

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 1x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5246lti-029

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The Thumb[®]-2 instruction set, which offers ARM-level performance at Thumb-level code density. This includes 16-bit and 32-bit instructions. Advanced instructions include:
 - Bit-field control
 - Hardware multiply and divide
 - Saturation
 - If-Then
 - Wait for events and interrupts
 - Exclusive access and barrier
 - Special register access

The Cortex-M3 does not support ARM instructions.

- Bit-band support for the SRAM region. Atomic bit-level write and read operations for SRAM addresses.
- Unaligned data storage and access. Contiguous storage of data of different byte lengths.
- Operation at two privilege levels (privileged and user) and in two modes (thread and handler). Some instructions can only be executed at the privileged level. There are also two stack pointers: Main (MSP) and Process (PSP). These features support a multitasking operating system running one or more user-level processes.
- Extensive interrupt and system exception support.

4.1.2 Cortex-M3 Operating Modes

The Cortex-M3 operates at either the privileged level or the user level, and in either the thread mode or the handler mode. Because the handler mode is only enabled at the privileged level, there are actually only three states, as shown in Table 4-1.

Table 4-1. Operational Level

Condition	Privileged	User
Running an exception	Handler mode	Not used
Running main program	Thread mode	Thread mode

At the user level, access to certain instructions, special registers, configuration registers, and debugging components is blocked. Attempts to access them cause a fault exception. At the privileged level, access to all instructions and registers is allowed. The processor runs in the handler mode (always at the privileged level) when handling an exception, and in the thread mode when not.

4.1.3 CPU Registers

The Cortex-M3 CPU registers are listed in Table 4-2. Registers R0-R15 are all 32 bits wide.

Table 4-2. Cortex M3 CPU Registers

Register	Description
R0-R12	 General purpose registers R0-R12 have no special architecturally defined uses. Most instructions that specify a general purpose register specify R0-R12. Low Registers: Registers R0-R7 are accessible by all instructions that specify a general purpose register. High Registers: Registers R8-R12 are accessible by all 32-bit instructions that specify a general purpose register; they are not accessible by all 16-bit instructions.
R13	R13 is the stack pointer register. It is a banked register that switches between two 32-bit stack pointers: the main stack pointer (MSP) and the process stack pointer (PSP). The PSP is used only when the CPU operates at the user level in thread mode. The MSP is used in all other privilege levels and modes. Bits[0:1] of the SP are ignored and considered to be 0, so the SP is always aligned to a word (4 byte) boundary.
R14	R14 is the link register (LR). The LR stores the return address when a subroutine is called.
R15	R15 is the program counter (PC). Bit 0 of the PC is ignored and considered to be 0, so instructions are always aligned to a half word (2 byte) boundary.
xPSR	 The program status registers are divided into three status registers, which are accessed either together or separately: Application program status register (APSR) holds program execution status bits such as zero, carry, negative, in bits[27:31]. Interrupt program status register (IPSR) holds the current exception number in bits[0:8]. Execution program status register (EPSR) holds control bits for interrupt continuable and IF-THEN instructions in bits[10:15] and [25:26]. Bit 24 is always set to 1 to indicate Thumb mode. Trying to clear it causes a fault exception.
PRIMASK	A 1-bit interrupt mask register. When set, it allows only the nonmaskable interrupt (NMI) and hard fault exception. All other exceptions and interrupts are masked.
FAULTMASK	A 1-bit interrupt mask register. When set, it allows only the NMI. All other exceptions and interrupts are masked.
BASEPRI	A register of up to nine bits that define the masking priority level. When set, it disables all interrupts of the same or higher priority value. If set to 0 then the masking function is disabled.

Table 4-2. Cortex M3 CPU Registers (continued)

Register	Description
CONTROL	A 2-bit register for controlling the operating mode.
	Bit 0: 0 = privileged level in thread mode, 1 = user level in thread mode.
	Bit 1: 0 = default stack (MSP) is used, 1 = alternate stack is used. If in thread mode or user level then the alternate stack is the PSP. There is no alternate stack for handler mode; the bit must be 0 while in handler mode.

4.2 Cache Controller

The CY8C52 family 128 bytes of direct mapped instruction cache between the CPU and the flash memory. This allows the CPU to access instructions much faster. The cache is enabled by default but user have the option to disable it.

