XGIF_6F | XGIF_6E | XGIF_6D | XGIF_6C | XGIF_6B | XGIF_6A | XGIF_69 | XGIF_68 | XGF_67  | XGIF_66 | XGIF_65 | XGIF_64 | XGIF_63 | XGIF_62 | XGIF_61 | XGIF_60 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|        |         |         |         |         | 1       |         |         |         | 1       |         |         |         | 1       |         |         |         |
| _      | 95      | 94      | 93      | 92      | 91      | 90      | 89      | 88      | 87      | 86      | 85      | 84      | 83      | 82      | 81      | 80      |
| R<br>W | XGIF_5F | XGIF_5E | XGIF_5D | XGIF_5C | XGIF_5B | XGIF_5A | XGIF_59 | XGIF_58 | XGF_57  | XGIF_56 | XGIF_55 | XGIF_54 | XGIF_53 | XGIF_52 | XGIF_51 | XGIF_50 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|        |         |         |         |         |         |         |         |         | 1       |         |         |         |         |         |         |         |
| _      | 79      | 78      | 77      | 76      | 75      | 74      | 73      | 72      | 71      | 70      | 69      | 68      | 67      | 66      | 65      | 64      |
| R<br>W | XGIF_4F | XGIF_4E | XGIF_4D | XGIF_4C | XGIF_4B | XGIF_4A | XGIF_49 | XGIF_48 | XGF _47 | XGIF_46 | XGIF_45 | XGIF_44 | XGIF_43 | XGIF_42 | XGIF_41 | XGIF_40 |
| Reset  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

Figure 10-10. XGATE Channel Interrupt Flag Vector (XGIF)



#### ter 10 XGATE (S12XGATEV3)

**Section** for information on how to select priority levels for XGATE threads. Low priority threads (interrupt levels 1 to 3) can be interrupted by high priority threads (interrupt levels 4 to 7). High priority threads are not interruptible. The register content of an interrupted thread is maintained and restored by the XGATE hardware.

To signal the completion of a task the XGATE is able to send interrupts to the S12X\_CPU. Each XGATE channel has its own interrupt vector. Refer to the S12X\_INT Section for detailed information.

The XGATE module also provides a set of hardware semaphores which are necessary to ensure data consistency whenever RAM locations or peripherals are shared with the S12X\_CPU.

The following sections describe the components of the XGATE module in further detail.

# 10.4.1 XGATE RISC Core

The RISC core is a 16 bit processor with an instruction set that is well suited for data transfers, bit manipulations, and simple arithmetic operations (see Section 10.8, "Instruction Set").

It is able to access the MCU's internal memories and peripherals without blocking these resources from the  $S12X\_CPU^1$ . Whenever the  $S12X\_CPU$  and the RISC core access the same resource, the RISC core will be stalled until the resource becomes available again.<sup>1</sup>

The XGATE offers a high access rate to the MCU's internal RAM. Depending on the bus load, the RISC core can perform up to two RAM accesses per S12X\_CPU bus cycle.

Bus accesses to peripheral registers or flash are slower. A transfer rate of one bus access per S12X\_CPU cycle can not be exceeded.

The XGATE module is intended to execute short interrupt service routines that are triggered by peripheral modules or by software.

|    | Register Block     |   |    | Program Cou | unter            |
|----|--------------------|---|----|-------------|------------------|
| 15 | R7 (Stack Pointer) | 0 | 15 | PC          | 0                |
| 15 | R6                 | 0 |    |             | Condition        |
| 15 | R5                 | 0 |    |             | Code<br>Register |
| 15 | R4                 | 0 |    |             | NZVC             |
| 15 | R3                 | 0 |    |             | 3210             |
| 15 | R2                 | 0 |    |             |                  |
| 15 | R1(Data Pointer)   | 0 |    |             |                  |
| 15 | R0 = 0             | 0 |    |             |                  |

# 10.4.2 Programmer's Model

### Figure 10-22. Programmer's Model

1. With the exception of PRR registers (see Section "S12X\_MMC").



# BGE

# Branch if Greater than or Equal to Zero



# BGE

## Operation

If N  $\wedge$  V = 0, then PC +  $(\text{REL9} \ll 1) \Rightarrow \text{PC}$ 

Branch instruction to compare signed numbers.

#### Branch if $RS1 \ge RS2$ :

SUB R0,RS1,RS2 BGE REL9

## **CCR Effects**

| Ν | Z | V | С |
|---|---|---|---|
| _ | _ | _ | — |

- N: Not affected.
- Z: Not affected.
- V: Not affected.
- C: Not affected.

