

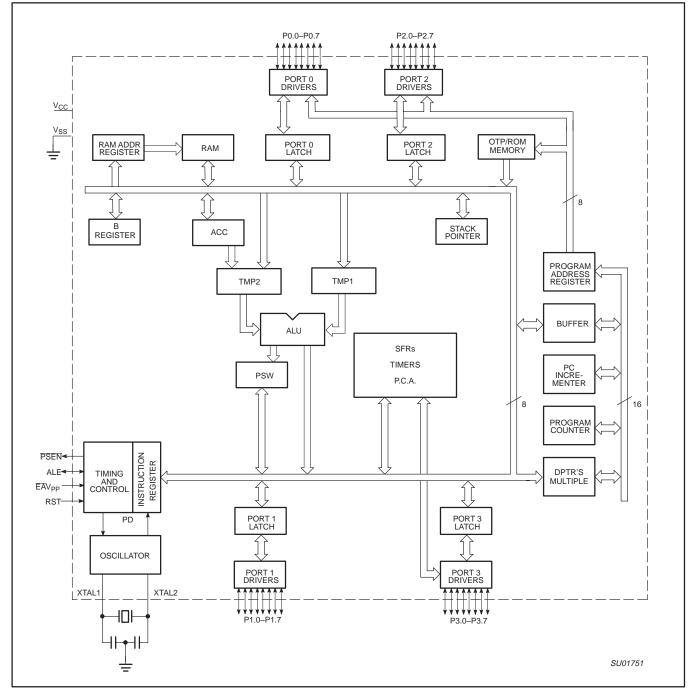
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, UART/USART
Peripherals	POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c654x2bbd-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P83C654X2/P87C654X2

BLOCK DIAGRAM (CPU ORIENTED)

CLOCK CONTROL REGISTER (CKCON)

This device allows control of the 6-clock/12-clock mode by means of both an SFR bit (X2) and an OTP bit. The OTP clock control bit

OX2, when programmed (6-clock mode), supersedes the X2 bit (CKCON.0). The CKCON register is shown below in Figure 1.

P83C654X2/P87C654X2

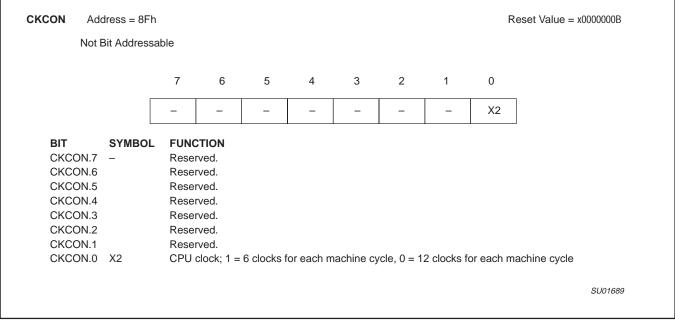


Figure 1. Clock control (CKCON) register

Also please note that the clock divider applies to the serial port for modes 0 and 2 (fixed baud rate modes). This is because modes 1 and 3 (variable baud rate modes) use either Timer 1 or Timer 2.

Below is the truth table for the CPU clock mode.

Table 1.

OX2 clock mode bit (can only be set by parallel programmer)	X2 bit (CKCON.0)	CPU clock mode
erased	0	12-clock mode (default)
erased	1	6-clock mode
programmed	Х	6-clock mode

Table 3. Timer 2 Operating Modes

RCLK + TCLK	CP/RL2	TR2	MODE
0	0	1	16-bit Auto-reload
0	1	1	16-bit Capture
1	Х	1	Baud rate generator
Х	Х	0	(off)

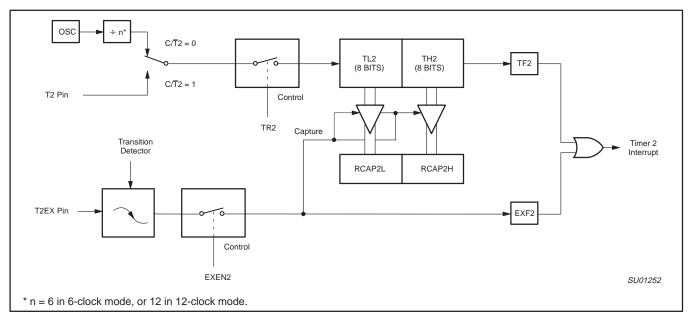


Figure 8. Timer 2 in Capture Mode

T2MOD	Addres	ss = 0C9H							Reset Va	lue = XXXX XX00E
	Not Bit /	Addressab	ole							
		_	_	_	_	_	_	T2OE	DCEN	
	Bit	7	6	5	4	3	2	1	0	-
Symbol	Functi	on								
_	Not im	plemented	l, reserved f	or future use	э.*					
T2OE	Timer 2	2 Output E	nable bit.							
DCEN	Down	Count Ena	ble bit. Whe	en set, this a	llows Timer	2 to be cont	figured as a	n up/down d	counter.	
 User soft In that ca indetermi 	se, the res	uld not writ set or inac	e 1s to rese tive value o	rved bits. TI f the new bit	nese bits ma will be 0, ar	ay be used ir nd its active	n future 805 value will be	1 family pro e 1. The val	ducts to invo ue read fron	oke new features. n a reserved bit is <i>SU0072</i>

