

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 12x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk02fn128vfm10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

	_			
1	Rati	ngs		.5
	1.1	Therm	al handling ratings	. 5
	1.2	Moistu	re handling ratings	. 5
	1.3	ESD h	andling ratings	.5
	1.4	Voltage	e and current operating ratings	. 5
2	Ger	eral		. 6
	2.1	AC ele	ctrical characteristics	.6
	2.2	Nonsw	itching electrical specifications	.6
		2.2.1	Voltage and current operating requirements	. 6
		2.2.2	LVD and POR operating requirements	.7
		2.2.3	Voltage and current operating behaviors	.8
		2.2.4	Power mode transition operating behaviors	. 9
		2.2.5	Power consumption operating behaviors	. 10
		2.2.6	EMC radiated emissions operating behaviors	. 16
		2.2.7	Designing with radiated emissions in mind	.17
		2.2.8	Capacitance attributes	.17
	2.3	Switch	ing specifications	.17
		2.3.1	Device clock specifications	.17
		2.3.2	General switching specifications	. 18
	2.4	Therm	al specifications	. 18
		2.4.1	Thermal operating requirements	. 18
		2.4.2	Thermal attributes	.19
3	Peri	pheral o	operating requirements and behaviors	. 20
	3.1	Core m	nodules	. 20
		3.1.1	SWD electricals	. 20
		3.1.2	JTAG electricals	. 21
	3.2	Systen	n modules	. 24
	3.3	Clock r	nodules	. 24
		3.3.1	MCG specifications	.24
		3.3.2	IRC48M specifications	.26
		3.3.3	Oscillator electrical specifications	.26
	3.4	Memor	ies and memory interfaces	. 29
		3.4.1	Flash electrical specifications	. 29
	3.5	Securit	ty and integrity modules	. 30
	3.6	Analog		. 30

		3.6.1	ADC electrical specifications	. 30
		3.6.2	CMP and 6-bit DAC electrical specifications	. 34
		3.6.3	12-bit DAC electrical characteristics	.37
		3.6.4	Voltage reference electrical specifications	. 40
	3.7	Timers		.41
	3.8	Comm	unication interfaces	. 41
		3.8.1	DSPI switching specifications (limited voltage	
			range)	. 42
		3.8.2	DSPI switching specifications (full voltage	
			range)	. 43
		3.8.3	Inter-Integrated Circuit Interface (I2C) timing	. 45
		3.8.4	UART switching specifications	. 47
4	Dim	ensions	3	. 47
	4.1	Obtain	ing package dimensions	. 47
5	Pino	out		.47
	5.1	K02F 8	Signal Multiplexing and Pin Assignments	. 47
	5.2	Recom	mended connection for unused analog and	
		digital	pins	.50
	5.3	K02F F	Pinouts	. 51
6	Par	identifi	cation	54
	6.1	Descri	ption	.54
	6.2	Forma	t	. 54
	6.3	Fields.		. 55
	6.4	Examp	le	.55
	6.5	48-pin	LQFP part marking	. 56
	6.6	32-pin	QFN part marking	. 56
7	Teri	ninolog	y and guidelines	. 56
	7.1	Definiti	ons	. 56
	7.2	Examp	les	.57
	7.3	Typica	I-value conditions	. 57
	7.4	Relatio	nship between ratings and operating	
		require	ments	.58
	7.5	Guidel	ines for ratings and operating requirements	.58
8	Rev	ision Hi	story	. 58

1 Ratings

1.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

1.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

1.4 Voltage and current operating ratings

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OL}} = 3 \text{ mA}$	—	_	0.5	V	
	$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 1.5 \text{ mA}$	_	—	0.5	V	
I _{OLT}	Output low current total for all ports	—	—	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range					
	All pins other than high drive port pins	_	0.002	0.5	μA	1, 2
	High drive port pins	_	0.004	0.5	μA	
I _{IN}	Input leakage current (total all pins) for full temperature range		_	1.0	μA	2
R _{PU}	Internal pullup resistors	20	—	50	kΩ	3
R _{PD}	Internal pulldown resistors	20	_	50	kΩ	4

Table 3. Voltage and current operating behaviors (continued)

1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at VDD=3.6V

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- Flash clock = 24 MHz
- MCG mode: FEI

Table 4. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 \rightarrow RUN	_	_	135	μs	
	• VLLS1 → RUN	_	_	135	μs	
	• VLLS2 → RUN			75	μs	

Table continues on the next page...

