

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM
Number of I/O	46
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 12x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk02fn128vlh10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

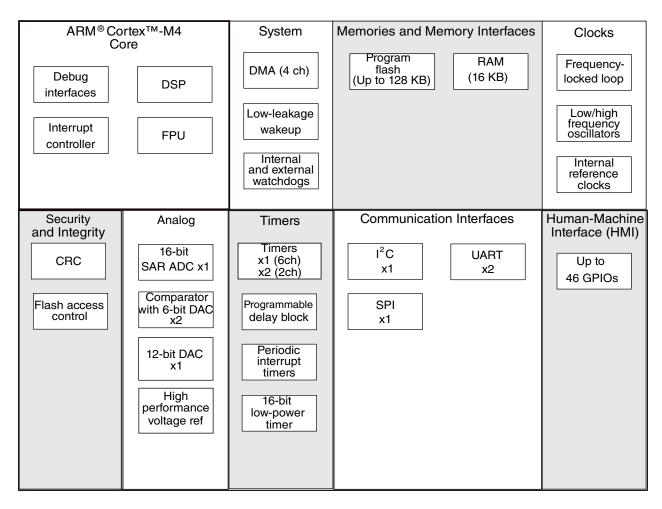


Figure 1. Functional block diagram

Table 2. V_{DD} supply LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	60	_	mV	
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

^{1.} Rising threshold is the sum of falling threshold and hysteresis voltage

2.2.3 Voltage and current operating behaviors

Table 3. Voltage and current operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad except RESET_B					
	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$	V _{DD} – 0.5	_	_	V	1
	$1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -2.5 \text{ mA}$	$V_{DD} - 0.5$	_	_	V	
V _{OH}	Output high voltage — High drive pad except RESET_B					
	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -20 \text{ mA}$	V _{DD} – 0.5	_	_	V	1
	$1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OH} = -10 \text{ mA}$	$V_{DD} - 0.5$	_	_	V	
I _{OHT}	Output high current total for all ports	_	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad except RESET_B					
	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 5 \text{ mA}$	_	_	0.5	V	1
	$1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 2.5 \text{ mA}$	_	_	0.5	V	
V _{OL}	Output low voltage — High drive pad except RESET_B					
	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 20 \text{ mA}$	_	_	0.5	V	1
	$1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 10 \text{ mA}$	_	_	0.5	V	
V _{OL}	Output low voltage — RESET_B					

Table 3. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 3 \text{ mA}$	_	_	0.5	V	
	$1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 1.5 \text{ mA}$	_	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range					
	All pins other than high drive port pins	_	0.002	0.5	μA	1, 2
	High drive port pins	_	0.004	0.5	μA	
I _{IN}	Input leakage current (total all pins) for full temperature range	_	_	1.0	μA	2
R _{PU}	Internal pullup resistors	20	_	50	kΩ	3
R _{PD}	Internal pulldown resistors	20	_	50	kΩ	4

- 1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
- 2. Measured at VDD=3.6V
- 3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- Flash clock = 24 MHz
- MCG mode: FEI

Table 4. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	_	135	μs	
	• VLLS1 → RUN	_	_	135	μs	
	• VLLS2 → RUN	_	_	75	μs	