4.3 DMA and PHUB

The PHUB and the DMA controller are responsible for data transfer between the CPU and peripherals, and also data transfers between peripherals. The PHUB and DMA also control device configuration during boot. The PHUB consists of:

- A central hub that includes the DMA controller, arbiter, and router
- Multiple spokes that radiate outward from the hub to most peripherals

There are two PHUB masters: the CPU and the DMA controller. Both masters may initiate transactions on the bus. The DMA channels can handle peripheral communication without CPU intervention. The arbiter in the central hub determines which DMA channel is the highest priority if there are multiple requests.

4.3.1 PHUB Features

- CPU and DMA controller are both bus masters to the PHUB
- Eight multi-layer AHB bus parallel access paths (spokes) for peripheral access
- Simultaneous CPU and DMA access to peripherals located on different spokes

Simultaneous DMA source and destination burst transactions on different spokes

■ Supports 8-, 16-, 24-, and 32-bit addressing and data

Table 4-3. PHUB Spokes and Peripherals

PHUB Spokes	Peripherals
0	SRAM
1	IOs, PICU
2	PHUB local configuration, Power manager, Clocks, IC, EEPROM, Flash programming interface
3	Analog interface and trim, Decimator
4	USB, I ² C, Timers, Counters, and PWMs
5	Reserved
6	UDBs group 1
7	UDBs group 2

4.3.2 DMA Features

- 24 DMA channels
- Each channel has one or more transaction descriptors (TDs) to configure channel behavior. Up to 127 total TDs can be defined
- TDs can be dynamically updated
- Eight levels of priority per channel
- Any digitally routable signal, the CPU, or another DMA channel, can trigger a transaction
- Each channel can generate up to two interrupts per transfer
- Transactions can be stalled or canceled
- Supports transaction size of infinite or 1 to 64 k bytes
- Large transactions may be broken into smaller bursts of 1 to 127 bytes
- TDs may be nested and/or chained for complex transactions

6. System Integration

6.1 Clocking System

The clocking system generates, divides, and distributes clocks throughout the PSoC system. The IMO and PLL together can generate up to a 40 MHz clock, accurate to $\pm 5\%$ over voltage and temperature. Additional internal and external clock sources allow each design to optimize accuracy, power, and cost. All of the system clock sources can be used to generate other clock frequencies in the 16-bit clock dividers and UDBs for anything you want, for example a UART baud rate generator.

Clock generation and distribution is automatically configured through the PSoC Creator IDE graphical interface. This is based on the complete system's requirements. It greatly speeds the design process. PSoC Creator allows designers to build clocking systems with minimal input. The designer can specify desired clock frequencies and accuracies, and the software locates or builds a clock that meets the required specifications. This is possible because of the programmability inherent PSoC. Key features of the clocking system include:

- Seven general purpose clock sources
 - □ 3 to 24 MHz IMO, ±5% at 3 MHz
 - □ 4 to 25 MHz external crystal oscillator (MHzECO)
 - Clock doubler provides a doubled clock frequency output for the USB block, see USB Clock Domain on page 21.
 - DSI signal from an external I/O pin or other logic
 - 24 to 40 MHz fractional phase-locked loop (PLL) sourced from IMO, MHzECO, or DSI
 - I kHz, 33 kHz, 100 kHz ILO for watchdog timer (WDT) and Sleep Timer
 - □ 32.768 kHz external crystal oscillator (ECO) for RTC
- Independently sourced clock dividers in all clocks
- Eight 16-bit clock dividers for the digital system
- Four 16-bit clock dividers for the analog system
- Dedicated 16-bit divider for the CPU bus and CPU clock
- Automatic clock configuration in PSoC Creator

Source	Fmin	Tolerance at Fmin	Fmax	Tolerance at Fmax	Startup Time
IMO	3 MHz	±5% over voltage and temperature	24 MHz	±8%	12 µs max
MHzECO	4 MHz	Crystal dependent	25 MHz	Crystal dependent	5 ms typ, max is crystal dependent
DSI	0 MHz	Input dependent	40 MHz	Input dependent	Input dependent
PLL	24 MHz	Input dependent	40 MHz	Input dependent	250 µs max
Doubler	48 MHz	Input dependent	48 MHz	Input dependent	1 µs max
ILO	1 kHz	-50%, +100%	100 kHz	-55%, +100%	15 ms max in lowest power mode
kHzECO	32 kHz	Crystal dependent	32 kHz	Crystal dependent	500 ms typ, max is crystal dependent

Table 6-1. Oscillator Summary

6.2.1 Power Modes

PSoC 5 devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low power and portable devices.