General

Figure 3. Run mode supply current vs. core frequency

General

Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors for 64 LQFP package

Parame ter	Conditions	Clocks	Frequency range	Level (Typ.)	Unit	Notes
V _{EME}	Device configuration, test	FSYS = 100 MHz	150 kHz–50 MHz	11	dBuV	1, 2, 3
	conditions and EM	FBUS = 50 MHz	50 MHz–150 MHz	12		
	61967-2.	External crystal = 10 MHz	150 MHz–500 MHz	11		
Supply voltage: VDD =			500 MHz–1000 MHz	8		
	3.3 V		IEC level	Ν		4
	Temp = 25°C					

1. Measurements were made per IEC 61967-2 while the device was running typical application code.

2. Measurements were performed on a similar 64LQFP device.

3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

4. IEC Level Maximums: N \leq 12dBmV, M \leq 18dBmV, L \leq 24dBmV, K \leq 30dBmV, I \leq 36dBmV .

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- Go to nxp.com
- Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	High Speed run mo	ode			_
f _{SYS}	System and core clock	—	100	MHz	
f _{BUS}	Bus clock	—	50	MHz	
	Normal run mode (and High Speed run mode ur	nless otherwis	se specified a	bove)	
f _{SYS}	System and core clock	—	72	MHz	
f _{BUS}	Bus clock	—	50	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock	—	25	MHz	
	VLPR mode ¹	•	•	•	•
f _{SYS}	System and core clock	—	4	MHz	
f _{BUS}	Bus clock	—	4	MHz	
f _{FLASH}	Flash clock	—	1	MHz	
f _{ERCLK}	External reference clock		16	MHz	
f _{LPTMR_pin}	LPTMR clock	—	25	MHz	

Table continues on the next page ...

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — t nominal VDD and 25 °C	—	32.768	_	kHz	
Δf_{ints_t}	Total deviation of internal reference frequency (slow clock) over voltage and temperature		_	+0.5/-0.7	± 2	%	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25		39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trim frequency at fixed using SCTRIM an	med average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of frequency over vo	trimmed average DCO output Itage and temperature	—	+0.5/-0.7	± 2	%f _{dco}	1, 2
∆f _{dco_t}	Total deviation of frequency over fix range of 0–70°C	trimmed average DCO output ed voltage and temperature	_	± 0.3	± 1.5	%f _{dco}	1
f _{intf_ft}	Internal reference factory trimmed at	frequency (fast clock) — t nominal VDD and 25°C	—	4	—	MHz	
∆f _{intf_ft}	Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal VDD and 25 °C			+1/-2	± 5	%f _{intf_ft}	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C		3	—	5	MHz	
f _{loc_low}	Loss of external c RANGE = 00	(3/5) x f _{ints_t}	_	—	kHz		
f _{loc_high}	Loss of external c RANGE = 01, 10,	(16/5) x f _{ints_t}	_	—	kHz		
		FL	L				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll ref}	60	62.91	75	MHz	
		High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					
f _{dco_t_DMX3}	DCO output frequency	Low range (DRS=00) 732 × ftll rof	—	23.99	—	MHz	5, 6
		Mid range (DRS=01) 1464 × f _{fll ref}		47.97		MHz	
		 Mid-high range (DRS=10)		71.99	_	MHz	

Table 15. MCG specifications

Table continues on the next page...

3.3.3 Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71		3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	—	200	_	μA	
	• 8 MHz (RANGE=01)	—	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—			MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	—	_	_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	—	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	

3.3.3.1 Oscillator DC electrical specifications Table 17. Oscillator DC electrical specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	—	V _{DD}	_	V	

 Table 17. Oscillator DC electrical specifications (continued)

1. V_{DD} =3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x and C_y can be provided by using either integrated capacitors or external components.

4. When low-power mode is selected, R_F is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

3.3.3.2 Oscillator frequency specifications

Table 18. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	—	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

3.6.2 CMP and 6-bit DAC electrical specifications Table 25. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Figure 14. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Figure 16. Typical INL error vs. digital code

Characteristic	Symbol	Standard Mode		Fast Mode		Unit
		Minimum	Maximum	Minimum	Maximum	
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	—	100 ^{3, 6}	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	—	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

Table 36. I ²C timing (continued)

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V.

The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.

3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.

6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.

7. C_b = total capacitance of the one bus line in pF.

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26		μs
LOW period of the SCL clock	t _{LOW}	0.5	_	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	—	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b ^{, 2}	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

Table 37. I ²C 1 Mbps timing

1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins across the full voltage range.