Table 5. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current in Compute operation — code executing from flash					
	@ 1.8V	_	12.10	13.10	mA	6
	@ 3.0V	_	12.20	13.37	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					
	@ 1.8V	_	12.8	13.47	mA	7
	@ 3.0V	_	12.9	13.57	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V	_	14.8	15.47	mA	8
	@ 3.0V					
	• @ 25°C	_	14.9	15.57	mA	
	• @ 70°C	_	14.9	15.57	mA	
	• @ 85°C	_	14.9	15.57	mA	
	• @ 105°C	_	15.5	16.20	mA	
I _{DD_RUN}	Run mode current — Compute operation, code executing from flash					
	@ 1.8V	_	12.1	12.77	mA	9
	@ 3.0V					
	• @ 25°C	_	12.2	12.87	mA	
	• @ 70°C	_	12.2	12.87	mA	
	• @ 85°C	_	12.2	12.87	mA	
	• @ 105°C	_	12.7	13.37	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	5.5	6.17	mA	7
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	3.5	4.17	mA	10
I _{DD_VLPR}	Very-low-power run mode current in Compute operation — CoreMark benchmark code executing from flash					
	@ 1.8V	_	0.58	0.86	mA	2, 11, 3
	@ 3.0V	_	0.59	0.87	mA	
I _{DD_VLPR}	Very-low-power run mode current in Compute operation, code executing from flash					
	@ 1.8V	_	0.47	0.75	mA	11
	@ 3.0V	_	0.47	0.75	mA	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	_	0.62	0.90	mA	12

Table 6. Low power mode peripheral adders—typical value (continued)

Symbol	Description			Tempera	ature (°C)		Unit
		-40	25	50	70	85	105	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48 Mhz internal reference clock	350	350	350	350	350	350	μΑ
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μА
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	>OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μА
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	42	42	42	42	42	42	μА

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at frequencies between 50 MHz and 100MHz.
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

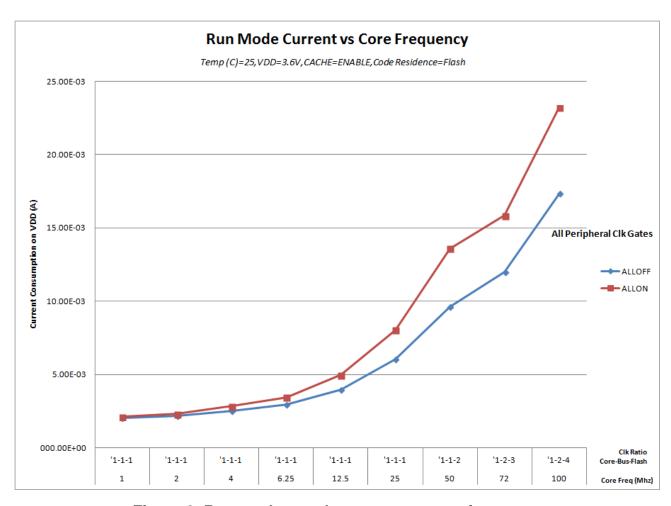


Figure 3. Run mode supply current vs. core frequency

2.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

^{1.} Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\Theta JA} \times$ chip power dissipation.

2.4.2 Thermal attributes

Board type	Symbol	Descriptio n	64 LQFP	48 LQFP	32 QFN	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	66	79	97	°C/W	1
Four-layer (2s2p)	R _{θЈА}	Thermal resistance, junction to ambient (natural convection)	48	55	33	°C/W	1
Single-layer (1s)	R _{еЈМА}	Thermal resistance, junction to ambient (200 ft./min. air speed)	54	67	81	°C/W	1
Four-layer (2s2p)	R _{еЈМА}	Thermal resistance, junction to ambient (200 ft./min. air speed)	41	49	28	°C/W	1
_	$R_{\theta JB}$	Thermal resistance, junction to board	30	33	13	°C/W	2
_	$R_{\theta JC}$	Thermal resistance, junction to case	17	23	2.0	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterizati	3	5	6	°C/W	4