## **Code and CPU Cycles**

| Source Form | Address<br>Mode | Machine Code |   |   |   | Cycles |   |   |      |      |
|-------------|-----------------|--------------|---|---|---|--------|---|---|------|------|
| BGE REL9    | REL9            | 0            | 0 | 1 | 1 | 0      | 1 | 0 | REL9 | PP/P |



# 13.3.2.10 ATD Input Enable Register (ATDDIEN)



Read: Anytime

Write: Anytime

#### Table 13-20. ATDDIEN Field Descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15–0<br>IEN[15:0] | <ul> <li>ATD Digital Input Enable on channel x (x= 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) — This bit controls the digital input buffer from the analog input pin (ANx) to the digital data register.</li> <li>0 Disable digital input buffer to ANx pin</li> <li>1 Enable digital input buffer on ANx pin.</li> <li>Note: Setting this bit will enable the corresponding digital input buffer continuously. If this bit is set while simultaneously using it as an analog port, there is potentially increased power consumption because the digital input buffer maybe in the linear region.</li> </ul> |

# 13.3.2.11 ATD Compare Higher Than Register (ATDCMPHT)

Writes to this register will abort current conversion sequence.

Read: Anytime

Write: Anytime

Module Base + 0x000E





### Table 13-21. ATDCMPHT Field Descriptions

| Field       | Description                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|
| 15–0        | Compare Operation Higher Than Enable for conversion number <i>n</i> ( <i>n</i> = 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,       |
| CMPHT[15:0] | 4, 3, 2, 1, 0) of a Sequence — This bit selects the operator for comparison of conversion results.                            |
|             | 0 If result of conversion <i>n</i> is <b>lower or same than</b> compare value in ATDDR <i>n</i> , this is flagged in ATDSTAT2 |
|             | 1 If result of conversion <i>n</i> is <b>higher than</b> compare value in ATDDR <i>n</i> , this is flagged in ATDSTAT2        |

| Table 16-12 | . CANRIER | Register | Field | Descriptions |
|-------------|-----------|----------|-------|--------------|
|-------------|-----------|----------|-------|--------------|

| Field                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>WUPIE <sup>(1)</sup>     | Wake-Up Interrupt Enable0 No interrupt request is generated from this event.1 A wake-up event causes a Wake-Up interrupt request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6<br>CSCIE                    | <ul> <li>CAN Status Change Interrupt Enable</li> <li>0 No interrupt request is generated from this event.</li> <li>1 A CAN Status Change event causes an error interrupt request.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5-4<br>RSTATE[1:0]            | <ul> <li>Receiver Status Change Enable — These RSTAT enable bits control the sensitivity level in which receiver state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level the RSTAT flags continue to indicate the actual receiver state and are only updated if no CSCIF interrupt is pending.</li> <li>00 Do not generate any CSCIF interrupt caused by receiver state changes.</li> <li>01 Generate CSCIF interrupt only if the receiver enters or leaves "bus-off" state. Discard other receiver state changes for generating CSCIF interrupt.</li> <li>10 Generate CSCIF interrupt only if the receiver enters or leaves "RxErr" or "bus-off"<sup>(2)</sup> state. Discard other receiver state changes for generating CSCIF interrupt.</li> <li>11 Generate CSCIF interrupt on all state changes.</li> </ul>            |
| 3-2<br>TSTATE[1:0]            | <ul> <li>Transmitter Status Change Enable — These TSTAT enable bits control the sensitivity level in which transmitter state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level, the TSTAT flags continue to indicate the actual transmitter state and are only updated if no CSCIF interrupt is pending.</li> <li>00 Do not generate any CSCIF interrupt caused by transmitter state changes.</li> <li>01 Generate CSCIF interrupt only if the transmitter enters or leaves "bus-off" state. Discard other transmitter state changes for generating CSCIF interrupt.</li> <li>10 Generate CSCIF interrupt only if the transmitter enters or leaves "TxErr" or "bus-off" state. Discard other transmitter state changes for generating CSCIF interrupt.</li> <li>11 Generate CSCIF interrupt on all state changes.</li> </ul> |
| 1<br>OVRIE                    | Overrun Interrupt Enable0 No interrupt request is generated from this event.1 An overrun event causes an error interrupt request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0<br>RXFIE                    | <ul> <li>Receiver Full Interrupt Enable</li> <li>0 No interrupt request is generated from this event.</li> <li>1 A receive buffer full (successful message reception) event causes a receiver interrupt request.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>WUPIE and</li> </ol> | WUPE (see Section 16.3.2.1, "MSCAN Control Register 0 (CANCIL0)") must both be enabled if the recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

mechanism from stop or wait is required.