Figure 9. Timer 2 Mode (T2MOD) Control Register

Product data

80C51 8-bit microcontroller family 16 kB OTP/ROM, 256B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

Write to SBUF RxD P3.0 Alt Output Function S D 0 SBUF ÷ CI Zero Detector Start Shift TX Control S6 TX Clock T1 Send Serial Port TxD Interrupt P3.1 Alt Output Shift Clock R1 RX Clock Receive Function RX Control Shift REN 1 1 1 1 0 Start 1 1 1 RI MSB LSB RxD P3.0 Alt Input Shift Register Input Function Shift Load SBUF LSB SBUF MSB Read SBUF 80C51 Internal Bus S1 S6 S1 S6 S1.... S6 S1 S6 S1. ... S6 S1 S4 . . S6 S1. S6 S1 . . ALE Write to SBUF П S6P2 Send Shift Transmit RxD (Data Out) D0 D1 D2 D3 D4 D5 D6 D7 TxD (Shift Clock) S3P1 S6P1 Write to SCON (Clear RI) Receive Shift П п п Л Л Л П Receive RxD (Data In) D0 D3 D4 S5P2 TxD (Shift Clock) SU00539

80C51 Internal Bus

ΤI

RI

Figure 15. Serial Port Mode 0

P83C654X2/P87C654X2

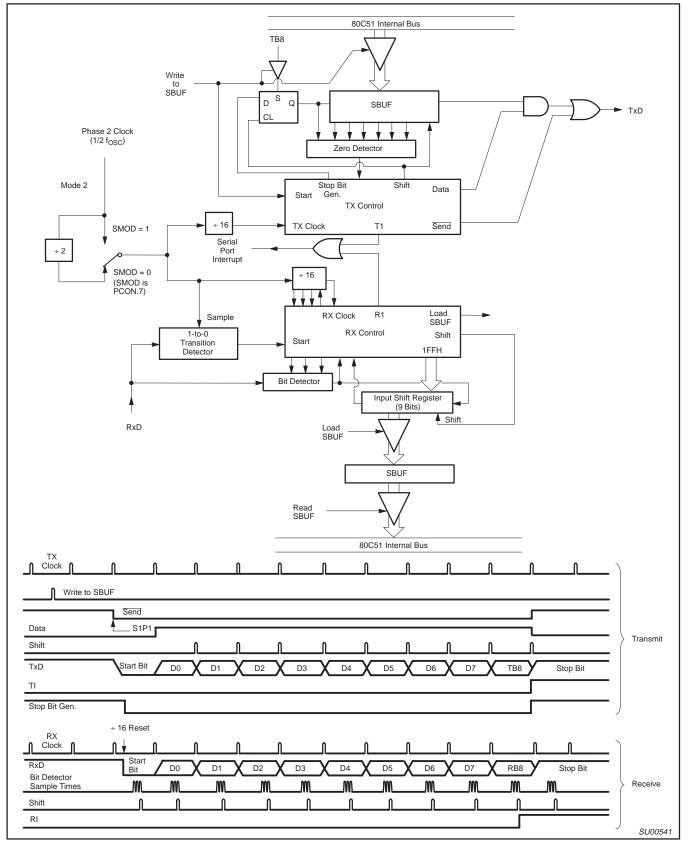


Figure 17. Serial Port Mode 2

80C51 8-bit microcontroller family 16 kB OTP/ROM, 256B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

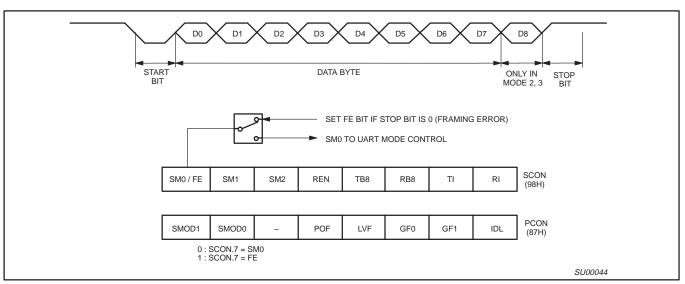


Figure 19. UART Framing Error Detection

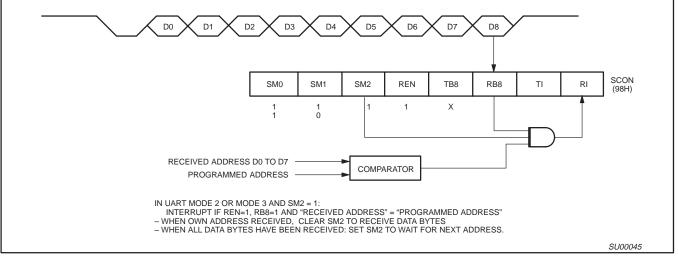
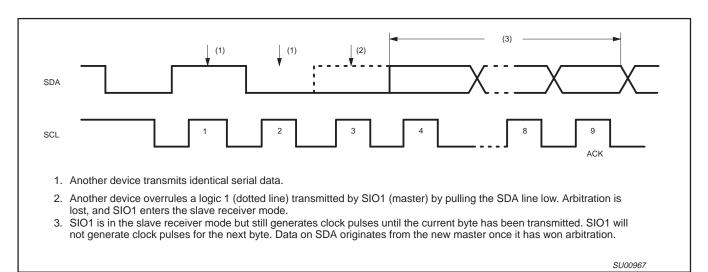