PSoC 5 power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

Table 6-2. Power Modes

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from reset. Figure 6-5 on page 24 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all V_{DDIO} supplies are at valid voltage levels and interrupts are enabled.

Power Modes	Description	Entry Condition	Wakeup Source	Active Clocks	Regulator
Active	Primary mode of operation, all peripherals available (program- mable)	Wakeup, reset, manual register entry	Any interrupt	Any (program- mable)	All regulators available.
Alternate Active	Similar to Active mode, and is typically configured to have fewer peripherals active to reduce power. One possible configuration is to use the UDBs for processing, with the CPU turned off	Manual register entry	Any interrupt	Any (program- mable)	All regulators available.
Sleep	All subsystems automatically disabled	Manual register entry	CTW ^[8]	ILO	All regulators available.
Hibernate	All subsystems automatically disabled Lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled Configuration and memory contents retained	Manual register entry			Only hibernate regulator active.

Table 6-3. Power Modes Wakeup Time and Power Consumption

Sleep Modes	Wakeup Time	Current (Typ)	Code Execution	Digital Resources	Analog Resources	Clock Sources Available	Wakeup Sources	Reset Sources
Active	-	6 mA ^[7]	Yes	All	All	All	-	All
Alternate Active	-	-	User defined	All	All	All	-	All
Sleep	125 µs typ	2 µA ^[8]	No	None	None	ILO	CTW	XRES
Hibernate	_	300 nA	No	None	None	None	_	XRES

Notes

- 7. Bus clock off. Execute from CPU instruction buffer at 6 MHz. See Table 11-2 on page 54
- Buring sleep mode, the CTW generates periodic interrupts to wake up the device. This affects the average current, which is a composite of the sleep mode current and active mode current, and the time spent in each mode. With the maximum wakeup interval of 128 ms, and at wakeup the CPU executes only the standard PSoC Creator sleep API (for a duty cycle of 0.2%), the average current draw is typically 35 µA.

Figure 6-5. Power Mode Transitions

6.2.1.1 Active Mode

Active mode is the primary operating mode of the device. When in active mode, the active configuration template bits control which available resources are enabled or disabled. When a resource is disabled, the digital clocks are gated, analog bias currents are disabled, and leakage currents are reduced as appropriate. User firmware can dynamically control subsystem power by setting and clearing bits in the active configuration template. The CPU can disable itself, in which case the CPU is automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always returned to active, and the CPU is automatically enabled, regardless of its template settings. Active mode is the default global power mode upon boot.

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate active mode, fewer subsystems are enabled, to reduce power consumption. One possible configuration is to turn off the CPU and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode

Sleep mode powers down the CPU and other internal circuitry to reduce power consumption. However, supervisory services such as the central timewheel (CTW) remain available in this mode. The device can wake up using CTW or system reset. The wake up time from sleep mode is 125 µs (typical).

6.2.1.4 Hibernate Mode

In hibernate mode nearly all of the internal functions are disabled. Internal voltages are reduced to the minimal level to keep vital systems alive. Configuration state is preserved in hibernate mode and SRAM memory is retained. GPIOs configured as digital outputs maintain their previous values and external GPIO pin interrupt settings are preserved. The device can only return from hibernate mode in response to an external reset (XRES).

6.2.1.5 Wakeup Events

Wakeup events can come from the central timewheel or device reset. A wakeup event restores the system to active mode. The central timewheel allows the system to periodically wake up, poll peripherals, do voltage monitoring, or perform real-time functions. Reset event sources include the external reset pin (XRES).