2. Bus-off state is only defined for transmitters by the CAN standard (see Bosch CAN 2.0A/B protocol specification). Because the only possible state change for the transmitter from bus-off to TxOK also forces the receiver to skip its current state to RxOK, the coding of the RXSTAT[1:0] flags define an additional bus-off state for the receiver (see Section 16.3.2.5, "MSCAN Receiver Flag Register (CANRFLG)").

# 16.3.2.7 MSCAN Transmitter Flag Register (CANTFLG)

The transmit buffer empty flags each have an associated interrupt enable bit in the CANTIER register.





#### Figure 16-33. Identifier Register 3 — Standard Mapping

## 16.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received. The number of bytes to be transmitted or received is determined by the data length code in the corresponding DLR register.

Module Base + 0x00X4 to Module Base + 0x00XB

| _      | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| R<br>W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| Reset: | x   | x   | x   | x   | x   | x   | x   | x   |

Figure 16-34. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

| Table 16-33. | DSR0-DSR7 | <b>Register F</b> | Field De | escriptions |
|--------------|-----------|-------------------|----------|-------------|
|              |           | nogiotoi i        | iona B   | 2001.10110  |

| Field          | Description   |
|----------------|---------------|
| 7-0<br>DB[7:0] | Data bits 7-0 |



In Figure 20-22 the verification samples RT3 and RT5 determine that the first low detected was noise and not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag is not set because the noise occurred before the start bit was found.



In Figure 20-23, verification sample at RT3 is high. The RT3 sample sets the noise flag. Although the perceived bit time is misaligned, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.





# Chapter 25 256 KByte Flash Module (S12XFTM256K2V1)

| Revision<br>Number | Revision<br>Date | Sections<br>Affected                                                                                                                                                                                                                       | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V01.08             | 14 Nov 2007      | 25.5.2/25-951<br>25.4.2/25-927                                                                                                                                                                                                             | <ul> <li>Changed terminology from 'word program' to "Program P-Flash' in the BDM unsecuring description, Section 25.5.2</li> <li>Added requirement that user not write any Flash module register during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                  | 25.4.2.8/25-933                                                                                                                                                                                                                            | <ul> <li>execution of commands 'Erase All Blocks', Section 25.4.2.8, and 'Unsecure Flash', Section 25.4.2.11</li> <li>Added statement that security is released upon successful completion of command 'Erase All Blocks', Section 25.4.2.8</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V01.09             | 19 Dec 2007      | 25.4.2.5/25-930<br>25.4.2/25-927<br>25.3.1/25-896                                                                                                                                                                                          | <ul> <li>Corrected Error Handling table for Load Data Field command</li> <li>Corrected Error Handling table for Full Partition D-Flash, Partition D-Flash,<br/>and EEPROM Emulation Query commands</li> <li>Corrected P-Flash IFR Accessibility table</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V01.10             | 25 Sep 2009      | 25.1/25-891<br>25.3.2.1/25-903<br>25.4.2.4/25-930<br>25.4.2.7/25-932<br>25.4.2.12/25-<br>936<br>25.4.2.12/25-<br>936<br>25.4.2.12/25-<br>936<br>25.4.2.20/25-<br>945<br>25.3.2/25-901<br>25.3.2.1/25-903<br>25.4.1.2/25-922<br>25.6/25-951 | <ul> <li>Clarify single bit fault correction for P-Flash phrase</li> <li>Expand FDIV vs OSCCLK Frequency table</li> <li>Add statement concerning code runaway when executing Read Once command from Flash block containing associated fields</li> <li>Add statement concerning code runaway when executing Program Once command from Flash block containing associated fields</li> <li>Add statement concerning code runaway when executing Verify Backdoor Access Key command from Flash block containing associated fields</li> <li>Relate Key 0 to associated Backdoor Comparison Key address</li> <li>Change "power down reset" to "reset"</li> <li>Add ACCERR condition for Disable EEPROM Emulation command The following changes were made to clarify module behavior related to Flash register access during register writes while command is active</li> <li>Writes to FCLKDIV are allowed during reset sequence while CCIF is clear</li> <li>Add caution concerning register writes while command is active</li> <li>Writes to FCCOBIX, FCCOBHI, FCCOBLO registers are ignored during reset sequence</li> </ul> |

#### Table 25-1. Revision History

# 25.1 Introduction

The FTM256K2 module implements the following:

• 256 Kbytes of P-Flash (Program Flash) memory, consisting of 2 physical Flash blocks, intended primarily for nonvolatile code storage