3.3.1 MCG specifications

Table 15. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal VDD and 25 °C		32.768	_	kHz	
Δf_{ints_t}		internal reference frequency voltage and temperature	_	+0.5/-0.7	± 2	%	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{ ext{fdco_res_t}}$		med average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of frequency over vo	_	+0.5/-0.7	± 2	%f _{dco}	1, 2	
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.3	± 1.5	%f _{dco}	1
f _{intf_ft}		frequency (fast clock) — t nominal VDD and 25°C	_	4	_	MHz	
Δf_{intf_ft}	Frequency deviati (fast clock) over to factory trimmed a	_	+1/-2	± 5	%f _{intf_ft}		
f _{intf_t}	Internal reference user trimmed at n	3	_	5	MHz		
f _{loc_low}	Loss of external c	lock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz	
		FL	L				
f _{fII_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) $640 \times f_{fll_ref}$	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) $1280 \times f_{fll_ref}$	40	41.94	50	MHz	
		Mid-high range (DRS=10) $1920 \times f_{fil} _{ref}$	60	62.91	75	MHz	
		High range (DRS=11)	80	83.89	100	MHz	
dco_t_DMX3	DCO output frequency	2560 × f _{fll_ref} Low range (DRS=00)	<u> </u>	23.99	_	MHz	5, 6
2	oquonoy	$732 \times f_{fll_ref}$ Mid range (DRS=01)	_	47.97	_	MHz	
		1464 × f _{fll_ref}					
		Mid-high range (DRS=10)	_	71.99	-	MHz	

Table 17. Oscillator DC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x and C_y can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

3.3.3.2 Oscillator frequency specifications Table 18. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

^{1.} Other frequency limits may apply when external clock is being used as a reference for the FLL

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 19. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	_	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversall}	Erase All high-voltage time	_	104	904	ms	1

^{1.} Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec2k}	Read 1s Section execution time (flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	_	0.9	ms	1
t _{rdonce}	Read Once execution time	_	_	30	μs	1
t _{pgmonce}	Program Once execution time	_	100	_	μs	_
t _{ersall}	Erase All Blocks execution time	_	140	1150	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 21. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	_	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 22. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Prograi	n Flash	-			
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	_
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the differential pins ADCx_DPx, ADCx_DMx.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

^{2.} Cycling endurance represents number of program/erase cycles at −40 °C ≤ T_i ≤ 125 °C.

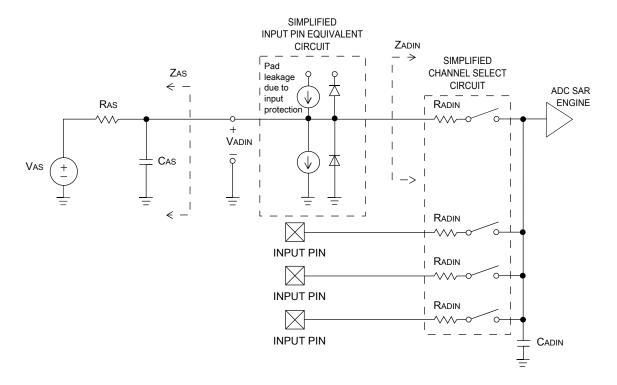


Figure 11. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	• <12-bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		<12-bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5

Peripheral operating requirements and behaviors

- 4. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

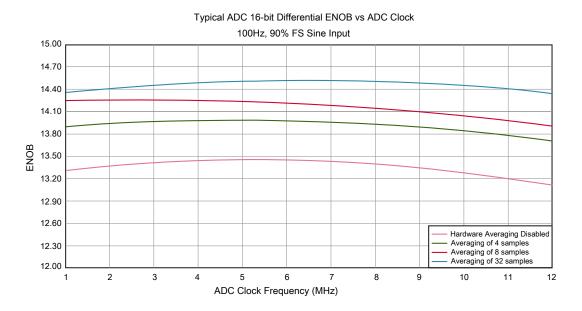


Figure 12. Typical ENOB vs. ADC_CLK for 16-bit differential mode

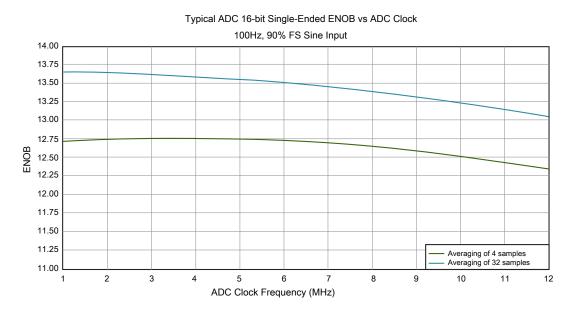


Figure 13. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications

Table 25. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	_	20	μΑ
V _{AIN}	Analog input voltage	V _{SS} - 0.3	_	V_{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μΑ
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