6.3 Reset

CY8C52 has multiple internal and external reset sources available. The reset sources are:

- Power source monitoring: The analog and digital power voltages, V_{DDA}, V_{DDD}, V_{CCA}, and V_{CCD} are monitored in several different modes during power up and active mode. The monitors are programmable to generate an interrupt to the processor under certain conditions.
- External: The device can be reset from an external source by pulling the reset pin (XRES) low. The XRES pin includes an internal pull up to V_{DDIO1}. V_{DDD}, V_{DDA}, and V_{DDIO1} must all have voltage applied before the part comes out of reset.
- Watchdog timer: A watchdog timer monitors the execution of instructions by the processor. If the watchdog timer is not reset by firmware within a certain period of time, the watchdog timer generates a reset. The watchdog timer can be used only when the part remains in active mode.
- Software: The device can be reset under program control.

Figure 6-6. Resets

- Additional features only provided on the GPIO pins:
 - LCD segment drive on LCD equipped devices
 - CapSense on CapSense equipped devices
 - Analog input and output capability
 - □ Continuous 100 µA clamp current capability
 - □ Standard drive strength down to 2.7 V
- Additional features only provided on SIO pins:
 - □ Higher drive strength than GPIO
 - \blacksquare Hot swap capability (5 V tolerance at any operating V_{DD})
 - Programmable and regulated high input and output drive levels down to 1.2 V
 - No analog input or LCD capability

- Directly of the original of th
- □ SIO can act as a general purpose analog comparator
- USBIO features:
 - Full speed USB 2.0 I/O
 - □ Highest drive strength for general purpose use
 - □ Input, output, or both for CPU and DMA
 - □ Input, output, or both for digital peripherals
 - Digital output (CMOS) drive mode
 - Each pin can be an interrupt source configured as rising edge, falling edge, or both edges

Figure 6-7.	GPIO Block Diagram
Digital Input Path	Naming Convention
PRT[x]CTL	'x' = Port Number
_PRT[x]DBL_SYNC_IN	'y' = Pin Number
PRT[x]PS	
Digital System Input	
PICU[x]INTTYPE[y]	
PICU[x]INTSTAT	Input Buffer Disable
Pin Interrupt Signal Logic	
Digital Output Path PRT[x]SLW PRT[x]SYNC_OUT PRT[x]DR Digital System Output PRT[x]BYP PRT[x]DM2 PRT[x]DM1 PRT[x]DM0 Bidirectional Control PRT[x]BIE PRT[x]BIE	Vddio Vddio In Drive Logic OE
Analog Capsense Global Control CAPS[x]CFG1 PRT[x]AG Analog Global PRT[x]AMUX Analog Mux	Switches
_CD	
_PRT[x]LCD_COM_SEG _PRT[x]LCD_EN	Display Data Logic & MUX

Figure 6-7. GPIO Block Diagram

6.4.18 Special Pin Functionality

Some pins on the device include additional special functionality in addition to their GPIO or SIO functionality. The specific special function pins are listed in "Pinouts" on page 5. The special features are:

- Digital
 - □ 32.768 kHz crystal oscillator
 - □ SWD and SWV interface pins
 - External reset

Analog

- High current IDAC output
- External reference inputs

7. Digital Subsystem

The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. Designers do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- Universal digital blocks (UDB) These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal digital block array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the digital system interconnect.
- Digital system interconnect (DSI) Digital signals from UDBs, fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the DSI to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the UDB array.

Figure 7-1. CY8C52 Digital Programmable Architecture

7.1 Example Peripherals

The flexibility of the CY8C52 family's UDBs and analog blocks allow you to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog. However, you may also create your own custom components using PSoC Creator. Using PSoC Creator, you may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the data sheet, and the list is always growing. An example of a component available for use in CY8C52 family, but, not explicitly called out in this data sheet is the UART component.

7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C52 family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
 - □ I²C (1 to 3 UDBs)
 - □ UART (1 to 3 UDBs)
- Functions
 - PWM (1 to 2 UDBs)
- Logic (x CPLD product terms per logic function)
- NOT
- o OR
- XOR
- AND

7.5 USB

PSoC includes a dedicated Full-Speed (12 Mbps) USB 2.0 transceiver supporting all four USB transfer types: control, interrupt, bulk, and isochronous. PSoC Creator provides full configuration support. USB interfaces to hosts through two dedicated USBIO pins, which are detailed in the "I/O System and Routing" section on page 25.