Figure 20. UART Multiprocessor Communication, Automatic Address Recognition

P83C654X2/P87C654X2


ARBITRATION AND SYNCHRONIZATION LOGIC

In the master transmitter mode, the arbitration logic checks that every transmitted logic 1 actually appears as a logic 1 on the I²C-bus. If another device on the bus overrules a logic 1 and pulls the SDA line LOW, arbitration is lost, and the I²C-bus immediately changes from master transmitter to slave receiver. The I²C-bus will continue to output clock pulses (on SCL) until transmission of the current serial byte is complete.

Arbitration may also be lost in the master receiver mode. Loss of arbitration in this mode can only occur while the l^2 C-bus is returning a "not acknowledge: (logic 1) to the bus. Arbitration is lost when another device on the bus pulls this signal LOW. Since this can occur only at the end of a serial byte, the l^2 C-bus generates no further clock pulses. Figure 24 shows the arbitration procedure.

The synchronization logic will synchronize the serial clock generator with the clock pulses on the SCL line from another device. If two or more master devices generate clock pulses, the "mark" duration is determined by the device that generates the shortest "marks," and the "space" duration is determined by the device that generates the longest "spaces." Figure 25 shows the synchronization procedure.

A slave may stretch the space duration to slow down the bus master. The space duration may also be stretched for handshaking purposes. This can be done after each bit or after a complete byte transfer. The I^2 C-bus will stretch the SCL space duration after a byte has been transmitted or received and the acknowledge bit has been transferred. The serial interrupt flag (SI) is set, and the stretching continues until the serial interrupt flag is cleared.

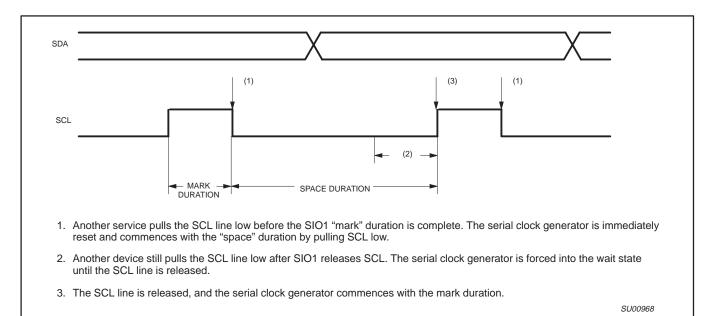


Figure 25. Serial Clock Synchronization

If the STA and STO bits are both set, the a STOP condition is transmitted to the I²C-bus if I²C is in a master mode (in a slave mode, I²C generates an internal STOP condition which is not transmitted). I²C then transmits a START condition.

STO = 0: When the STO bit is reset, no STOP condition will be generated.

SI, THE SERIAL INTERRUPT FLAG

SI = 1: When the SI flag is set, then, if the EA and ES1 (interrupt enable register) bits are also set, a serial interrupt is requested. SI is set by hardware when one of 25 of the 26 possible I^2C states is entered. The only state that does not cause SI to be set is state F8H, which indicates that no relevant state information is available.

While SI is set, the LOW period of the serial clock on the SCL line is stretched, and the serial transfer is suspended. A HIGH level on the SCL line is unaffected by the serial interrupt flag. SI must be reset by software.

SI = 0: When the SI flag is reset, no serial interrupt is requested, and there is no stretching of the serial clock on the SCL line.

AA, THE ASSERT ACKNOWLEDGE FLAG

AA = 1: If the AA flag is set, an acknowledge (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when:

- The "own slave address" has been received
- The general call address has been received while the general call bit (GC) in S1ADR is set
- A data byte has been received while I²C is in the master receiver mode
- A data byte has been received while I²C is in the addressed slave receiver mode

AA = 0: if the AA flag is reset, a not acknowledge (HIGH level to SDA) will be returned during the acknowledge clock pulse on SCL when:

- A data has been received while I²C is in the master receiver mode
- A data byte has been received while I²C is in the addressed slave receiver mode

When I²C is in the addressed slave transmitter mode, state C8H will be entered after the last serial is transmitted (see Figure 31). When SI is cleared, I²C leaves state C8H, enters the not addressed slave receiver mode, and the SDA line remains at a HIGH level. In state C8H, the AA flag can be set again for future address recognition.

When I²C is in the not addressed slave mode, its own slave address and the general call address are ignored. Consequently, no acknowledge is returned, and a serial interrupt is not requested. Thus, I²C can be temporarily released from the I²C-bus while the bus status is monitored. While I²C is released from the bus, START and STOP conditions are detected, and serial data is shifted in. Address recognition can be resumed at any time by setting the AA flag. If the AA flag is set when the part's own slave address or the general call address has been partly received, the address will be recognized at the end of the byte transmission.