^{2.} Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

^{3.} $1 LSB = V_{reference}/64$

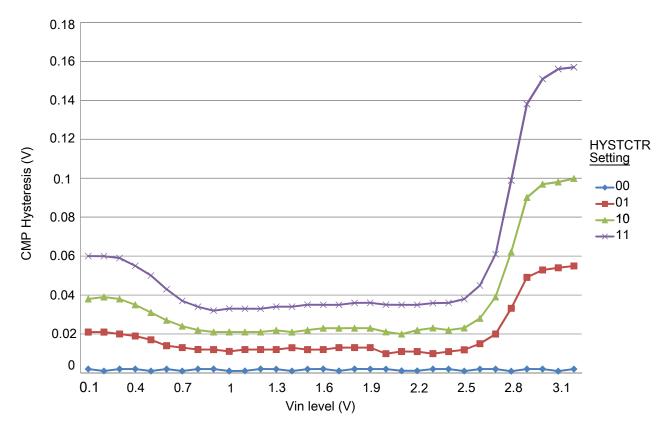


Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 26. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

^{1.} The DAC reference can be selected to be V_{DDA} or V_{REFH} .

^{2.} A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

25

25

ns

ns

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	_	6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	29.5	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	3.2	_	ns
DS14	DSPL SCK to DSPL SIN input hold	7	_	ns

Table 35. Slave mode DSPI timing (full voltage range)

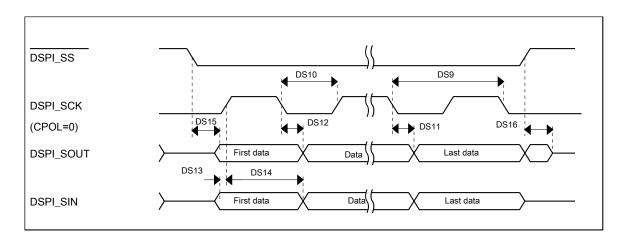


Figure 21. DSPI classic SPI timing — slave mode

3.8.3 Inter-Integrated Circuit Interface (I²C) timing Table 36. I²C timing

DSPI_SS active to DSPI_SOUT driven

DSPI_SS inactive to DSPI_SOUT not driven

DS15

DS16

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6		μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs

64 LQFP	48 LQFP	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
29	_	_	PTA13/ LLWU_P4	DISABLED		PTA13/ LLWU_P4		FTM1_CH1				FTM1_QD_ PHB
30	22	-	VDD	VDD	VDD							
31	23	ı	VSS	VSS	VSS							
32	24	17	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0			
33	25	18	PTA19	XTAL0	XTAL0	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1	
34	26	19	RESET_b	RESET_b	RESET_b							
35	27	20	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0			FTM1_QD_ PHA	
36	28	21	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB	
37	29	ı	PTB2	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	UARTO_RTS_ b			FTM0_FLT3	
38	30	-	PTB3	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	UARTO_CTS_			FTM0_FLT0	
39	31	_	PTB16	DISABLED		PTB16		UART0_RX	FTM_CLKIN0		EWM_IN	
40	32	_	PTB17	DISABLED		PTB17		UART0_TX	FTM_CLKIN1		EWM_OUT_b	
41	-	_	PTB18	DISABLED		PTB18		FTM2_CH0			FTM2_QD_ PHA	
42	_	-	PTB19	DISABLED		PTB19		FTM2_CH1			FTM2_QD_ PHB	
43	33	_	PTC0	ADC0_SE14	ADC0_SE14	PTC0	SPI0_PCS4	PDB0_ EXTRG				
44	34	22	PTC1/ LLWU_P6	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_	FTM0_CH0			
45	35	23	PTC2	ADC0_SE4b/ CMP1_IN0	ADC0_SE4b/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_CTS_	FTM0_CH1			
46	36	24	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT		
47	_	_	VSS	VSS	VSS							
48	_	_	VDD	VDD	VDD							
49	37	25	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	
50	38	26	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	FTM0_CH2
51	39	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_ EXTRG				
52	40	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN				1	
53	-	_	PTC8	CMP0_IN2	CMP0_IN2	PTC8						
54	-	-	PTC9	CMP0_IN3	CMP0_IN3	PTC9					FTM2_FLT0	
55	-	-	PTC10	DISABLED		PTC10						
56	-	-	PTC11/ LLWU_P11	DISABLED		PTC11/ LLWU_P11						