When using USB, either a crystal must be used (24 MHz with MHzECO) or a similar high-accuracy clock source must be provided externally through a pin and the DSI. Also, bus clock must be equal to 33 MHz. See *Section 6.1* on page 18 for details.

USB includes the following features:

- Eight unidirectional data endpoints
- One bidirectional control endpoint 0 (EP0)
- Shared 512-byte buffer for the eight data endpoints
- Dedicated 8-byte buffer for EP0
- Two memory modes
- Manual Memory Management with No DMA Access
 Manual Memory Management with Manual DMA Access
- Internal 3.3 V regulator for transceiver
- Interrupts on bus and each endpoint event
- USB Reset, Suspend, and Resume operations
- Bus powered and self powered modes

Figure 7-18. USB

7.6 Timers, Counters, and PWMs

The Timer/Counter/PWM peripheral is a 16-bit dedicated peripheral providing three of the most common embedded peripheral features. As almost all embedded systems use some combination of timers, counters, and PWMs. Four of them have been included on this PSoC device family. Additional and more advanced functionality timers, counters, and PWMs can also be instantiated in Universal Digital Blocks (UDBs) as required. PSoC Creator allows designers to choose the timer, counter, and PWM features that they require. The tool set utilizes the most optimal resources available.

The Timer/Counter/PWM peripheral can select from multiple clock sources, with input and output signals connected through the DSI routing. DSI routing allows input and output connections to any device pin and any internal digital signal accessible through the DSI. Each of the four instances has a compare output and terminal count output (optional complementary compare output). The Timer/Counter/PWMs are configurable as free running, one shot, or Enable input controlled. The peripheral has timer reset and capture inputs, and a kill input for control of the comparator outputs. The peripheral supports full 16-bit capture.

Timer/Counter/PWM features include:

- 16-bit timer/counter/PWM (down count only)
- Selectable clock source
- PWM comparator (configurable for LT, LTE, EQ, GTE, GT)
- Period reload on start, reset, and terminal count
- Dynamic counter reads
- Timer capture mode
- Count while enable signal is asserted mode
- Free run mode
- One Shot mode (stop at end of period)
- Complementary PWM outputs with deadband
- PWM output kill

Figure 7-19. Timer/Counter/PWM

7.7 I²C

The I^2C peripheral provides a synchronous two wire interface designed to interface the PSoC device with a two wire I^2C serial communication bus. The bus is compliant with Philips 'The I^2C Specification' version 2.1. Additional I^2C interfaces can be instantiated using Universal Digital Blocks (UDBs) in PSoC Creator, as required.

To eliminate the need for excessive CPU intervention and overhead, I²C specific support is provided for status detection and generation of framing bits. I²C operates as a slave, a master, or multimaster (Slave and Master)^[10]. In slave mode, the unit always listens for a start condition to begin sending or receiving data. Master mode supplies the ability to generate the Start and Stop conditions and initiate transactions. Multimaster mode provides clock synchronization and arbitration to allow multiple masters on the same bus. If Master mode is enabled and Slave mode is not enabled, the block does not generate interrupts on externally generated Start conditions. I²C interfaces through the DSI routing and allows direct connections to any GPIO or SIO pins.

I²C features include:

- Slave and master, transmitter, and receiver operation
- Byte processing for low CPU overhead
- Interrupt or polling CPU interface
- Support for bus speeds up to 400 Kbps
- 7 or 10-bit addressing (10-bit addressing requires firmware support)
- SMBus operation (through firmware support SMBus supported in hardware in UDBs)

Data transfers follow the format shown in Figure 7-20. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

Figure 7-20. I²C Complete Transfer Timing

Note

10. Fixed-block I2C does not support undefined bus conditions. These conditions should be avoided, or the UDB-based I2C component should be used instead.

The PSoC Creator software program provides a user-friendly interface to configure the analog connections between the GPIO and various analog resources and also connections from one analog resource to another. PSoC Creator also provides component libraries that allow you to configure the various analog blocks to perform application specific functions. The tool also generates API interface libraries that allow you to write firmware that allows the communication between the analog peripheral and CPU/Memory.