P83C654X2/P87C654X2

CR0, CR1, AND CR2, THE CLOCK RATE BITS

These three bits determine the serial clock frequency when I^2C is in a master mode. The various serial rates are shown in Table 7.

If the I²C block is to be used in fast mode, bit 3 in AUXR must be set. The user can read but cannot write (write once) to AUXR after setup.

	7	6	5	4	3	2	1	0
AUXR (8EH)	_	_	_	_	FAST/ STD I ² C	_	-	A0

A 12.5kHz bit rate may be used by devices that interface to the I²C-bus via standard I/O port lines which are software driven and slow. 100kHz is usually the maximum bit rate and can be derived from a 16 MHz, 12 MHz, or a 6 MHz oscillator. A variable bit rate (0.5kHz to 62.5kHz) may also be used if Timer 1 is not required for any other purpose while I²C is in a master mode.

The frequencies shown in Table 7 are unimportant when I^2C is in a slave mode. In the slave modes, I^2C will automatically synchronize with any clock frequency up to 100kHz.

The Status Register, S1STA: S1STA is an 8-bit read-only special function register. The three least significant bits are always zero. The five most significant bits contain the status code. There are 26 possible status codes. When S1STA contains F8H, no relevant state information is available and no serial interrupt is requested. All other S1STA values correspond to defined I²C states. When each of these states is entered, a serial interrupt is requested (SI = 1). A valid status code is present in S1STA one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software.

P83C654X2/P87C654X2

Product data

Table 10. Master Receiver Mode

STATUS	STATUS OF THE	APPLICATION S	OFTWA		SPONS	E	
CODE	I ² C-BUS AND	TO/FROM S1DAT		TO S	CON	-	NEXT ACTION TAKEN BY I ² C HARDWARE
(S1STA)	HARDWARE	TO/FROM STDAT	STA	STO	SI	AA	
08H	A START condition has been transmitted	Load SLA+R	Х	0	0	Х	SLA+R will be transmitted; ACK bit will be received
10H	A repeated START condition has been transmitted	Load SLA+R or Load SLA+W	X X	0 0	0 0	X X	As above SLA+W will be transmitted; I ² C will be switched to MST/TRX mode
38H	Arbitration lost in NOT ACK bit	No S1DAT action or No S1DAT action	0 1	0 0	0 0	X X	I ² C-bus will be released; I ² C will enter a slave mode A START condition will be transmitted when the bus becomes free
40H	SLA+R has been transmitted; ACK has been received	No S1DAT action or no S1DAT action	0 0	0 0	0 0	0 1	Data byte will be received; NOT ACK bit will be returned Data byte will be received; ACK bit will be returned
48H	SLA+R has been transmitted; NOT ACK has been received	No S1DAT action or no S1DAT action or no S1DAT action	1 0 1	0 1 1	0 0 0	X X X	Repeated START condition will be transmitted STOP condition will be transmitted; STO flag will be reset STOP condition followed by a START condition will be transmitted; STO flag will be reset
50H	Data byte has been received; ACK has been returned	Read data byte or read data byte	0 0	0 0	0 0	0 1	Data byte will be received; NOT ACK bit will be returned Data byte will be received; ACK bit will be returned
58H	Data byte has been received; NOT ACK has been returned	Read data byte or read data byte or read data byte	1 0 1	0 1 1	0 0 0	x x x	Repeated START condition will be transmitted STOP condition will be transmitted; STO flag will be reset STOP condition followed by a START condition will be transmitted; STO flag will be reset

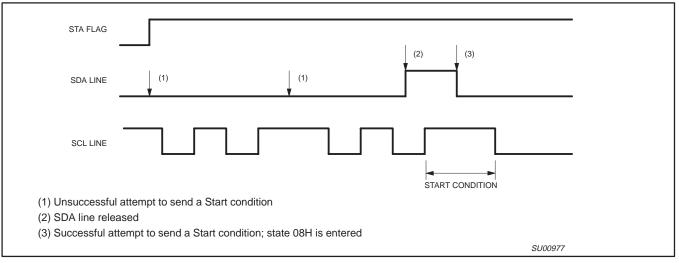


Figure 34. Recovering from a Bus Obstruction Caused by a Low Level on SDA

Software Examples of I²C Service Routines: This section

- consists of a software example for:
- Initialization of I²C after a RESET
- Entering the I²C interrupt routine
- The 26 state service routines for the
 - Master transmitter mode
 - Master receiver mode
 - Slave receiver mode
 - Slave transmitter mode

INITIALIZATION

In the initialization routine, I²C is enabled for both master and slave modes. For each mode, a number of bytes of internal data RAM are allocated to the SIO to act as either a transmission or reception buffer. In this example, 8 bytes of internal data RAM are reserved for different purposes. The data memory map is shown in Figure 35. The initialization routine performs the following functions:

- S1ADR is loaded with the part's own slave address and the general call bit (GC)
- P1.6 and P1.7 bit latches are loaded with logic 1s
- RAM location HADD is loaded with the high-order address byte of the service routines
- The I²C interrupt enable and interrupt priority bits are set
- The slave mode is enabled by simultaneously setting the ENS1 and AA bits in S1CON and the serial clock frequency (for master modes) is defined by loading CR0 and CR1 in S1CON. The master routines must be started in the main program.