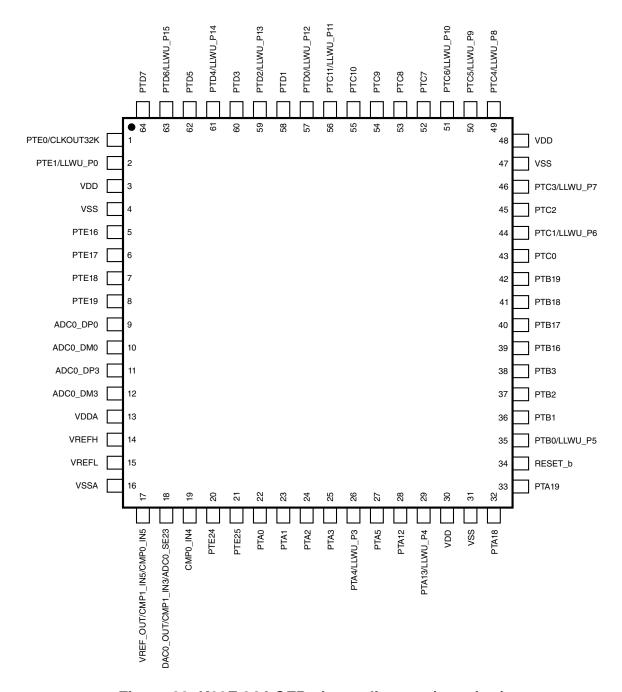


Figure 23. K02F 64 LQFP pinout diagram (top view)

MK02FN128VLH10

6.5 48-pin LQFP part marking

The 48-pin LQFP package parts follow the part-marking scheme in the following table.

Table 39. 48-pin LQFP part marking

MK Partnumber	MK Part Marking
MK02FN128VLF10	M02J7V
MK02FN64VLF10	M02J6V

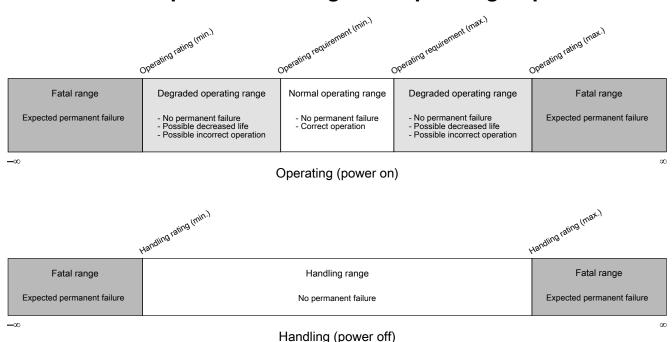
6.6 32-pin QFN part marking

The 32-pin QFN package parts follow the part-marking scheme in the following table.

Table 40. 32-pin QFN part marking

MK Part number	MK Part Marking
MK02FN128VFM10	M02J7V
MK02FN64VFM10	M02J6V

7 Terminology and guidelines


7.1 Definitions

Key terms are defined in the following table:

Term	Definition		
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:		
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 		
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.		

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V _{DD}	Supply voltage	3.3	V

7.4 Relationship between ratings and operating requirements

7.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8 Revision History

The following table provides a revision history for this document.