8.1 Analog Routing

The PSoC 5 family of devices has a flexible analog routing architecture that provides the capability to connect GPIOs and different analog blocks, and also route signals between different analog blocks. One of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different analog blocks. All analog routing switches are open when the device is in sleep or hibernate mode.

For information on how to make pin selections for optimal analog routing, refer to the application note, $AN58304 - PSoC^{\textcircled{B}} 3$ and $PSoC^{\textcircled{B}} 5$ - Pin Selection for Analog Designs.

8.1.1 Features

- Flexible, configurable analog routing architecture
- 16 Analog globals (AG) and two analog mux buses (AMUXBUS) to connect GPIOs and the analog blocks
- Each GPIO is connected to one analog global and one analog mux bus
- 8 Analog local buses (abus) to route signals between the different analog blocks
- Multiplexers and switches for input and output selection of the analog blocks

8.1.2 Functional Description

Analog globals (AGs) and analog mux buses (AMUXBUS) provide analog connectivity between GPIOs and the various analog blocks. There are 16 AGs in the PSoC 5 family. The analog routing architecture is divided into four quadrants as shown in Figure 8-2. Each quadrant has four analog globals (AGL[0..3], AGL[4..7], AGR[0..3], AGR[4..7]). Each GPIO is connected to the corresponding AG through an analog switch. The analog mux bus is a shared routing resource that connects to every GPIO through an analog switch. There are two AMUXBUS routes in PSoC 5, one in the left half (AMUXBUSL) and one in the right half (AMUXBUSR), as shown in Figure 8-2.

10. Development Support

The CY8C52 family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit psoc.cypress.com/getting-started to find out more.

10.1 Documentation

A suite of documentation, to ensure that you can find answers to your questions quickly, supports the CY8C52 family. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component data sheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: PSoC Creator makes designing with PSoC as easy as dragging a peripheral onto a schematic, but, when low level details of the PSoC device are required, use the technical reference manual (TRM) as your guide.

Note Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.

10.2 Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

10.3 Tools

With industry standard cores, programming, and debugging interfaces, the CY8C52 family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

11.4.3 USBIO

For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 54.

Table 11-10. USBIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	0.900	-	1.575	kΩ
Rusba	USB D+ pull-up resistance	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static output high	15 k Ω ±5% to Vss, internal pull-up enabled	2.8	_	3.6	V
Volusb	Static output low	15 k Ω ±5% to Vss, internal pull-up enabled	-	_	0.3	V
Vihgpio	Input voltage high, GPIO mode	$V_{DDD} \ge 3 V$	2	-	_	V
Vilgpio	Input voltage low, GPIO mode	$V_{DDD} \ge 3 V$	_	-	0.8	V
Vohgpio	Output voltage high, GPIO mode	I_{OH} = 4 mA, $V_{DDD} \ge 3 V$	2.4	-	_	V
Volgpio	Output voltage low, GPIO mode	I_{OL} = 4 mA, $V_{DDD} \ge 3 V$	-	_	0.3	V
Vdi	Differential input sensitivity	(D+)(D)	_	-	0.2	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single ended receiver threshold		0.8	-	2	V
Rps2	PS/2 pull-up resistance	In PS/2 mode, with PS/2 pull-up enabled	3	-	7	kΩ
Rext	External USB series resistor	In series with each USB pin	21.78 (–1%)	22	22.22 (+1%)	Ω
Zo	USB driver output impedance ^[27]	Including Rext	28	-	44	Ω
C _{IN}	USB transceiver input capacitance		_	-	20	pF
I _{IL} [28]	Input leakage current (absolute value)	25 °C, V _{DDD} = 3.0 V	_	_	2	nA

Figure 11-14. USBIO Output High Voltage and Current, GPIO Mode

Figure 11-15. USBIO Output Low Voltage and Current, GPIO Mode

Notes

This parameter is not production tested and cannot be guaranteed over all temperatures.
 Based on device characterization (Not production tested).