The I^2C hardware now begins checking the I^2C -bus for its own slave address and general call. If the general call or the own slave address is detected, an interrupt is requested and S1STA is loaded with the appropriate state information. The following text describes a fast method of branching to the appropriate service routine. I²C INTERRUPT ROUTINE

When the I²C interrupt is entered, the PSW is first pushed on the stack. Then S1STA and HADD (loaded with the high-order address byte of the 26 service routines by the initialization routine) are pushed on to the stack. S1STA contains a status code which is the lower byte of one of the 26 service routines. The next instruction is RET, which is the return from subroutine instruction. When this instruction is executed, the HIGH and LOW order address bytes are popped from stack and loaded into the program counter.

The next instruction to be executed is the first instruction of the state service routine. Seven bytes of program code (which execute in eight machine cycles) are required to branch to one of the 26 state service routines.

SI	PUSH	PSW	Save PSW
	PUSH	S1STA	Push status code
			(low order address byte)
	PUSH RET	HADD	Push HIGH order address byte Jump to state service routine

The state service routines are located in a 256-byte page of program memory. The location of this page is defined in the initialization routine. The page can be located anywhere in program memory by loading data RAM register HADD with the page number. Page 01 is chosen in this example, and the service routines are located between addresses 0100H and 01FFH.

THE STATE SERVICE ROUTINES

The state service routines are located 8 bytes from each other. Eight bytes of code are sufficient for most of the service routines. A few of the routines require more than 8 bytes and have to jump to other locations to obtain more bytes of code. Each state routine is part of the I²C interrupt routine and handles one of the 26 states. It ends with a RETI instruction which causes a return to the main program.

		L			
		! STATE !	: A0, A S1 while stil : No save Recogni	FOP con Il addre of DAT tion of c	ndition or repeated START has been received, ssed as SLV/REC or SLV/TRX. 'A, Enter NOT addressed SLV mode. own SLA. General call recognized, if S1ADR. 0–1.
		.sect .base	srsA0 0x1a0		
01A0	75D8C5			mov	S1CON,#ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 ! clr SI, set AA
01A3 01A5	D0D0 32			pop reti	psw
		!************* ! SLAVE TF !*************** !************	RANSMITT	ER ST/	ATE SERVICE ROUTINES
		! STATE ! ACTION	:A8, Own :DATA wi	ISLA+F	R received, ACK returned. Insmitted, A bit received.
		.sect .base	stsa8 0x1a8		
01A8 01AB	8548DA 75D8C5			mov mov	S1DAT,STD ! load DATA in S1DAT S1CON,#ENS1_NOTSTA_NOTSTO_NOTSI_AA_CR0 ! clr SI, set AA
01AE	01E8			ajmp	INITBASE2
00E8 00EB 00ED 00EE 00F0	75D018 7948 09 D0D0 32	.sect .base INITBASE2	ibase2 0xe8 2:	mov mov inc pop reti	psw,#SELRB3 r1, #STD r1 psw
		! STATE	: B0, Arbit : DATA wi STA is s	tration I II be tra	ost in SLA and R/W as MST. Own SLA+R received, ACK returned. Insmitted, A bit received. start MST mode after the bus is free again.
		.sect .base	stsb0 0x1b0		
01B0 01B3 01B6	8548DA 75D8E5 01E8			mov mov ajmp	S1DAT,STD ! load DATA in S1DAT S1CON,#ENS1_STA_NOTSTO_NOTSI_AA_CR0 INITBASE2

ABSOLUTE MAXIMUM RATINGS1, 2, 3

PARAMETER	RATING	UNIT
Operating temperature under bias	0 to +70 or -40 to +85	°C
Storage temperature range	-65 to +150	°C
Voltage on \overline{EA}/V_{PP} pin to V _{SS}	0 to +13.0	V
Voltage on any other pin to V _{SS} ⁴	-0.5 to +6.0	V
Maximum I _{OL} per I/O pin	15	mA
Power dissipation (based on package heat transfer limitations, not device power consumption)	1.5	W

NOTES:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied. 1.

This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
 Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise

noted.

4. Transient voltage only.

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C

					CLOCK FREG		
SYMBOL	FIGURE	PARAMETER	OPERATING MODE	POWER SUPPLY VOLTAGE	MIN	MAX	UNIT
1/t _{CLCL}	46	Oscillator frequency	6-clock	5 V ± 10 %	0	30	MHz
			6-clock	2.7 V to 5.5 V	0	16	MHz
			12-clock	5 V ±10 %	0	33	MHz
			12-clock	2.7 V to 5.5 V	0	16	MHz