Figure 25-2. P-Flash Memory Map

MC9S12XE-Family Reference Manual Rev. 1.25



Valid margin level settings for the Set Field Margin Level command are defined in Table 25-61.

| CCOB<br>(CCOBIX=001) | Level Description                  |
|----------------------|------------------------------------|
| 0x0000               | Return to Normal Level             |
| 0x0001               | User Margin-1 Level <sup>(1)</sup> |
| 0x0002               | User Margin-0 Level <sup>(2)</sup> |
| 0x0003               | Field Margin-1 Level <sup>1</sup>  |
| 0x0004               | Field Margin-0 Level <sup>2</sup>  |

#### Table 25-61. Valid Set Field Margin Level Settings

1. Read margin to the erased state

2. Read margin to the programmed state

#### Table 25-62. Set Field Margin Level Command Error Handling

| Register | Error Bit | Error Condition                                                |  |  |
|----------|-----------|----------------------------------------------------------------|--|--|
| FSTAT    | ACCERR    | Set if CCOBIX[2:0] != 001 at command launch                    |  |  |
|          |           | Set if a Load Data Field command sequence is currently active  |  |  |
|          |           | Set if command not available in current mode (see Table 25-30) |  |  |
|          |           | Set if an invalid global address [22:16] is supplied           |  |  |
|          |           | Set if an invalid margin level setting is supplied             |  |  |
|          | FPVIOL    | None                                                           |  |  |
|          | MGSTAT1   | None                                                           |  |  |
|          | MGSTAT0   | None                                                           |  |  |
| FERSTAT  | EPVIOLIF  | None                                                           |  |  |

### CAUTION

Field margin levels must only be used during verify of the initial factory programming.

### NOTE

Field margin levels can be used to check that Flash memory contents have adequate margin for data retention at the normal level setting. If unexpected results are encountered when checking Flash memory contents at field margin levels, the Flash memory contents should be erased and reprogrammed.

## 25.4.2.15 Full Partition D-Flash Command

The Full Partition D-Flash command allows the user to allocate sectors within the D-Flash block for applications and a partition within the buffer RAM for EEPROM access. The D-Flash block consists of 128 sectors with 256 bytes per sector.



| Register | Error Bit | Error Condition                                                                     |  |  |
|----------|-----------|-------------------------------------------------------------------------------------|--|--|
|          | ACCERR    | Set if CCOBIX[2:0] != 001 at command launch                                         |  |  |
|          |           | Set if a Load Data Field command sequence is currently active                       |  |  |
|          |           | Set if command not available in current mode (see Table 27-30)                      |  |  |
| FSTAT    |           | Set if an invalid global address [22:16] is supplied                                |  |  |
|          | FPVIOL    | Set if an area of the selected P-Flash block is protected                           |  |  |
|          | MGSTAT1   | Set if any errors have been encountered during the verify operation                 |  |  |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the verify operation |  |  |
| FERSTAT  | EPVIOLIF  | - None                                                                              |  |  |

#### Table 27-50. Erase P-Flash Block Command Error Handling

# 27.4.2.10 Erase P-Flash Sector Command

The Erase P-Flash Sector operation will erase all addresses in a P-Flash sector.

| Table 27-51. Erase P-Flash Secto | Command FCCOB Requirements |
|----------------------------------|----------------------------|
|----------------------------------|----------------------------|

| CCOBIX[2:0] | FCCOB Parameters                                                                                                         |                                                                  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| 000         | 0x0A                                                                                                                     | Global address [22:16] to identify<br>P-Flash block to be erased |  |  |
| 001         | Global address [15:0] anywhere within the sector to be erased.<br>Refer to Section 27.1.2.1 for the P-Flash sector size. |                                                                  |  |  |

Upon clearing CCIF to launch the Erase P-Flash Sector command, the Memory Controller will erase the selected Flash sector and then verify that it is erased. The CCIF flag will be set after the Erase P-Flash Sector operation has completed.

| Register | Error Bit | Error Condition                                                                     |  |
|----------|-----------|-------------------------------------------------------------------------------------|--|
|          |           | Set if CCOBIX[2:0] != 001 at command launch                                         |  |
|          | ACCERR    | Set if a Load Data Field command sequence is currently active                       |  |
|          |           | Set if command not available in current mode (see Table 27-30)                      |  |
| FSTAT    |           | Set if an invalid global address [22:16] is supplied                                |  |
|          |           | Set if a misaligned phrase address is supplied (global address [2:0] != 000)        |  |
|          | FPVIOL    | Set if the selected P-Flash sector is protected                                     |  |
|          | MGSTAT1   | Set if any errors have been encountered during the verify operation                 |  |
|          | MGSTAT0   | Set if any non-correctable errors have been encountered during the verify operation |  |
| FERSTAT  | EPVIOLIF  | None                                                                                |  |