Table 11-17. SAR ADC AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Sample rate ^[31]	With bypass capacitor	-	-	700	ksps
		Without bypass capacitor	-	-	100	
	Startup time ^[31]		-	-	10	μs
SINAD	Signal-to-noise ratio ^[31]	$V_{DDA} \le 3.6 \text{ V}, \text{ V}_{REF} \le 3.6 \text{ V}$	57	-	-	dB
		$3.6 V < V_{DDA} \le 5.5 V$ $V_{REF} < 1.3 V \text{ or } V_{REF} > 1.8 V$	57	-	-	
THD	Total harmonic distortion ^[31]	$V_{DDA} \le 3.6 \text{ V}, \text{ V}_{REF} \le 3.6 \text{ V}$	-	-	0.1	%
		$3.6 V < V_{DDA} \le 5.5 V$ $V_{REF} < 1.3 V \text{ or } V_{REF} > 1.8 V$	-	-	0.1	

Figure 11-20. SAR ADC Noise Histogram, 1000 samples, 700 ksps, Internal Reference No Bypass, $V_{IN} = VREF/2$

Figure 11-21. SAR ADC Noise Histogram, 1000 samples, 700 ksps, External Reference, $V_{IN} = VREF/2$

Note

31. Based on device characterization (Not production tested).

Figure 11-22. SAR ADC Noise Histogram, 1000 samples, 700 ksps, Internal Reference Bypassed, $V_{IN} = VREF/2$

11.5.5 Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 8 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-21. IDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units	
	Resolution		_	-	8	bits	
I _{OUT}	Output current at code = 255	Range = 2.04 mA, code = 255, Rload = 600Ω	-	2.04	-	mA	
		Range = 255 μ A, code = 255, Rload = 600 Ω	-	255	-	μA	
		Range = 31.875 μ A, code = 255, Rload = 600 Ω	-	31.875	-	μA	
	Monotonicity		_	-	Yes		
Ezs	Zero scale error		_	0	±2.5	LSB	
Eg	Gain error		-	-	±5	%	
TC_Eg	Temperature coefficient of gain	Range = 2.04 mA	-	-	0.04	% / °C	
	error	Range = 255 µA	-	-	0.04	% / °C	
		Range = 31.875 µA	-	-	0.05	% / °C	
INL	Integral nonlinearity	Range = 255 μ A, Codes 8 – 255, Rload = 600 Ω , Cload = 15 pF	-	-	±3	LSB	
DNL	Differential nonlinearity, non-monotonic	Range = 255 μA, Rload = 600 Ω, Cload = 15 pF	-	-	±1.6	LSB	
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to Vdda or Rload to Vssa, Vdiff from Vdda	1	-	-	V	
I _{DD}	Operating current, code = 0	Slow mode, source mode, range = 31.875 µA	-	44	100	μA	
		Slow mode, source mode, range = 255 µA,	-	33	100	μA	
		Slow mode, source mode, range = 2.04 mA	-	33	100	μA	
		Slow mode, sink mode, range = 31.875 µA	-	36	100	μA	
		Slow mode, sink mode, range = 255 µA	-	33	100	μA	
		Slow mode, sink mode, range = 2.04 mA	-	33	100	μA	
		Fast mode, source mode, range = 31.875 µA	-	310	500	μA	
		Fast mode, source mode, range = 255 µA	-	305	500	μA	
		Fast mode, source mode, range = 2.04 mA	-	305	500	μA	
		Fast mode, sink mode, range = 31.875 µA	-	310	500	μΑ	
		Fast mode, sink mode, range = 255 µA	-	300	500	μΑ	
		Fast mode, sink mode, range = 2.04 mA	-	300	500	μΑ	

11.5.7 LCD Direct Drive

Table 11-25. LCD Direct Drive DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	LCD system operating current	Bus clock = 3 MHz, Vddio = Vdda = 3 V, 4 commons, 16 segments, 1/4 duty cycle, 50 Hz frame rate, no glass connected	-	63	-	μA
I _{CC_SEG}	Current per segment driver		-	148	-	μA
V _{BIAS}	LCD bias range (V _{BIAS} refers to the main output voltage(V0) of LCD DAC)	3 V \leq V_{BIAS} \leq V_{DDIO} for the drive pin	2.09	-	5.2	V
	LCD bias step size	$3~V \leq V_{BIAS} \leq V_{DDIO}$ for the drive pin	-	25.8	-	mV
	LCD capacitance per segment/common driver	Drivers may be combined	-	500	5000	pF
	Long term segment offset	$V_{BIAS} \le V_{DDA} - 0.5 V$	-	-	20	mV
I _{OUT}	Output drive current per segment driver	Vddio = 5.5V	90	-	165	μA

Table 11-26. LCD Direct Drive AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LCD}	LCD frame rate		10	50	150	Hz

Figure 11-49. Clock to Output Performance

11.7 Memory

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 2.7 V to 5.5 V, except where noted.