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC} = 2.7 V$ to 5.5 V; $V_{SS} = 0 V$ (16 MHz max. CPU clock)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT	
			MIN	TYP ¹	MAX	1	
V _{IL}	Input LOW voltage ¹¹ , except P1.6 and P1.7	4.0 V < V _{CC} < 5.5 V	-0.5		0.2V _{CC} - 0.1	V	
		2.7 V < V _{CC} < 4.0 V	-0.5		0.7V _{CC}	V	
V _{IL1}	Input LOW voltage to EA		-0.5		0.2V _{DD} - 0.3	V	
V _{IL2}	Input LOW voltage to P1.6/SCL, P1.7/SDA ⁵		-0.5		0.3V _{DD}	V	
VIH	Input HIGH voltage (ports 0, 1, 2, 3, EA)		0.2V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input HIGH voltage, XTAL1, RST ¹¹		0.7V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output LOW voltage, ports 1, 2 ⁸ , except P1.6 and P1.7	$V_{CC} = 2.7 \text{ V}; I_{OL} = 1.6 \text{ mA}^2$	-		0.4	V	
V _{OL1}	Output LOW voltage, port 0, ALE, PSEN ^{8, 7}	$V_{CC} = 2.7 \text{ V}; I_{OL} = 3.2 \text{ mA}^2$	-		0.4	V	
V _{OL2}	Output LOW voltage, P1.6/SCL, P1.7/SDA	^I _{OL} = 3.0 mA ⁷	-		0.4	V	
V _{OH}	Output HIGH voltage, ports 1, 2, 3 3	V _{CC} = 2.7 V; I _{OH} = -20 μA	V _{CC} – 0.7		-	V	
		V _{CC} = 4.5 V; I _{OH} = -30 μA	V _{CC} – 0.7	1	-	V	
V _{OH1}	Output HIGH voltage (port 0 in external bus mode), ALE^9 , \overline{PSEN}^3	$V_{CC} = 2.7 \text{ V}; I_{OH} = -3.2 \text{ mA}$	V _{CC} – 0.7		-	V	
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4 V	-1		-50	μA	
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0 V; See note 4	-		-650	μA	
ILI	Input leakage current, port 0	0.45 < V _{IN} < V _{CC} – 0.3	-		±10	μA	
ICC	Power supply current (see Figure 49 and Source Code):						
	Active mode @ 16 MHz					μA	
	Idle mode @ 16 MHz					μA	
	Power-down mode or clock stopped (see Figure 45 for conditions) ¹²	T _{amb} = 0 °C to 70 °C		2	30	μA	
		$T_{amb} = -40 \text{ °C to } +85 \text{ °C}$		3	50	μA	
V _{RAM}	RAM keep-alive voltage		1.2			V	
R _{RST}	Internal reset pull-down resistor		40		225	kΩ	
C _{IO}	Pin capacitance ¹⁰ (except EA)		-		15	pF	

NOTES:

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IoL can exceed these conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.

3. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and \overline{PSEN} to momentarily fall below the V_{CC} –0.7 specification when the address bits are stabilizing.

- 4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2 V.
- 5. See Figures 51 through 54 for I_{CC} test conditions and Figure 49 for I_{CC} vs. Frequency

12-clock mode characteristics:

Active mode (operating): $I_{CC} = 1.0 \text{ mA} + 1.1 \text{ mA} \times \text{FREQ.[MHz]}$

- Active mode (reset): $I_{CC} = 7.0 \text{ mA} + 0.6 \text{ mA} \times \text{FREQ}.[\text{MHz}]$

Idle mode: $I_{CC} = 1.0 \text{ mA} + 0.22 \text{ mA} \times \text{FREQ}[MHz]$ 6. This value applies to $T_{amb} = 0 \text{ °C}$ to +70 °C. For $T_{amb} = -40 \text{ °C}$ to +85 °C, $I_{TL} = -750 \mu$ A. 7. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.

- 8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:
 - Maximum IOL per port pin: 15 mA (*NOTE: This is 85 °C specification.) 26 mA
 - Maximum IOL per 8-bit port:

Maximum total I_{OL} for all outputs: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.
- 10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA is 25 pF).

P83C654X2/P87C654X2

^{1.} Typical ratings are not guaranteed. Values listed are based on tests conducted on limited number of samples at room temperature.

80C51 8-bit microcontroller family 16 kB OTP/ROM, 256B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 5 V ±10 % OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$; $V_{CC} = 5 V \pm 10 \%$, $V_{SS} = 0 V^{1,2,3,4,5}$