2. C_b = total capacitance of the one bus line in pF.

Figure 22. Timing definition for devices on the I²C bus

3.8.4 UART switching specifications

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ARE10566D
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

5 Pinout

5.1 K02F Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64 LQFP	48 LQFP	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
29	-	_	PTA13/ LLWU_P4	DISABLED		PTA13/ LLWU_P4		FTM1_CH1				FTM1_QD_ PHB
30	22	-	VDD	VDD	VDD							
31	23	_	VSS	VSS	VSS							
32	24	17	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0			
33	25	18	PTA19	XTAL0	XTAL0	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1	
34	26	19	RESET_b	RESET_b	RESET_b							
35	27	20	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA	
36	28	21	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB	
37	29	_	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	UART0_RTS_ b			FTM0_FLT3	
38	30	_	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	UART0_CTS_ b			FTM0_FLT0	
39	31	-	PTB16	DISABLED		PTB16		UART0_RX	FTM_CLKIN0		EWM_IN	
40	32	-	PTB17	DISABLED		PTB17		UART0_TX	FTM_CLKIN1		EWM_OUT_b	
41	-	_	PTB18	DISABLED		PTB18		FTM2_CH0			FTM2_QD_ PHA	
42	-	_	PTB19	DISABLED		PTB19		FTM2_CH1			FTM2_QD_ PHB	
43	33	_	PTC0	ADC0_SE14	ADC0_SE14	PTC0	SPI0_PCS4	PDB0_ EXTRG				
44	34	22	PTC1/ LLWU_P6	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_ b	FTM0_CH0			
45	35	23	PTC2	ADC0_SE4b/ CMP1_IN0	ADC0_SE4b/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_CTS_ b	FTM0_CH1			
46	36	24	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT		
47	_	-	VSS	VSS	VSS							
48	-	-	VDD	VDD	VDD							
49	37	25	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	
50	38	26	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	FTM0_CH2
51	39	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_ EXTRG				
52	40	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN					
53	-	_	PTC8	CMP0_IN2	CMP0_IN2	PTC8						
54	-	_	PTC9	CMP0_IN3	CMP0_IN3	PTC9					FTM2_FLT0	
55	—	—	PTC10	DISABLED		PTC10						
56	_	-	PTC11/ LLWU_P11	DISABLED		PTC11/ LLWU_P11						

Figure 23. K02F 64 LQFP pinout diagram (top view)

Figure 25. K02F 32 QFN pinout diagram

6 Part identification

6.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

Term	Definition
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions
Typical value	A specified value for a technical characteristic that:
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.

7.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V
		GN		

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

1

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
Iwp	Digital I/O weak pullup/pulldown current	10 AM	70	130	μA

7.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	Supply voltage	3.3	V

7.4 Relationship between ratings and operating requirements

7.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
		 Removed Section 6, "Ordering parts." Added "48-pin LQFP part marking" section Added "32-pin QFN part marking" section
2	8/2014	 On p. 1, under "Memories and memory interfaces," added bullet, "Preprogrammed Kinetis flashloader for one-time, in-system factory programming" On p. 1, added parenthetical element to the following bullet under "Analog modules": <i>Accurate internal voltage reference (not available for 32-pin QFN package)</i> On p. 1, added parenthetical element to the following bullet under "Timers": <i>Two 2-channel motor-control general-purpose timers with quadrature decoder functionality (FTM2 does not have external pins on the 32-pin QFN or the 48-pin LQFP package)</i> In "Voltage and current operating ratings" section, updated digital supply current maximum value In "Voltage and current operating behaviors" section, updated input leakage information In "Power consumption operating behaviors table": Updated existing typical and maximum power measurements Added new typical power measurements for the following: IDD_HSRUN (High Speed Run mode, all peripheral clocks disabled, current executing While(1) loop) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, exercuting While(1) loop) IDD_RUN (Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) IDD_VLPR (Very Low Power Run mode current in Compute operation, all peripheral clocks disabled, executing CoreMark code) IDD_VLPR (Very Low Power Run mode current in Compute operation, all peripheral clocks disabled, executing While(1) loop) Updated section, "EMC radiated emissions operating behaviors for 64 LQFP package" In "Thermal attributes" section, added 64-pin LQFP and 32-pin QFN package values
1	3/2014	Initial public release

Table 41. Revision History (continued)