11.7.1 Flash

Table 11-37. Flash DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage	V _{DDD} pin	2.7	-	5.5	V

Table 11-38. Flash AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{WRITE}	Row write time (erase + program)		-	8.3	32	ms
T _{BULK}	Bulk erase time (256 KB)	10 °C < average ambient temp. T _A < 40 °C	-	117	440	ms
	Sector erase time (16 KB)	10 °C < average ambient temp. T _A < 40 °C	-	6.3	26	ms
T _{PROG}	Total device programming time	No overhead ^[32]	_	9	32.5	seconds
	Flash data retention time, retention period measured from last erase cycle	Average ambient temp. $T_A \le 55$ °C, 100 K erase/program cycles	20	-	-	years
		Average ambient temp. $T_A \le 70$ °C, 10 K erase/program cycles	10	_	_	

Note

32. See application note AN64359 for a description of a low-overhead method of programming PSoC 5 flash.

Figure 11-51. IMO Current vs. Frequency

Table 11-52. IMO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	IMO frequency stability (with facto	ry trim)				
	24 MHz		-8	-	8	%
F _{IMO}	12 MHz		-6.25	_	6.25	%
	6 MHz		-5.8	-	5.8	%
	3 MHz		-5	-	5	%
	Startup time ^[40]	From enable (during normal system operation) or wakeup from low power state	_	-	12	μs
	Jitter (peak to peak) ^[40]				1	
Јр-р	F = 24 MHz		_	0.5	-	ns
	F = 3 MHz		-	2.3	-	ns

Figure 11-52. IMO Frequency Variation vs. Temperature

Figure 11-53. IMO Frequency Variation vs. V_{DDD}

Note

40. Based on device characterization (Not production tested).

11.9.5 External Clock Reference

Table 11-55. External Clock Reference AC Specifications^[42]

Parameter	Description	Conditions	Min	Тур	Max	Units
	External frequency range		0	-	33	MHz
	Input duty cycle range	Measured at V _{DDIO} /2	30	50	70	%
	Input edge rate	V _{IL} to V _{IH}	0.5	-	_	V/ns

11.9.6 Phase-Locked Loop

Table 11-56. PLL DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	PLL operating current	In = 3 MHz, Out = 24 MHz	-	200	-	μA

Table 11-57. PLL AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Fpllin	PLL input frequency ^[43]		1	-	40	MHz
	PLL intermediate frequency ^[44]	Output of prescaler	1	-	3	MHz
Fpllout	PLL output frequency ^[43]		24	-	40	MHz
	Lock time at startup		-	-	250	μs
Jperiod-rms	Jitter (rms) ^[42]		-	-	400	ps

Notes

42. Based on device characterization (Not production tested).
43. This specification is guaranteed by testing the PLL across the specified range using the IMO as the source for the PLL.
44. PLL input divider, Q, must be set so that the input frequency is divided down to the intermediate frequency range. Value for Q ranges from 1 to 16.

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Symbol	Unit of Measure	
°C	degrees Celsius	
dB	decibels	
fF	femtofarads	
Hz	hertz	
KB	1024 bytes	
kbps	kilobits per second	
Khr	kilohours	
kHz	kilohertz	
kΩ	kilohms	
ksps	kilosamples per second	
LSB	least significant bit	
Mbps	megabits per second	
MHz	megahertz	
MΩ	megaohms	
Msps	megasamples per second	
μA	microamperes	
μF	microfarads	
μH	microhenrys	
μs	microseconds	
μV	microvolts	
μW	microwatts	
mA	milliamperes	
ms	milliseconds	
mV	millivolts	
nA	nanoamperes	
ns	nanoseconds	
nV	nanovolts	
Ω	ohms	
pF	picofarads	
ppm	parts per million	
ps	picoseconds	
S	seconds	
sps	samples per second	
sqrtHz	square root of hertz	
V	volts	