Symbol	Figure	Parameter	Limits		16 MHz (Clock	Unit
			MIN	MAX	MIN	MAX	7
1/t _{CLCL}	46	Oscillator frequency	0	30	-	-	MHz
LHLL	41	ALE pulse width	t _{CLCL} – 8	-	54.5	-	ns
AVLL	41	Address valid to ALE LOW	0.5t _{CLCL} – 13	-	18.25	-	ns
t _{LLAX}	41	Address hold after ALE LOW	0.5t _{CLCL} – 20	-	11.25	-	ns
t _{LLIV}	41	ALE LOW to valid instruction in	-	2t _{CLCL} -35	-	90	ns
t _{LLPL}	41	ALE LOW to PSEN LOW	0.5t _{CLCL} – 10	-	21.25	-	ns
t _{PLPH}	41	PSEN pulse width	1.5t _{CLCL} – 10	-	83.75	-	ns
t _{PLIV}	41	PSEN LOW to valid instruction in	-	1.5t _{CLCL} – 35	-	58.75	ns
t _{PXIX}	41	Input instruction hold after PSEN	0	-	0	-	ns
t _{PXIZ}	41	Input instruction float after PSEN	-	0.5t _{CLCL} – 10	-	21.25	ns
t _{AVIV}	41	Address to valid instruction in	_	2.5t _{CLCL} – 35	-	121.25	ns
t _{PLAZ}	41	PSEN LOW to address float	_	10	-	10	ns
Data Men	nory			1	1		
t _{RLRH}	42	RD pulse width	3t _{CLCL} – 20	-	167.5	-	ns
t _{WLWH}	43	WR pulse width	3t _{CLCL} – 20	-	167.5	-	ns
RLDV	42	RD LOW to valid data in	-	2.5t _{CLCL} – 35	-	121.25	ns
t _{RHDX}	42	Data hold after RD	0	_	0	-	ns
t _{RHDZ}	42	Data float after RD	-	t _{CLCL} –10	-	52.5	ns
tLLDV	42	ALE LOW to valid data in	-	4t _{CLCL} – 35	-	215	ns
t _{AVDV}	42	Address to valid data in	-	4.5t _{CLCL} – 35	-	246.25	ns
tLLWL	42, 43	ALE LOW to RD or WR LOW	1.5t _{CLCL} – 15	1.5t _{CLCL} +15	78.75	108.75	ns
t _{AVWL}	42, 43	Address valid to WR LOW or RD LOW	2t _{CLCL} –15	-	110	-	ns
t _{QVWX}	43	Data valid to WR transition	0.5t _{CLCL} – 25	-	6.25	-	ns
t _{WHQX}	43	Data hold after WR	0.5t _{CLCL} – 15	-	16.25	-	ns
t _{QVWH}	43	Data valid to WR HIGH	3.5t _{CLCL} – 5	-	213.75	-	ns
t _{RLAZ}	42	RD LOW to address float	-	0	-	0	ns
t _{WHLH}	42, 43	RD or WR HIGH to ALE HIGH	0.5t _{CLCL} – 10	0.5t _{CLCL} +10	21.25	41.25	ns
External (Clock		0101	0101			
tCHCX	46	High time	0.4t _{CLCL}	t _{CLCL} - t _{CLCX}	-	-	ns
t _{CLCX}	46	Low time	0.4t _{CLCL}	t _{CLCL} - t _{CHCX}	-	-	ns
t _{CLCH}	46	Rise time	_	5	-	-	ns
t _{CHCL}	46	Fall time	-	5	-	-	ns
Shift regi	ster						
t _{XLXL}	45	Serial port clock cycle time	6t _{CLCL}	-	375	-	ns
t _{QVXH}	45	Output data setup to clock rising edge	5t _{CLCL} –25	-	287.5	-	ns
t _{XHQX}	45	Output data hold after clock rising edge	t _{CLCL} – 15	-	47.5	-	ns
t _{XHDX}	45	Input data hold after clock rising edge	0	-	0	-	ns
t _{XHDV}	45	Clock rising edge to input data valid ⁶	_	5t _{CLCL} – 133	-	179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

 Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF
 Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter

calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

6. Below 16 MHz this parameter is 4t_{CLCL} - 133

80C51 8-bit microcontroller family 16 kB OTP/ROM, 256B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz)

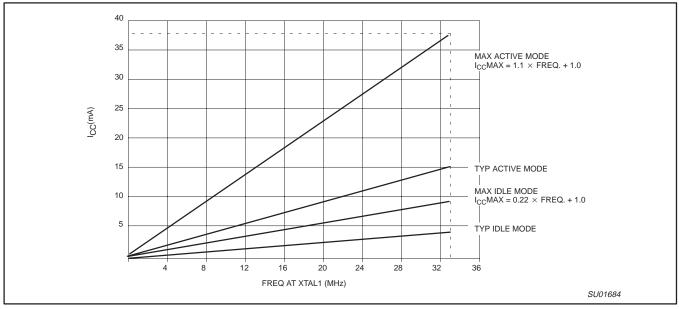
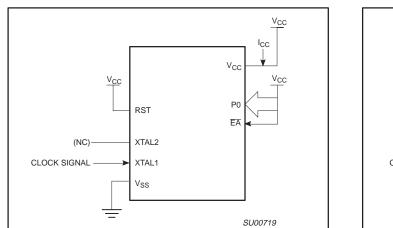



Figure 49. I_{CC} vs. FREQ for 12-clock operation Valid only within frequency specifications of the specified operating voltage

/*				
##	as31 version	V2.10	/ *js* /	
##				
##				
##		idd_ljmp1.asm		
##	list file:	idd_ljmp1.lst	created Fri Apr 20 15:51:40 2001	
##				
	##############			
#0000		# AUXR equ 08E		
#0000		# CKCON equ 08F	1	
		# #		
#0000		# # org 0		
10000		#		
		" # LJMP_LABEL:		
0000 /	75;/8E;/01;	# MOV	AUXR,#001h ; turn off ALE	
0003 /	02;/FF;/FD;	# LJMP	LJMP_LABEL ; jump to end of address space	
0005 /	00;	# NOP		
		#		
#FFFD		# org Offfdh		
		#		
		# LJMP_LABEL:		
		#		
FFD /	02;/FD;FF;		LJMP_LABEL	
		#; NOP		
		# #		
* / "		π		
/				SU01499