Table 27-52. Erase P-Flash Sector Command Error Handling

Once command must not be executed from the Flash block containing the Program Once reserved field to avoid code runaway.

| CCOBIX[2:0] | FCCOB Parameters                            |              |  |  |
|-------------|---------------------------------------------|--------------|--|--|
| 000         | 0x07                                        | Not Required |  |  |
| 001         | Program Once phrase index (0x0000 - 0x0007) |              |  |  |
| 010         | Program Once word 0 value                   |              |  |  |
| 011         | Program Once word 1 value                   |              |  |  |
| 100         | Program Once word 2 value                   |              |  |  |
| 101         | Program Once word 3 value                   |              |  |  |

Table 29-45. Program Once Command FCCOB Requirements

Upon clearing CCIF to launch the Program Once command, the Memory Controller first verifies that the selected phrase is erased. If erased, then the selected phrase will be programmed and then verified with read back. The CCIF flag will remain clear, setting only after the Program Once operation has completed.

The reserved nonvolatile information register accessed by the Program Once command cannot be erased and any attempt to program one of these phrases a second time will not be allowed. Valid phrase index values for the Program Once command range from 0x0000 to 0x0007. During execution of the Program Once command, any attempt to read addresses within P-Flash block 0 will return invalid data.

| Register                 | Error Bit | Error Condition                                                                     |  |  |
|--------------------------|-----------|-------------------------------------------------------------------------------------|--|--|
| <b>Register</b><br>FSTAT | ACCERR    | Set if CCOBIX[2:0] != 101 at command launch                                         |  |  |
|                          |           | Set if a Load Data Field command sequence is currently active                       |  |  |
|                          |           | Set if command not available in current mode (see Table 29-30)                      |  |  |
|                          |           | Set if an invalid phrase index is supplied                                          |  |  |
|                          |           | Set if the requested phrase has already been programmed <sup>(1)</sup>              |  |  |
|                          | FPVIOL    | None                                                                                |  |  |
|                          | MGSTAT1   | Set if any errors have been encountered during the verify operation                 |  |  |
|                          | MGSTAT0   | Set if any non-correctable errors have been encountered during the verify operation |  |  |
| FERSTAT                  | EPVIOLIF  | None                                                                                |  |  |

Table 29-46. Program Once Command Error Handling

1. If a Program Once phrase is initially programmed to 0xFFFF\_FFFF\_FFFFF, the Program Once command will be allowed to execute again on that same phrase.

# 29.4.2.8 Erase All Blocks Command

The Erase All Blocks operation will erase the entire P-Flash and D-Flash memory space including the EEE nonvolatile information register.



specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

| Model          | Description                                     | Symbol | Value  | Unit |
|----------------|-------------------------------------------------|--------|--------|------|
| Human Body     | Series resistance                               | R1     | 1500   | Ohm  |
|                | Storage capacitance                             | С      | 100    | pF   |
|                | Number of pulse per pin<br>Positive<br>Negative |        | 1<br>1 |      |
| Charged Device | Number of pulse per pin<br>Positive<br>Negative |        | 3<br>3 |      |
| Latch-up       | Minimum input voltage limit                     |        | -2.5   | V    |
|                | Maximum input voltage limit                     |        | 7.5    | V    |

## Table A-3. ESD and Latch-Up Protection Characteristics

| Num | С | Rating                                                                       | Symbol           | Min          | Мах | Unit |
|-----|---|------------------------------------------------------------------------------|------------------|--------------|-----|------|
| 1   | С | Human Body Model (HBM)                                                       | V <sub>HBM</sub> | 2000         | —   | V    |
| 2   | С | Charge Device Model (CDM) corner pins<br>Charge Device Model (CDM) edge pins | V <sub>CDM</sub> | 750<br>500   | _   | V    |
| 3   | С | Latch-up current at T <sub>A</sub> = 125°C<br>Positive<br>Negative           | I <sub>LAT</sub> | +100<br>-100 |     | mA   |
| 4   | С | Latch-up current at T <sub>A</sub> = 27°C<br>Positive<br>Negative            | I <sub>LAT</sub> | +200<br>-200 | _   | mA   |

ndix B Package Information

¢

# Appendix B Package Information

This section provides the physical dimensions of the packages.