Figure 50. Source code used in measuring I_{DD} operational

P83C654X2/P87C654X2

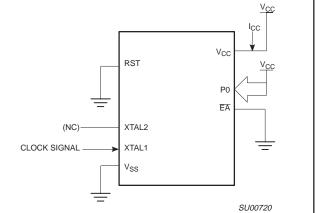
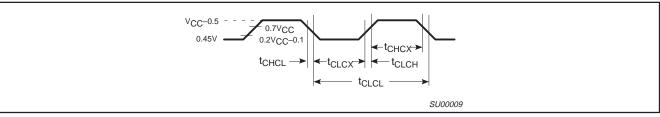
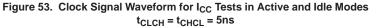




Figure 51. I_{CC} Test Condition, Active Mode All other pins are disconnected

Figure 52. I_{CC} Test Condition, Idle Mode All other pins are disconnected

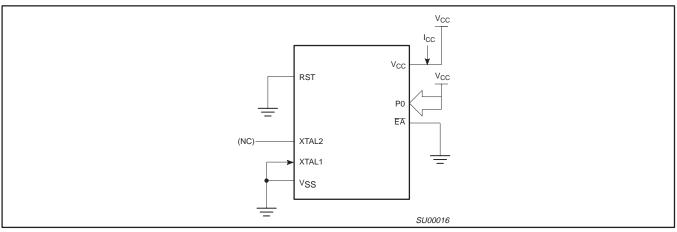
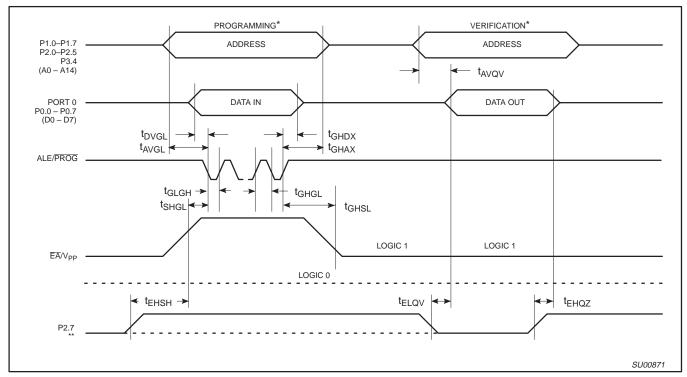


Figure 54. I_{CC} Test Condition, Power-down mode All other pins are disconnected. V_{CC} = 2 V to 5.5 V


EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 T_{amb} = 21°C to +27°C, V_{CC} = 5 V ±10 %, V_{SS} = 0 V (See Figure 58)

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{PP}	Programming supply voltage	12.5	13.0	V
I _{PP}	Programming supply current		50 ¹	mA
1/t _{CLCL}	Oscillator frequency	4	6	MHz
t _{AVGL}	Address setup to PROG LOW	48t _{CLCL}		
t _{GHAX}	Address hold after PROG	48t _{CLCL}		
t _{DVGL}	Data setup to PROG LOW	48t _{CLCL}		
t _{GHDX}	Data hold after PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) HIGH to V _{PP}	48t _{CLCL}		
t _{SHGL}	V _{PP} setup to PROG LOW	10		μs
t _{GHSL}	V _{PP} hold after PROG	10		μs
t _{GLGH}	PROG width	90	110	μs
t _{AVQV}	Address to data valid		48t _{CLCL}	
t _{ELQZ}	ENABLE LOW to data valid		48t _{CLCL}	
t _{EHQZ}	Data float after ENABLE	0	48t _{CLCL}	
t _{GHGL}	PROG HIGH to PROG LOW	10		μs

NOTE:

1. Not tested.

NOTES:

* FOR PROGRAMMING CONFIGURATION SEE FIGURE 55.

FOR VERIFICATION CONDITIONS SEE FIGURE 57.

** SEE TABLE 15.

Figure 58. EPROM Programming and Verification

MASK ROM DEVICES

Security Bits

With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 (see Table 17) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory, $\overline{\text{EA}}$ is latched on Reset and all further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled.

P83C654X2/P87C654X2

Encryption Array

64 bytes of encryption array are initially unprogrammed (all 1s).

Table 17. Program Security Bits

	PROGRAM LOCK BITS ^{1, 2}		
	SB1	SB2	PROTECTION DESCRIPTION
1	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р		MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.

NOTES:

1. P – programmed. U – unprogrammed.

2. Any other combination of the security bits is not defined.

P83C654X2/P87C654X2

ROM CODE SUBMISSION FOR 16K ROM DEVICES

When submitting ROM code for the 16K ROM devices, the following must be specified:

- 1. 16 kbyte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 403FH	KEY	7:0	ROM Encryption Key FFH = no encryption
4040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	□ Enabled	□ Disabled	
Security Bit #2:	Enabled	Disabled	

P83C654X2/P87C654X2

REVISION HISTORY

Rev	Date	Description
_2	20040420	Product data (9397 750 13173)
		Modifications:
		 Update Special Function Registers table.
		 Remove P3.4 from Figures 55 and 57.
_1	20030213	Product data (9397 750 10814)